Kano001's picture
Upload 5252 files
c61ccee verified
raw
history blame
4.4 kB
import threading
import torch
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, cast
from ..modules import Module
from torch.cuda._utils import _get_device_index
from torch.cuda.amp import autocast
from torch._utils import ExceptionWrapper
__all__ = ['get_a_var', 'parallel_apply']
def get_a_var(obj: Union[torch.Tensor, List[Any], Tuple[Any, ...], Dict[Any, Any]]) -> Optional[torch.Tensor]:
if isinstance(obj, torch.Tensor):
return obj
if isinstance(obj, (list, tuple)):
for result in map(get_a_var, obj):
if isinstance(result, torch.Tensor):
return result
if isinstance(obj, dict):
for result in map(get_a_var, obj.items()):
if isinstance(result, torch.Tensor):
return result
return None
def parallel_apply(
modules: Sequence[Module],
inputs: Sequence[Any],
kwargs_tup: Optional[Sequence[Dict[str, Any]]] = None,
devices: Optional[Sequence[Optional[Union[int, torch.device]]]] = None,
) -> List[Any]:
r"""Apply each `module` in :attr:`modules` in parallel on each of :attr:`devices`.
Args:
modules (Module): modules to be parallelized
inputs (tensor): inputs to the modules
devices (list of int or torch.device): CUDA devices
:attr:`modules`, :attr:`inputs`, :attr:`kwargs_tup` (if given), and
:attr:`devices` (if given) should all have same length. Moreover, each
element of :attr:`inputs` can either be a single object as the only argument
to a module, or a collection of positional arguments.
"""
assert len(modules) == len(inputs), f'The number of modules {len(modules)} is not equal to the number of inputs {len(inputs)}'
if kwargs_tup is not None:
assert len(modules) == len(kwargs_tup)
else:
kwargs_tup = (cast(Dict[str, Any], {}),) * len(modules)
if devices is not None:
assert len(modules) == len(devices)
else:
devices = [None] * len(modules)
devices = [_get_device_index(x, True) for x in devices]
streams = [torch.cuda.current_stream(x) for x in devices]
lock = threading.Lock()
results = {}
grad_enabled, autocast_enabled = torch.is_grad_enabled(), torch.is_autocast_enabled()
def _worker(
i: int,
module: Module,
input: Any,
kwargs: Dict[str, Any],
device: Optional[Union[int, torch.device]] = None,
stream: Optional[torch.cuda.Stream] = None,
) -> None:
torch.set_grad_enabled(grad_enabled)
if device is None:
t = get_a_var(input)
if t is None:
with lock:
results[i] = ExceptionWrapper(
where=f"in replica {i}, no device was provided and no tensor input was found; "
"device cannot be resolved")
return
device = t.get_device()
if stream is None:
stream = torch.cuda.current_stream(device)
try:
with torch.cuda.device(device), torch.cuda.stream(stream), autocast(enabled=autocast_enabled):
# this also avoids accidental slicing of `input` if it is a Tensor
if not isinstance(input, (list, tuple)):
input = (input,)
output = module(*input, **kwargs)
with lock:
results[i] = output
except Exception:
with lock:
results[i] = ExceptionWrapper(
where=f"in replica {i} on device {device}")
if len(modules) > 1:
threads = [threading.Thread(target=_worker,
args=(i, module, input, kwargs, device, stream))
for i, (module, input, kwargs, device, stream) in
enumerate(zip(modules, inputs, kwargs_tup, devices, streams))]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
else:
_worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0], streams[0])
outputs = []
for i in range(len(inputs)):
output = results[i]
if isinstance(output, ExceptionWrapper):
output.reraise()
outputs.append(output)
return outputs