Spaces:
Configuration error
Configuration error
import logging | |
import math | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from modules.commons.espnet_positional_embedding import RelPositionalEncoding | |
from modules.commons.common_layers import SinusoidalPositionalEmbedding, Linear, EncSALayer, DecSALayer, BatchNorm1dTBC | |
from utils.hparams import hparams | |
DEFAULT_MAX_SOURCE_POSITIONS = 2000 | |
DEFAULT_MAX_TARGET_POSITIONS = 2000 | |
class TransformerEncoderLayer(nn.Module): | |
def __init__(self, hidden_size, dropout, kernel_size=None, num_heads=2, norm='ln'): | |
super().__init__() | |
self.hidden_size = hidden_size | |
self.dropout = dropout | |
self.num_heads = num_heads | |
self.op = EncSALayer( | |
hidden_size, num_heads, dropout=dropout, | |
attention_dropout=0.0, relu_dropout=dropout, | |
kernel_size=kernel_size | |
if kernel_size is not None else hparams['enc_ffn_kernel_size'], | |
padding=hparams['ffn_padding'], | |
norm=norm, act=hparams['ffn_act']) | |
def forward(self, x, **kwargs): | |
return self.op(x, **kwargs) | |
###################### | |
# fastspeech modules | |
###################### | |
class LayerNorm(torch.nn.LayerNorm): | |
"""Layer normalization module. | |
:param int nout: output dim size | |
:param int dim: dimension to be normalized | |
""" | |
def __init__(self, nout, dim=-1): | |
"""Construct an LayerNorm object.""" | |
super(LayerNorm, self).__init__(nout, eps=1e-12) | |
self.dim = dim | |
def forward(self, x): | |
"""Apply layer normalization. | |
:param torch.Tensor x: input tensor | |
:return: layer normalized tensor | |
:rtype torch.Tensor | |
""" | |
if self.dim == -1: | |
return super(LayerNorm, self).forward(x) | |
return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1) | |
class DurationPredictor(torch.nn.Module): | |
"""Duration predictor module. | |
This is a module of duration predictor described in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. | |
The duration predictor predicts a duration of each frame in log domain from the hidden embeddings of encoder. | |
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: | |
https://arxiv.org/pdf/1905.09263.pdf | |
Note: | |
The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`, | |
the outputs are calculated in log domain but in `inference`, those are calculated in linear domain. | |
""" | |
def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0, padding='SAME'): | |
"""Initilize duration predictor module. | |
Args: | |
idim (int): Input dimension. | |
n_layers (int, optional): Number of convolutional layers. | |
n_chans (int, optional): Number of channels of convolutional layers. | |
kernel_size (int, optional): Kernel size of convolutional layers. | |
dropout_rate (float, optional): Dropout rate. | |
offset (float, optional): Offset value to avoid nan in log domain. | |
""" | |
super(DurationPredictor, self).__init__() | |
self.offset = offset | |
self.conv = torch.nn.ModuleList() | |
self.kernel_size = kernel_size | |
self.padding = padding | |
for idx in range(n_layers): | |
in_chans = idim if idx == 0 else n_chans | |
self.conv += [torch.nn.Sequential( | |
torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2) | |
if padding == 'SAME' | |
else (kernel_size - 1, 0), 0), | |
torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0), | |
