Spaces:
Running
Running
from typing import ( | |
Any, | |
Iterable, | |
NamedTuple, | |
Optional, | |
overload, | |
Sequence, | |
Tuple, | |
TypeVar, | |
Union, | |
) | |
from typing_extensions import Self | |
from torch import Tensor | |
from torch._prims_common import DeviceLikeType | |
from torch.types import _dtype | |
class PackedSequence_(NamedTuple): | |
data: Tensor | |
batch_sizes: Tensor | |
sorted_indices: Optional[Tensor] | |
unsorted_indices: Optional[Tensor] | |
def bind(optional: Any, fn: Any): ... | |
_T = TypeVar("_T") | |
class PackedSequence(PackedSequence_): | |
def __new__( | |
cls, | |
data: Tensor, | |
batch_sizes: Optional[Tensor] = ..., | |
sorted_indices: Optional[Tensor] = ..., | |
unsorted_indices: Optional[Tensor] = ..., | |
) -> Self: ... | |
def pin_memory(self: _T) -> _T: ... | |
def cuda(self: _T, *args: Any, **kwargs: Any) -> _T: ... | |
def cpu(self: _T) -> _T: ... | |
def double(self: _T) -> _T: ... | |
def float(self: _T) -> _T: ... | |
def half(self: _T) -> _T: ... | |
def long(self: _T) -> _T: ... | |
def int(self: _T) -> _T: ... | |
def short(self: _T) -> _T: ... | |
def char(self: _T) -> _T: ... | |
def byte(self: _T) -> _T: ... | |
def to( | |
self: _T, | |
dtype: _dtype, | |
non_blocking: bool = False, | |
copy: bool = False, | |
) -> _T: ... | |
def to( | |
self: _T, | |
device: Optional[DeviceLikeType] = None, | |
dtype: Optional[_dtype] = None, | |
non_blocking: bool = False, | |
copy: bool = False, | |
) -> _T: ... | |
def to( | |
self: _T, | |
other: Tensor, | |
non_blocking: bool = False, | |
copy: bool = False, | |
) -> _T: ... | |
def is_cuda(self) -> bool: ... | |
def is_pinned(self) -> bool: ... | |
def invert_permutation(permutation: Optional[Tensor]): ... | |
def pack_padded_sequence( | |
input: Tensor, | |
lengths: Tensor, | |
batch_first: bool = ..., | |
enforce_sorted: bool = ..., | |
) -> PackedSequence: ... | |
def pad_packed_sequence( | |
sequence: PackedSequence, | |
batch_first: bool = ..., | |
padding_value: float = ..., | |
total_length: Optional[int] = ..., | |
) -> Tuple[Tensor, ...]: ... | |
def pad_sequence( | |
sequences: Union[Tensor, Iterable[Tensor]], | |
batch_first: bool = False, | |
padding_value: float = ..., | |
) -> Tensor: ... | |
def pack_sequence( | |
sequences: Sequence[Tensor], | |
enforce_sorted: bool = ..., | |
) -> PackedSequence: ... | |
def get_packed_sequence( | |
data: Tensor, | |
batch_sizes: Optional[Tensor], | |
sorted_indices: Optional[Tensor], | |
unsorted_indices: Optional[Tensor], | |
) -> PackedSequence: ... | |