ApplioRVC-Inference / preprocessing /process_pipeline.py
Kangarroar's picture
Upload 154 files
ed1cdd1
raw
history blame
9.4 kB
'''
file -> temporary_dict -> processed_input -> batch
'''
from utils.hparams import hparams
from network.vocoders.base_vocoder import VOCODERS
import numpy as np
import traceback
from pathlib import Path
from .data_gen_utils import get_pitch_parselmouth,get_pitch_crepe
from .base_binarizer import BinarizationError
import torch
import utils
class File2Batch:
'''
pipeline: file -> temporary_dict -> processed_input -> batch
'''
@staticmethod
def file2temporary_dict():
'''
read from file, store data in temporary dicts
'''
raw_data_dir = Path(hparams['raw_data_dir'])
# meta_midi = json.load(open(os.path.join(raw_data_dir, 'meta.json'))) # [list of dict]
# if hparams['perform_enhance'] and not hparams['infer']:
# vocoder=get_vocoder_cls(hparams)()
# raw_files = list(raw_data_dir.rglob(f"*.wav"))
# dic=[]
# time_step = hparams['hop_size'] / hparams['audio_sample_rate']
# f0_min = hparams['f0_min']
# f0_max = hparams['f0_max']
# for file in raw_files:
# y, sr = librosa.load(file, sr=hparams['audio_sample_rate'])
# f0 = parselmouth.Sound(y, hparams['audio_sample_rate']).to_pitch_ac(
# time_step=time_step , voicing_threshold=0.6,
# pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
# f0_mean=np.mean(f0[f0>0])
# dic.append(f0_mean)
# for idx in np.where(dic>np.percentile(dic, 80))[0]:
# file=raw_files[idx]
# wav,mel=vocoder.wav2spec(str(file))
# f0,_=get_pitch_parselmouth(wav,mel,hparams)
# f0[f0>0]=f0[f0>0]*(2**(2/12))
# wav_pred=vocoder.spec2wav(torch.FloatTensor(mel),f0=torch.FloatTensor(f0))
# sf.write(file.with_name(file.name[:-4]+'_high.wav'), wav_pred, 24000, 'PCM_16')
utterance_labels =[]
utterance_labels.extend(list(raw_data_dir.rglob(f"*.wav")))
utterance_labels.extend(list(raw_data_dir.rglob(f"*.ogg")))
#open(os.path.join(raw_data_dir, 'transcriptions.txt'), encoding='utf-8').readlines()
all_temp_dict = {}
for utterance_label in utterance_labels:
#song_info = utterance_label.split('|')
item_name =str(utterance_label)#raw_item_name = song_info[0]
# print(item_name)
temp_dict = {}
temp_dict['wav_fn'] =str(utterance_label)#f'{raw_data_dir}/wavs/{item_name}.wav'
# temp_dict['txt'] = song_info[1]
# temp_dict['ph'] = song_info[2]
# # self.item2wdb[item_name] = list(np.nonzero([1 if x in ALL_YUNMU + ['AP', 'SP'] else 0 for x in song_info[2].split()])[0])
# temp_dict['word_boundary'] = np.array([1 if x in ALL_YUNMU + ['AP', 'SP'] else 0 for x in song_info[2].split()])
# temp_dict['ph_durs'] = [float(x) for x in song_info[5].split(" ")]
# temp_dict['pitch_midi'] = np.array([note_to_midi(x.split("/")[0]) if x != 'rest' else 0
# for x in song_info[3].split(" ")])
# temp_dict['midi_dur'] = np.array([float(x) for x in song_info[4].split(" ")])
# temp_dict['is_slur'] = np.array([int(x) for x in song_info[6].split(" ")])
temp_dict['spk_id'] = hparams['speaker_id']
# assert temp_dict['pitch_midi'].shape == temp_dict['midi_dur'].shape == temp_dict['is_slur'].shape, \
# (temp_dict['pitch_midi'].shape, temp_dict['midi_dur'].shape, temp_dict['is_slur'].shape)
all_temp_dict[item_name] = temp_dict
return all_temp_dict
@staticmethod
def temporary_dict2processed_input(item_name, temp_dict, encoder, binarization_args):
'''
process data in temporary_dicts
'''
def get_pitch(wav, mel):
# get ground truth f0 by self.get_pitch_algorithm
if hparams['use_crepe']:
gt_f0, gt_pitch_coarse = get_pitch_crepe(wav, mel, hparams)
else:
gt_f0, gt_pitch_coarse = get_pitch_parselmouth(wav, mel, hparams)
if sum(gt_f0) == 0:
raise BinarizationError("Empty **gt** f0")
processed_input['f0'] = gt_f0
processed_input['pitch'] = gt_pitch_coarse
