init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE +35 -0
- app.py +227 -0
- configs/models/qwen2_5_1_5b_radio_sd3_dynamic_puffin.py +76 -0
- configs/pipelines/stage_2_base.py +10 -0
- configs/pipelines/stage_3_thinking.py +11 -0
- configs/pipelines/stage_4_instruction_tuning.py +9 -0
- requirements.txt +48 -0
- scripts/camera/cam_dataset.py +107 -0
- scripts/camera/geometry/__init__.py +0 -0
- scripts/camera/geometry/base_camera.py +518 -0
- scripts/camera/geometry/camera.py +281 -0
- scripts/camera/geometry/gravity.py +129 -0
- scripts/camera/geometry/jacobians.py +63 -0
- scripts/camera/geometry/manifolds.py +113 -0
- scripts/camera/geometry/perspective_fields.py +379 -0
- scripts/camera/utils/conversions.py +150 -0
- scripts/camera/utils/image.py +182 -0
- scripts/camera/utils/tensor.py +249 -0
- scripts/camera/utils/text.py +47 -0
- scripts/camera/visualization/visualize_batch.py +188 -0
- scripts/camera/visualization/viz2d.py +521 -0
- src/datasets/utils.py +162 -0
- src/models/connector/__init__.py +2 -0
- src/models/connector/configuration_connector.py +27 -0
- src/models/connector/modeling_connector.py +507 -0
- src/models/connector/modeling_qwen2.py +50 -0
- src/models/puffin/model.py +790 -0
- src/models/radiov3/adaptor_base.py +37 -0
- src/models/radiov3/adaptor_generic.py +69 -0
- src/models/radiov3/adaptor_mlp.py +174 -0
- src/models/radiov3/adaptor_registry.py +37 -0
- src/models/radiov3/cls_token.py +59 -0
- src/models/radiov3/common.py +134 -0
- src/models/radiov3/dinov2_arch.py +1016 -0
- src/models/radiov3/dual_hybrid_vit.py +213 -0
- src/models/radiov3/enable_cpe_support.py +170 -0
- src/models/radiov3/enable_spectral_reparam.py +277 -0
- src/models/radiov3/eradio_model.py +1392 -0
- src/models/radiov3/extra_models.py +206 -0
- src/models/radiov3/extra_timm_models.py +206 -0
- src/models/radiov3/feature_normalizer.py +111 -0
- src/models/radiov3/forward_intermediates.py +138 -0
- src/models/radiov3/hf_model.py +202 -0
- src/models/radiov3/input_conditioner.py +49 -0
- src/models/radiov3/open_clip_adaptor.py +41 -0
- src/models/radiov3/radio_model.py +344 -0
- src/models/radiov3/vit_patch_generator.py +288 -0
- src/models/radiov3/vitdet.py +188 -0
- src/models/stable_diffusion3/pipeline_stable_diffusion_3.py +1256 -0
- src/models/stable_diffusion3/pipeline_stable_diffusion_3_dynamic.py +1257 -0
LICENSE
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
S-Lab License 1.0
|
| 2 |
+
|
| 3 |
+
Copyright 2025 S-Lab
|
| 4 |
+
|
| 5 |
+
Redistribution and use for non-commercial purpose in source and
|
| 6 |
+
binary forms, with or without modification, are permitted provided
|
| 7 |
+
that the following conditions are met:
|
| 8 |
+
|
| 9 |
+
1. Redistributions of source code must retain the above copyright
|
| 10 |
+
notice, this list of conditions and the following disclaimer.
|
| 11 |
+
|
| 12 |
+
2. Redistributions in binary form must reproduce the above copyright
|
| 13 |
+
notice, this list of conditions and the following disclaimer in
|
| 14 |
+
the documentation and/or other materials provided with the
|
| 15 |
+
distribution.
|
| 16 |
+
|
| 17 |
+
3. Neither the name of the copyright holder nor the names of its
|
| 18 |
+
contributors may be used to endorse or promote products derived
|
| 19 |
+
from this software without specific prior written permission.
|
| 20 |
+
|
| 21 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| 22 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| 23 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| 24 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| 25 |
+
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| 26 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| 27 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| 28 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| 29 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| 30 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| 31 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| 32 |
+
|
| 33 |
+
In the event that redistribution and/or use for commercial purpose in
|
| 34 |
+
source or binary forms, with or without modification is required,
|
| 35 |
+
please contact the contributor(s) of the work.