torch.nn.ReLU(), | |
LayerNorm(n_chans, dim=1), | |
torch.nn.Dropout(dropout_rate) | |
)] | |
if hparams['dur_loss'] in ['mse', 'huber']: | |
odims = 1 | |
elif hparams['dur_loss'] == 'mog': | |
odims = 15 | |
elif hparams['dur_loss'] == 'crf': | |
odims = 32 | |
from torchcrf import CRF | |
self.crf = CRF(odims, batch_first=True) | |
self.linear = torch.nn.Linear(n_chans, odims) | |
def _forward(self, xs, x_masks=None, is_inference=False): | |
xs = xs.transpose(1, -1) # (B, idim, Tmax) | |
for f in self.conv: | |
xs = f(xs) # (B, C, Tmax) | |
if x_masks is not None: | |
xs = xs * (1 - x_masks.float())[:, None, :] | |
xs = self.linear(xs.transpose(1, -1)) # [B, T, C] | |
xs = xs * (1 - x_masks.float())[:, :, None] # (B, T, C) | |
if is_inference: | |
return self.out2dur(xs), xs | |
else: | |
if hparams['dur_loss'] in ['mse']: | |
xs = xs.squeeze(-1) # (B, Tmax) | |
return xs | |
def out2dur(self, xs): | |
if hparams['dur_loss'] in ['mse']: | |
# NOTE: calculate in log domain | |
xs = xs.squeeze(-1) # (B, Tmax) | |
dur = torch.clamp(torch.round(xs.exp() - self.offset), min=0).long() # avoid negative value | |
elif hparams['dur_loss'] == 'mog': | |
return NotImplementedError | |
elif hparams['dur_loss'] == 'crf': | |
dur = torch.LongTensor(self.crf.decode(xs)).cuda() | |
return dur | |
def forward(self, xs, x_masks=None): | |
"""Calculate forward propagation. | |
Args: | |
xs (Tensor): Batch of input sequences (B, Tmax, idim). | |
x_masks (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax). | |
Returns: | |
Tensor: Batch of predicted durations in log domain (B, Tmax). | |
""" | |
return self._forward(xs, x_masks, False) | |
def inference(self, xs, x_masks=None): | |
"""Inference duration. | |
Args: | |
xs (Tensor): Batch of input sequences (B, Tmax, idim). | |
x_masks (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax). | |
Returns: | |
LongTensor: Batch of predicted durations in linear domain (B, Tmax). | |
""" | |
return self._forward(xs, x_masks, True) | |
class LengthRegulator(torch.nn.Module): | |
def __init__(self, pad_value=0.0): | |
super(LengthRegulator, self).__init__() | |
self.pad_value = pad_value | |
def forward(self, dur, dur_padding=None, alpha=1.0): | |
""" | |
Example (no batch dim version): | |
1. dur = [2,2,3] | |
2. token_idx = [[1],[2],[3]], dur_cumsum = [2,4,7], dur_cumsum_prev = [0,2,4] | |
3. token_mask = [[1,1,0,0,0,0,0], | |
[0,0,1,1,0,0,0], | |
[0,0,0,0,1,1,1]] | |
4. token_idx * token_mask = [[1,1,0,0,0,0,0], | |
[0,0,2,2,0,0,0], | |
[0,0,0,0,3,3,3]] | |
5. (token_idx * token_mask).sum(0) = [1,1,2,2,3,3,3] | |
:param dur: Batch of durations of each frame (B, T_txt) | |
:param dur_padding: Batch of padding of each frame (B, T_txt) | |
:param alpha: duration rescale coefficient | |
:return: | |
mel2ph (B, T_speech) | |
""" | |
assert alpha > 0 | |
dur = torch.round(dur.float() * alpha).long() | |
if dur_padding is not None: | |
dur = dur * (1 - dur_padding.long()) | |
token_idx = torch.arange(1, dur.shape[1] + 1)[None, :, None].to(dur.device) | |
dur_cumsum = torch.cumsum(dur, 1) | |
dur_cumsum_prev = F.pad(dur_cumsum, [1, -1], mode='constant', value=0) | |
pos_idx = torch.arange(dur.sum(-1).max())[None, None].to(dur.device) | |
token_mask = (pos_idx >= dur_cumsum_prev[:, :, None]) & (pos_idx < dur_cumsum[:, :, None]) | |