def get_align(meta_data, mel, phone_encoded, hop_size=hparams['hop_size'], audio_sample_rate=hparams['audio_sample_rate']):
mel2ph = np.zeros([mel.shape[0]], int)
start_frame=0
ph_durs = mel.shape[0]/phone_encoded.shape[0]
if hparams['debug']:
print(mel.shape,phone_encoded.shape,mel.shape[0]/phone_encoded.shape[0])
for i_ph in range(phone_encoded.shape[0]):
end_frame = int(i_ph*ph_durs +ph_durs+ 0.5)
mel2ph[start_frame:end_frame+1] = i_ph + 1
start_frame = end_frame+1
processed_input['mel2ph'] = mel2ph
if hparams['vocoder'] in VOCODERS:
wav, mel = VOCODERS[hparams['vocoder']].wav2spec(temp_dict['wav_fn'])
else:
wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(temp_dict['wav_fn'])
processed_input = {
'item_name': item_name, 'mel': mel, 'wav': wav,
'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0]
}
processed_input = {**temp_dict, **processed_input} # merge two dicts
processed_input['spec_min']=np.min(mel,axis=0)
processed_input['spec_max']=np.max(mel,axis=0)
#(processed_input['spec_min'].shape)
try:
if binarization_args['with_f0']:
get_pitch(wav, mel)
if binarization_args['with_hubert']:
try:
hubert_encoded = processed_input['hubert'] = encoder.encode(temp_dict['wav_fn'])
except:
traceback.print_exc()
raise Exception(f"hubert encode error")
if binarization_args['with_align']:
get_align(temp_dict, mel, hubert_encoded)
except Exception as e:
print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {temp_dict['wav_fn']}")
return None
return processed_input
@staticmethod
def processed_input2batch(samples):
'''
Args:
samples: one batch of processed_input
NOTE:
the batch size is controlled by hparams['max_sentences']
'''
if len(samples) == 0:
return {}
id = torch.LongTensor([s['id'] for s in samples])
item_names = [s['item_name'] for s in samples]
#text = [s['text'] for s in samples]
#txt_tokens = utils.collate_1d([s['txt_token'] for s in samples], 0)
hubert = utils.collate_2d([s['hubert'] for s in samples], 0.0)
f0 = utils.collate_1d([s['f0'] for s in samples], 0.0)
pitch = utils.collate_1d([s['pitch'] for s in samples])
uv = utils.collate_1d([s['uv'] for s in samples])
energy = utils.collate_1d([s['energy'] for s in samples], 0.0)
mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \
if samples[0]['mel2ph'] is not None else None
mels = utils.collate_2d([s['mel'] for s in samples], 0.0)
#txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples])
hubert_lengths = torch.LongTensor([s['hubert'].shape[0] for s in samples])
mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples])
batch = {
'id': id,
'item_name': item_names,
'nsamples': len(samples),
# 'text': text,
# 'txt_tokens': txt_tokens,
# 'txt_lengths': txt_lengths,
'hubert':hubert,
'mels': mels,
'mel_lengths': mel_lengths,
'mel2ph': mel2ph,
'energy': energy,
'pitch': pitch,
'f0': f0,
'uv': uv,
}
#========not used=================
# if hparams['use_spk_embed']:
# spk_embed = torch.stack([s['spk_embed'] for s in samples])
# batch['spk_embed'] = spk_embed
# if hparams['use_spk_id']:
# spk_ids = torch.LongTensor([s['spk_id'] for s in samples])
# batch['spk_ids'] = spk_ids
# if hparams['pitch_type'] == 'cwt':
# cwt_spec = utils.collate_2d([s['cwt_spec'] for s in samples])
# f0_mean = torch.Tensor([s['f0_mean'] for s in samples])
# f0_std = torch.Tensor([s['f0_std'] for s in samples])
# batch.update({'cwt_spec': cwt_spec, 'f0_mean': f0_mean, 'f0_std': f0_std})
# elif hparams['pitch_type'] == 'ph':
# batch['f0'] = utils.collate_1d([s['f0_ph'] for s in samples])
# batch['pitch_midi'] = utils.collate_1d([s['pitch_midi'] for s in samples], 0)
# batch['midi_dur'] = utils.collate_1d([s['midi_dur'] for s in samples], 0)
# batch['is_slur'] = utils.collate_1d([s['is_slur'] for s in samples], 0)
# batch['word_boundary'] = utils.collate_1d([s['word_boundary'] for s in samples], 0)
return batch