Spaces:
Running
Running
from torch.fx.graph_module import GraphModule | |
from typing import Any, Callable, Dict, List, Tuple, Type | |
import torch | |
import torch.nn as nn | |
from torch.fx._compatibility import compatibility | |
__all__ = ['default_matching', 'extract_attrs_for_lowering', 'lift_lowering_attrs_to_nodes'] | |
# Matching method matches the attribute name of current version to the attribute name of `target_version` | |
def default_matching(name: str, target_version: int) -> str: | |
"""Default matching method | |
""" | |
return name | |
# This dict maps the nn.Module class name to the attribute name list that we want to fetch for lowering. | |
# The first integer in the tuple is the version number of the nn.Module class when we create the parameter list. | |
# If there's a version mismatch then it means the parameter names in the book might be mismatched with nn.Module. | |
module_fetch_book: Dict[Type, Tuple[int, List[str], Callable[[str, int], str]]] = { | |
torch.nn.modules.linear.Linear: (1, ["weight", "bias"], default_matching), | |
torch.nn.modules.conv.Conv2d: ( | |
1, ["weight", "bias", "kernel_size", "stride", "padding", "dilation", "groups", "padding_mode"], default_matching | |
), | |
torch.nn.modules.batchnorm.BatchNorm2d: (2, ["weight", "bias", "running_mean", "running_var", "eps"], default_matching), | |
torch.nn.modules.pooling.AdaptiveAvgPool2d: (1, [], default_matching), | |
torch.nn.modules.pooling.MaxPool2d: ( | |
1, ["kernel_size", "stride", "padding", "dilation", "return_indices", "ceil_mode"], default_matching | |
), | |
torch.nn.modules.activation.ReLU: (1, ["inplace"], default_matching), | |
} | |
def extract_attrs_for_lowering(mod: nn.Module) -> Dict[str, Any]: | |
"""If `mod` is in `module_fetch_book`, fetch the mod's attributes that in the `module_fetch_book` | |
after checking module's version is compatible with the `module_fetch_book`. | |
""" | |
attrs_for_lowering: Dict[str, Any] = {} | |
attrs_for_lowering["name"] = torch.typename(mod) | |
if type(mod) in module_fetch_book: | |
version, param_to_fetch, matching_method = module_fetch_book[type(mod)] | |
if version < mod._version: | |
raise RuntimeError(f"Fetcher version {version} try to fetch {torch.typename(mod)} version {mod._version}, " | |
"please upgrade the module_fetch_book, open an issue and @842974287 " | |
"or report a bug to AIACC team directly.") | |
for attr in param_to_fetch: | |
attrs_for_lowering[attr] = getattr(mod, matching_method(attr, mod._version)) | |
else: | |
raise RuntimeError(f"{torch.typename(mod)} is not in the module_fetch_book yet, " | |
"please add it to the module_fetch_book, open an issue and @842974287 " | |
"or report a bug to AIACC team directly.") | |
return attrs_for_lowering | |
def lift_lowering_attrs_to_nodes(fx_module: GraphModule) -> None: | |
"""Recursively traverse all `fx_module` nodes and fetch the module's attributes if the node is a leaf module. | |
""" | |
submodules = dict(fx_module.named_modules()) | |
for node in fx_module.graph.nodes: | |
if node.op == "call_module": | |
if isinstance(submodules[node.target], GraphModule): | |
lift_lowering_attrs_to_nodes(submodules[node.target]) | |
else: | |
node.attrs_for_lowering = extract_attrs_for_lowering(submodules[node.target]) | |