Kangarroar's picture
Upload 154 files
ed1cdd1
raw
history blame
14.5 kB
from collections import deque
from functools import partial
from inspect import isfunction
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from tqdm import tqdm
from modules.fastspeech.fs2 import FastSpeech2
# from modules.diffsinger_midi.fs2 import FastSpeech2MIDI
from utils.hparams import hparams
from training.train_pipeline import Batch2Loss
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
# gaussian diffusion trainer class
def extract(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def noise_like(shape, device, repeat=False):
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
noise = lambda: torch.randn(shape, device=device)
return repeat_noise() if repeat else noise()
def linear_beta_schedule(timesteps, max_beta=hparams.get('max_beta', 0.01)):
"""
linear schedule
"""
betas = np.linspace(1e-4, max_beta, timesteps)
return betas
def cosine_beta_schedule(timesteps, s=0.008):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = np.linspace(0, steps, steps)
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return np.clip(betas, a_min=0, a_max=0.999)
beta_schedule = {
"cosine": cosine_beta_schedule,
"linear": linear_beta_schedule,
}
class GaussianDiffusion(nn.Module):
def __init__(self, phone_encoder, out_dims, denoise_fn,
timesteps=1000, K_step=1000, loss_type=hparams.get('diff_loss_type', 'l1'), betas=None, spec_min=None,
spec_max=None):
super().__init__()
self.denoise_fn = denoise_fn
# if hparams.get('use_midi') is not None and hparams['use_midi']:
# self.fs2 = FastSpeech2MIDI(phone_encoder, out_dims)
# else:
self.fs2 = FastSpeech2(phone_encoder, out_dims)
self.mel_bins = out_dims
if exists(betas):
betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas
else:
if 'schedule_type' in hparams.keys():
betas = beta_schedule[hparams['schedule_type']](timesteps)
else:
betas = cosine_beta_schedule(timesteps)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.K_step = K_step
self.loss_type = loss_type
self.noise_list = deque(maxlen=4)
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
self.register_buffer('spec_min', torch.FloatTensor(spec_min)[None, None, :hparams['keep_bins']])
self.register_buffer('spec_max', torch.FloatTensor(spec_max)[None, None, :hparams['keep_bins']])
def q_mean_variance(self, x_start, t):
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, cond, clip_denoised: bool):
noise_pred = self.denoise_fn(x, t, cond=cond)
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
if clip_denoised:
x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond, clip_denoised=clip_denoised)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
"""
Use the PLMS method from [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
"""
def get_x_pred(x, noise_t, t):
a_t = extract(self.alphas_cumprod, t, x.shape)
a_prev = extract(self.alphas_cumprod, torch.max(t-interval, torch.zeros_like(t)), x.shape)
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
x_pred = x + x_delta
return x_pred
noise_list = self.noise_list
noise_pred = self.denoise_fn(x, t, cond=cond)
if len(noise_list) == 0:
x_pred = get_x_pred(x, noise_pred, t)
noise_pred_prev = self.denoise_fn(x_pred, max(t-interval, 0), cond=cond)
noise_pred_prime = (noise_pred + noise_pred_prev) / 2
elif len(noise_list) == 1:
noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
elif len(noise_list) == 2:
noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
elif len(noise_list) >= 3:
noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
x_prev = get_x_pred(x, noise_pred_prime, t)
noise_list.append(noise_pred)
return x_prev
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def p_losses(self, x_start, t, cond, noise=None, nonpadding=None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_recon = self.denoise_fn(x_noisy, t, cond)
if self.loss_type == 'l1':
if nonpadding is not None:
loss = ((noise - x_recon).abs() * nonpadding.unsqueeze(1)).mean()
else:
# print('are you sure w/o nonpadding?')
loss = (noise - x_recon).abs().mean()
elif self.loss_type == 'l2':
loss = F.mse_loss(noise, x_recon)
else:
raise NotImplementedError()
return loss
def forward(self, hubert, mel2ph=None, spk_embed=None,
ref_mels=None, f0=None, uv=None, energy=None, infer=False, **kwargs):
'''
conditioning diffusion, use fastspeech2 encoder output as the condition
'''
ret = self.fs2(hubert, mel2ph, spk_embed, None, f0, uv, energy,
skip_decoder=True, infer=infer, **kwargs)
cond = ret['decoder_inp'].transpose(1, 2)
b, *_, device = *hubert.shape, hubert.device
if not infer:
Batch2Loss.module4(
self.p_losses,
self.norm_spec(ref_mels), cond, ret, self.K_step, b, device
)
else:
'''
ret['fs2_mel'] = ret['mel_out']
fs2_mels = ret['mel_out']
t = self.K_step
fs2_mels = self.norm_spec(fs2_mels)
fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :]
x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long())
if hparams.get('gaussian_start') is not None and hparams['gaussian_start']:
print('===> gaussion start.')
shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2])
x = torch.randn(shape, device=device)
'''
if 'use_gt_mel' in kwargs.keys() and kwargs['use_gt_mel']:
t =kwargs['add_noise_step']
print('===>using ground truth mel as start, please make sure parameter "key==0" !')
fs2_mels = ref_mels
fs2_mels = self.norm_spec(fs2_mels)
fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :]
x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long())
# for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
# x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
else:
t = self.K_step
#print('===> gaussion start.')
shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2])
x = torch.randn(shape, device=device)
if hparams.get('pndm_speedup') and hparams['pndm_speedup'] > 1:
self.noise_list = deque(maxlen=4)
iteration_interval =hparams['pndm_speedup']
for i in tqdm(reversed(range(0, t, iteration_interval)), desc='sample time step',
total=t // iteration_interval):
x = self.p_sample_plms(x, torch.full((b,), i, device=device, dtype=torch.long), iteration_interval,
cond)
else:
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
x = x[:, 0].transpose(1, 2)
if mel2ph is not None: # for singing
ret['mel_out'] = self.denorm_spec(x) * ((mel2ph > 0).float()[:, :, None])
else:
ret['mel_out'] = self.denorm_spec(x)
return ret
def norm_spec(self, x):
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
def denorm_spec(self, x):
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph):
return self.fs2.cwt2f0_norm(cwt_spec, mean, std, mel2ph)
def out2mel(self, x):
return x
class OfflineGaussianDiffusion(GaussianDiffusion):
def forward(self, txt_tokens, mel2ph=None, spk_embed=None,
ref_mels=None, f0=None, uv=None, energy=None, infer=False, **kwargs):
b, *_, device = *txt_tokens.shape, txt_tokens.device
ret = self.fs2(txt_tokens, mel2ph, spk_embed, ref_mels, f0, uv, energy,
skip_decoder=True, infer=True, **kwargs)
cond = ret['decoder_inp'].transpose(1, 2)
fs2_mels = ref_mels[1]
ref_mels = ref_mels[0]
if not infer:
t = torch.randint(0, self.K_step, (b,), device=device).long()
x = ref_mels
x = self.norm_spec(x)
x = x.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
ret['diff_loss'] = self.p_losses(x, t, cond)
else:
t = self.K_step
fs2_mels = self.norm_spec(fs2_mels)
fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :]
x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long())
if hparams.get('gaussian_start') is not None and hparams['gaussian_start']:
print('===> gaussion start.')
shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2])
x = torch.randn(shape, device=device)
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
x = x[:, 0].transpose(1, 2)
ret['mel_out'] = self.denorm_spec(x)
return ret