mel2ph = (token_idx * token_mask.long()).sum(1) | |
return mel2ph | |
class PitchPredictor(torch.nn.Module): | |
def __init__(self, idim, n_layers=5, n_chans=384, odim=2, kernel_size=5, | |
dropout_rate=0.1, padding='SAME'): | |
"""Initilize pitch predictor module. | |
Args: | |
idim (int): Input dimension. | |
n_layers (int, optional): Number of convolutional layers. | |
n_chans (int, optional): Number of channels of convolutional layers. | |
kernel_size (int, optional): Kernel size of convolutional layers. | |
dropout_rate (float, optional): Dropout rate. | |
""" | |
super(PitchPredictor, self).__init__() | |
self.conv = torch.nn.ModuleList() | |
self.kernel_size = kernel_size | |
self.padding = padding | |
for idx in range(n_layers): | |
in_chans = idim if idx == 0 else n_chans | |
self.conv += [torch.nn.Sequential( | |
torch.nn.ConstantPad1d(((kernel_size - 1) // 2, (kernel_size - 1) // 2) | |
if padding == 'SAME' | |
else (kernel_size - 1, 0), 0), | |
torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=0), | |
torch.nn.ReLU(), | |
LayerNorm(n_chans, dim=1), | |
torch.nn.Dropout(dropout_rate) | |
)] | |
self.linear = torch.nn.Linear(n_chans, odim) | |
self.embed_positions = SinusoidalPositionalEmbedding(idim, 0, init_size=4096) | |
self.pos_embed_alpha = nn.Parameter(torch.Tensor([1])) | |
def forward(self, xs): | |
""" | |
:param xs: [B, T, H] | |
:return: [B, T, H] | |
""" | |
positions = self.pos_embed_alpha * self.embed_positions(xs[..., 0]) | |
xs = xs + positions | |
xs = xs.transpose(1, -1) # (B, idim, Tmax) | |
for f in self.conv: | |
xs = f(xs) # (B, C, Tmax) | |
# NOTE: calculate in log domain | |
xs = self.linear(xs.transpose(1, -1)) # (B, Tmax, H) | |
return xs | |
class EnergyPredictor(PitchPredictor): | |
pass | |
def mel2ph_to_dur(mel2ph, T_txt, max_dur=None): | |
B, _ = mel2ph.shape | |
dur = mel2ph.new_zeros(B, T_txt + 1).scatter_add(1, mel2ph, torch.ones_like(mel2ph)) | |
dur = dur[:, 1:] | |
if max_dur is not None: | |
dur = dur.clamp(max=max_dur) | |
return dur | |
class FFTBlocks(nn.Module): | |
def __init__(self, hidden_size, num_layers, ffn_kernel_size=9, dropout=None, num_heads=2, | |
use_pos_embed=True, use_last_norm=True, norm='ln', use_pos_embed_alpha=True): | |
super().__init__() | |
self.num_layers = num_layers | |
embed_dim = self.hidden_size = hidden_size | |
self.dropout = dropout if dropout is not None else hparams['dropout'] | |
self.use_pos_embed = use_pos_embed | |
self.use_last_norm = use_last_norm | |
if use_pos_embed: | |
self.max_source_positions = DEFAULT_MAX_TARGET_POSITIONS | |
self.padding_idx = 0 | |
self.pos_embed_alpha = nn.Parameter(torch.Tensor([1])) if use_pos_embed_alpha else 1 | |
self.embed_positions = SinusoidalPositionalEmbedding( | |
embed_dim, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS, | |
) | |
self.layers = nn.ModuleList([]) | |
self.layers.extend([ | |
TransformerEncoderLayer(self.hidden_size, self.dropout, | |
kernel_size=ffn_kernel_size, num_heads=num_heads) | |
for _ in range(self.num_layers) | |
]) | |
if self.use_last_norm: | |
if norm == 'ln': | |
self.layer_norm = nn.LayerNorm(embed_dim) | |
elif norm == 'bn': | |
self.layer_norm = BatchNorm1dTBC(embed_dim) | |
else: | |
self.layer_norm = None | |
def forward(self, x, padding_mask=None, attn_mask=None, return_hiddens=False): | |
