Spaces:
Configuration error
Configuration error
import matplotlib | |
matplotlib.use('Agg') | |
import glob | |
import importlib | |
from utils.cwt import get_lf0_cwt | |
import os | |
import torch.optim | |
import torch.utils.data | |
from utils.indexed_datasets import IndexedDataset | |
from utils.pitch_utils import norm_interp_f0 | |
import numpy as np | |
from training.dataset.base_dataset import BaseDataset | |
import torch | |
import torch.optim | |
import torch.utils.data | |
import utils | |
import torch.distributions | |
from utils.hparams import hparams | |
class FastSpeechDataset(BaseDataset): | |
def __init__(self, prefix, shuffle=False): | |
super().__init__(shuffle) | |
self.data_dir = hparams['binary_data_dir'] | |
self.prefix = prefix | |
self.hparams = hparams | |
self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy') | |
self.indexed_ds = None | |
# self.name2spk_id={} | |
# pitch stats | |
f0_stats_fn = f'{self.data_dir}/train_f0s_mean_std.npy' | |
if os.path.exists(f0_stats_fn): | |
hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = np.load(f0_stats_fn) | |
hparams['f0_mean'] = float(hparams['f0_mean']) | |
hparams['f0_std'] = float(hparams['f0_std']) | |
else: | |
hparams['f0_mean'], hparams['f0_std'] = self.f0_mean, self.f0_std = None, None | |
if prefix == 'test': | |
if hparams['test_input_dir'] != '': | |
self.indexed_ds, self.sizes = self.load_test_inputs(hparams['test_input_dir']) | |
else: | |
if hparams['num_test_samples'] > 0: | |
self.avail_idxs = list(range(hparams['num_test_samples'])) + hparams['test_ids'] | |
self.sizes = [self.sizes[i] for i in self.avail_idxs] | |
if hparams['pitch_type'] == 'cwt': | |
_, hparams['cwt_scales'] = get_lf0_cwt(np.ones(10)) | |
def _get_item(self, index): | |
if hasattr(self, 'avail_idxs') and self.avail_idxs is not None: | |
index = self.avail_idxs[index] | |
if self.indexed_ds is None: | |
self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}') | |
return self.indexed_ds[index] | |
def __getitem__(self, index): | |
hparams = self.hparams | |
item = self._get_item(index) | |
max_frames = hparams['max_frames'] | |
spec = torch.Tensor(item['mel'])[:max_frames] | |
energy = (spec.exp() ** 2).sum(-1).sqrt() | |
mel2ph = torch.LongTensor(item['mel2ph'])[:max_frames] if 'mel2ph' in item else None | |
f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams) | |
#phone = torch.LongTensor(item['phone'][:hparams['max_input_tokens']]) | |
hubert=torch.Tensor(item['hubert'][:hparams['max_input_tokens']]) | |
pitch = torch.LongTensor(item.get("pitch"))[:max_frames] | |
# print(item.keys(), item['mel'].shape, spec.shape) | |
sample = { | |
"id": index, | |
"item_name": item['item_name'], | |
# "text": item['txt'], | |
# "txt_token": phone, | |
"hubert":hubert, | |
"mel": spec, | |
"pitch": pitch, | |
"energy": energy, | |
"f0": f0, | |
"uv": uv, | |
"mel2ph": mel2ph, | |
"mel_nonpadding": spec.abs().sum(-1) > 0, | |
} | |
if self.hparams['use_spk_embed']: | |
sample["spk_embed"] = torch.Tensor(item['spk_embed']) | |
if self.hparams['use_spk_id']: | |
sample["spk_id"] = item['spk_id'] | |
# sample['spk_id'] = 0 | |
# for key in self.name2spk_id.keys(): | |
# if key in item['item_name']: | |
# sample['spk_id'] = self.name2spk_id[key] | |
# break | |
#======not used========== | |
