Kano001's picture
Upload 5252 files
c61ccee verified
raw
history blame
4.96 kB
import warnings
import torch
from . import comm
from torch.autograd import Function
from torch._utils import _get_device_index
from typing import List, Optional
class Broadcast(Function):
@staticmethod
def forward(ctx, target_gpus, *inputs):
assert all(i.device.type != 'cpu' for i in inputs), (
'Broadcast function not implemented for CPU tensors'
)
target_gpus = [_get_device_index(x, True) for x in target_gpus]
ctx.target_gpus = target_gpus
if len(inputs) == 0:
return tuple()
ctx.num_inputs = len(inputs)
ctx.input_device = inputs[0].get_device()
outputs = comm.broadcast_coalesced(inputs, ctx.target_gpus)
non_differentiables = []
for idx, input_requires_grad in enumerate(ctx.needs_input_grad[1:]):
if not input_requires_grad:
for output in outputs:
non_differentiables.append(output[idx])
ctx.mark_non_differentiable(*non_differentiables)
return tuple([t for tensors in outputs for t in tensors])
@staticmethod
def backward(ctx, *grad_outputs):
return (None,) + ReduceAddCoalesced.apply(ctx.input_device, ctx.num_inputs, *grad_outputs)
class ReduceAddCoalesced(Function):
@staticmethod
def forward(ctx, destination, num_inputs, *grads):
ctx.target_gpus = [grads[i].get_device() for i in range(0, len(grads), num_inputs)]
grads_ = [grads[i:i + num_inputs]
for i in range(0, len(grads), num_inputs)]
return comm.reduce_add_coalesced(grads_, destination)
@staticmethod
def backward(ctx, *grad_outputs):
return (None, None,) + Broadcast.apply(ctx.target_gpus, *grad_outputs)
class Gather(Function):
@staticmethod
def forward(ctx, target_device, dim, *inputs):
assert all(i.device.type != 'cpu' for i in inputs), (
'Gather function not implemented for CPU tensors'
)
if (target_device == 'cpu'):
ctx.target_device = 'cpu'
else:
target_device = _get_device_index(target_device, True)
ctx.target_device = target_device
ctx.dim = dim
ctx.input_gpus = tuple(i.get_device() for i in inputs)
if all(t.dim() == 0 for t in inputs) and dim == 0:
inputs = tuple(t.view(1) for t in inputs)
warnings.warn('Was asked to gather along dimension 0, but all '
'input tensors were scalars; will instead unsqueeze '
'and return a vector.')
ctx.unsqueezed_scalar = True
else:
ctx.unsqueezed_scalar = False
ctx.input_sizes = tuple(i.size(ctx.dim) for i in inputs)
return comm.gather(inputs, ctx.dim, ctx.target_device)
@staticmethod
def backward(ctx, grad_output):
scattered_grads = Scatter.apply(ctx.input_gpus, ctx.input_sizes, ctx.dim, grad_output)
if ctx.unsqueezed_scalar:
scattered_grads = tuple(g[0] for g in scattered_grads)
return (None, None) + scattered_grads
class Scatter(Function):
@staticmethod
def forward(ctx, target_gpus, chunk_sizes, dim, input):
target_gpus = [_get_device_index(x, True) for x in target_gpus]
ctx.dim = dim
ctx.input_device = input.get_device() if input.device.type != "cpu" else -1
streams = None
if torch.cuda.is_available() and ctx.input_device == -1:
# Perform CPU to GPU copies in a background stream
streams = [_get_stream(torch.device("cuda", device)) for device in target_gpus]
outputs = comm.scatter(input, target_gpus, chunk_sizes, ctx.dim, streams)
# Synchronize with the copy stream
if streams is not None:
for i, output in enumerate(outputs):
with torch.cuda.device(target_gpus[i]):
main_stream = torch.cuda.current_stream()
main_stream.wait_stream(streams[i])
output.record_stream(main_stream)
return outputs
@staticmethod
def backward(ctx, *grad_output):
return None, None, None, Gather.apply(ctx.input_device, ctx.dim, *grad_output)
# background streams used for copying
_streams: Optional[List[Optional[torch.Stream]]] = None
def _get_stream(device: torch.device):
"""Get a background stream for copying between CPU and target device."""
global _streams
if device.type == "cpu":
return None
device_mod = getattr(torch, device.type, None)
if device_mod is None:
return None
if _streams is None:
_streams = [None] * device_mod.device_count()
if _streams[device.index] is None:
_streams[device.index] = device_mod.Stream(device.index)
return _streams[device.index]