""" | |
:param x: [B, T, C] | |
:param padding_mask: [B, T] | |
:return: [B, T, C] or [L, B, T, C] | |
""" | |
# padding_mask = x.abs().sum(-1).eq(0).data if padding_mask is None else padding_mask | |
padding_mask = x.abs().sum(-1).eq(0).detach() if padding_mask is None else padding_mask | |
nonpadding_mask_TB = 1 - padding_mask.transpose(0, 1).float()[:, :, None] # [T, B, 1] | |
if self.use_pos_embed: | |
positions = self.pos_embed_alpha * self.embed_positions(x[..., 0]) | |
x = x + positions | |
x = F.dropout(x, p=self.dropout, training=self.training) | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) * nonpadding_mask_TB | |
hiddens = [] | |
for layer in self.layers: | |
x = layer(x, encoder_padding_mask=padding_mask, attn_mask=attn_mask) * nonpadding_mask_TB | |
hiddens.append(x) | |
if self.use_last_norm: | |
x = self.layer_norm(x) * nonpadding_mask_TB | |
if return_hiddens: | |
x = torch.stack(hiddens, 0) # [L, T, B, C] | |
x = x.transpose(1, 2) # [L, B, T, C] | |
else: | |
x = x.transpose(0, 1) # [B, T, C] | |
return x | |
class FastspeechEncoder(FFTBlocks): | |
''' | |
compared to FFTBlocks: | |
- input is [B, T, H], not [B, T, C] | |
- supports "relative" positional encoding | |
''' | |
def __init__(self, hidden_size=None, num_layers=None, kernel_size=None, num_heads=2): | |
hidden_size = hparams['hidden_size'] if hidden_size is None else hidden_size | |
kernel_size = hparams['enc_ffn_kernel_size'] if kernel_size is None else kernel_size | |
num_layers = hparams['dec_layers'] if num_layers is None else num_layers | |
super().__init__(hidden_size, num_layers, kernel_size, num_heads=num_heads, | |
use_pos_embed=False) # use_pos_embed_alpha for compatibility | |
#self.embed_tokens = embed_tokens | |
self.embed_scale = math.sqrt(hidden_size) | |
self.padding_idx = 0 | |
if hparams.get('rel_pos') is not None and hparams['rel_pos']: | |
self.embed_positions = RelPositionalEncoding(hidden_size, dropout_rate=0.0) | |
else: | |
self.embed_positions = SinusoidalPositionalEmbedding( | |
hidden_size, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS, | |
) | |
def forward(self, hubert): | |
""" | |
:param hubert: [B, T, H ] | |
:return: { | |
'encoder_out': [T x B x C] | |
} | |
""" | |
# encoder_padding_mask = txt_tokens.eq(self.padding_idx).data | |
encoder_padding_mask = (hubert==0).all(-1) | |
x = self.forward_embedding(hubert) # [B, T, H] | |
x = super(FastspeechEncoder, self).forward(x, encoder_padding_mask) | |
return x | |
def forward_embedding(self, hubert): | |
# embed tokens and positions | |
x = self.embed_scale * hubert | |
if hparams['use_pos_embed']: | |
positions = self.embed_positions(hubert) | |
x = x + positions | |
x = F.dropout(x, p=self.dropout, training=self.training) | |
return x | |
class FastspeechDecoder(FFTBlocks): | |
def __init__(self, hidden_size=None, num_layers=None, kernel_size=None, num_heads=None): | |
num_heads = hparams['num_heads'] if num_heads is None else num_heads | |
hidden_size = hparams['hidden_size'] if hidden_size is None else hidden_size | |
kernel_size = hparams['dec_ffn_kernel_size'] if kernel_size is None else kernel_size | |
num_layers = hparams['dec_layers'] if num_layers is None else num_layers | |
super().__init__(hidden_size, num_layers, kernel_size, num_heads=num_heads) | |