# if self.hparams['pitch_type'] == 'cwt': | |
# cwt_spec = torch.Tensor(item['cwt_spec'])[:max_frames] | |
# f0_mean = item.get('f0_mean', item.get('cwt_mean')) | |
# f0_std = item.get('f0_std', item.get('cwt_std')) | |
# sample.update({"cwt_spec": cwt_spec, "f0_mean": f0_mean, "f0_std": f0_std}) | |
# elif self.hparams['pitch_type'] == 'ph': | |
# f0_phlevel_sum = torch.zeros_like(phone).float().scatter_add(0, mel2ph - 1, f0) | |
# f0_phlevel_num = torch.zeros_like(phone).float().scatter_add( | |
# 0, mel2ph - 1, torch.ones_like(f0)).clamp_min(1) | |
# sample["f0_ph"] = f0_phlevel_sum / f0_phlevel_num | |
return sample | |
def collater(self, samples): | |
if len(samples) == 0: | |
return {} | |
id = torch.LongTensor([s['id'] for s in samples]) | |
item_names = [s['item_name'] for s in samples] | |
text = [s['text'] for s in samples] | |
txt_tokens = utils.collate_1d([s['txt_token'] for s in samples], 0) | |
f0 = utils.collate_1d([s['f0'] for s in samples], 0.0) | |
pitch = utils.collate_1d([s['pitch'] for s in samples],1) | |
uv = utils.collate_1d([s['uv'] for s in samples]) | |
energy = utils.collate_1d([s['energy'] for s in samples], 0.0) | |
mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \ | |
if samples[0]['mel2ph'] is not None else None | |
mels = utils.collate_2d([s['mel'] for s in samples], 0.0) | |
txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples]) | |
mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples]) | |
batch = { | |
'id': id, | |
'item_name': item_names, | |
'nsamples': len(samples), | |
'text': text, | |
'txt_tokens': txt_tokens, | |
'txt_lengths': txt_lengths, | |
'mels': mels, | |
'mel_lengths': mel_lengths, | |
'mel2ph': mel2ph, | |
'energy': energy, | |
'pitch': pitch, | |
'f0': f0, | |
'uv': uv, | |
} | |
if self.hparams['use_spk_embed']: | |
spk_embed = torch.stack([s['spk_embed'] for s in samples]) | |
batch['spk_embed'] = spk_embed | |
if self.hparams['use_spk_id']: | |
spk_ids = torch.LongTensor([s['spk_id'] for s in samples]) | |
batch['spk_ids'] = spk_ids | |
if self.hparams['pitch_type'] == 'cwt': | |
cwt_spec = utils.collate_2d([s['cwt_spec'] for s in samples]) | |
f0_mean = torch.Tensor([s['f0_mean'] for s in samples]) | |
f0_std = torch.Tensor([s['f0_std'] for s in samples]) | |
batch.update({'cwt_spec': cwt_spec, 'f0_mean': f0_mean, 'f0_std': f0_std}) | |
elif self.hparams['pitch_type'] == 'ph': | |
batch['f0'] = utils.collate_1d([s['f0_ph'] for s in samples]) | |
return batch | |
def load_test_inputs(self, test_input_dir, spk_id=0): | |
inp_wav_paths = glob.glob(f'{test_input_dir}/*.wav') + glob.glob(f'{test_input_dir}/*.mp3') | |
sizes = [] | |
items = [] | |
binarizer_cls = hparams.get("binarizer_cls", 'basics.base_binarizer.BaseBinarizer') | |
pkg = ".".join(binarizer_cls.split(".")[:-1]) | |
cls_name = binarizer_cls.split(".")[-1] | |
binarizer_cls = getattr(importlib.import_module(pkg), cls_name) | |
binarization_args = hparams['binarization_args'] | |
from preprocessing.hubertinfer import Hubertencoder | |
for wav_fn in inp_wav_paths: | |
item_name = os.path.basename(wav_fn) | |
ph = txt = tg_fn = '' | |
wav_fn = wav_fn | |
encoder = Hubertencoder(hparams['hubert_path']) | |
item = binarizer_cls.process_item(item_name, {'wav_fn':wav_fn}, encoder, binarization_args) | |
print(item) | |
items.append(item) | |
sizes.append(item['len']) | |
return items, sizes | |