|
app.py
ADDED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
import spaces # Import spaces for ZeroGPU compatibility
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
|
| 8 |
+
import math
|
| 9 |
+
import torch
|
| 10 |
+
import argparse
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from einops import rearrange
|
| 13 |
+
from mmengine.config import Config
|
| 14 |
+
from xtuner.registry import BUILDER
|
| 15 |
+
from xtuner.model.utils import guess_load_checkpoint
|
| 16 |
+
|
| 17 |
+
from scripts.camera.cam_dataset import Cam_Generator
|
| 18 |
+
|
| 19 |
+
##### load model
|
| 20 |
+
config = "configs/pipelines/stage_2_base.py"
|
| 21 |
+
config = Config.fromfile(config)
|
| 22 |
+
model = BUILDER.build(config.model).eval()
|
| 23 |
+
checkpoint_path = "checkpoints/Puffin-Base.pth"
|
| 24 |
+
state_dict = guess_load_checkpoint(checkpoint_path)
|
| 25 |
+
model.load_state_dict(state_dict, strict=False)
|
| 26 |
+
|
| 27 |
+
if torch.cuda.is_available():
|
| 28 |
+
model = model.to(torch.bfloat16).cuda()
|
| 29 |
+
else:
|
| 30 |
+
model = model.to(torch.float32)
|
| 31 |
+
|
| 32 |
+
def expand2square(pil_img, background_color):
|
| 33 |
+
width, height = pil_img.size
|
| 34 |
+
if width == height:
|
| 35 |
+
return pil_img
|
| 36 |
+
elif width > height:
|
| 37 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 38 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
| 39 |
+
return result
|
| 40 |
+
else:
|
| 41 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 42 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
| 43 |
+
return result
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
@torch.inference_mode()
|
| 47 |
+
@spaces.GPU(duration=120)
|
| 48 |
+
# Multimodal Understanding function
|
| 49 |
+
def multimodal_understanding(image, question, seed, top_p, temperature, progress=gr.Progress(track_tqdm=True)):
|
| 50 |
+
# Clear CUDA cache before generating
|
| 51 |
+
torch.cuda.empty_cache()
|
| 52 |
+
|
| 53 |
+
# set seed
|
| 54 |
+
# torch.manual_seed(seed)
|
| 55 |
+
# np.random.seed(seed)
|
| 56 |
+
# torch.cuda.manual_seed(seed)
|
| 57 |
+
print(torch.cuda.is_available())
|
| 58 |
+
|
| 59 |
+
max_new_tokens = 512
|
| 60 |
+
image_size = 512
|
| 61 |
+
'''
|
| 62 |
+
assert image_size == 512
|
| 63 |
+
image = Image.fromarray(image).convert('RGB')
|
| 64 |
+
image = expand2square(
|
| 65 |
+
image, (127, 127, 127))
|
| 66 |
+
image = image.resize(size=(image_size, image_size))
|
| 67 |
+
image = torch.from_numpy(np.array(image)).to(dtype=model.dtype, device=model.device)
|
| 68 |
+
image = rearrange(image, 'h w c -> c h w')[None]
|
| 69 |
+
image = 2 * (image / 255) - 1
|
| 70 |
+
|
| 71 |
+
prompt = PROMPT_TEMPLATE['INSTRUCTION'].format(input="<image>\n" + question)
|
| 72 |
+
assert '<image>' in prompt
|
| 73 |
+
image_length = (image_size // 16) ** 2 + harmon_model.mar.buffer_size
|
| 74 |
+
prompt = prompt.replace('<image>', '<image>' * image_length)
|
| 75 |
+
input_ids = harmon_tokenizer.encode(
|
| 76 |
+
prompt, add_special_tokens=True, return_tensors='pt').to(harmon_model.device)
|
| 77 |
+
_, z_enc = harmon_model.extract_visual_feature(harmon_model.encode(image))
|
| 78 |
+
inputs_embeds = z_enc.new_zeros(*input_ids.shape, harmon_model.llm.config.hidden_size)
|
| 79 |
+
inputs_embeds[input_ids == image_token_idx] = z_enc.flatten(0, 1)
|
| 80 |
+
inputs_embeds[input_ids != image_token_idx] = harmon_model.llm.get_input_embeddings()(
|
| 81 |
+
input_ids[input_ids != image_token_idx]
|
| 82 |
+
)
|
| 83 |
+
output = harmon_model.llm.generate(inputs_embeds=inputs_embeds,
|
| 84 |
+
eos_token_id=harmon_tokenizer.eos_token_id,
|
| 85 |
+
pad_token_id=harmon_tokenizer.pad_token_id
|
| 86 |
+
if harmon_tokenizer.pad_token_id is not None else
|
| 87 |
+
harmon_tokenizer.eos_token_id,
|
| 88 |
+
max_new_tokens=max_new_tokens,
|
| 89 |
+
do_sample=False, # if temperature == 0 else True,
|
| 90 |
+
use_cache=True,
|
| 91 |
+
# temperature=temperature,
|
| 92 |
+
# top_p=top_p
|
| 93 |
+
)
|
| 94 |
+
'''
|
| 95 |
+
return 1#harmon_tokenizer.decode(output[0], skip_special_tokens=True)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
@torch.inference_mode()
|
| 99 |
+
@spaces.GPU(duration=120) # Specify a duration to avoid timeout
|
| 100 |
+
def generate_image(prompt_scene,
|
| 101 |
+
seed=42,
|
| 102 |
+
roll=3,
|
| 103 |
+
pitch=1.0,
|
| 104 |
+
fov=1.0,
|
| 105 |
+
progress=gr.Progress(track_tqdm=True)):
|
| 106 |
+
# Clear CUDA cache and avoid tracking gradients
|
| 107 |
+
torch.cuda.empty_cache()
|
| 108 |
+
# Set the seed for reproducible results
|
| 109 |
+
# if seed is not None:
|
| 110 |
+
torch.manual_seed(seed)
|
| 111 |
+
torch.cuda.manual_seed(seed)
|
| 112 |
+
np.random.seed(seed)
|
| 113 |
+
print(torch.cuda.is_available())
|
| 114 |
+
|
| 115 |
+
generator = torch.Generator().manual_seed(seed)
|
| 116 |
+
prompt_camera = (
|
| 117 |
+
"The camera parameters (roll, pitch, and field-of-view) are: "
|
| 118 |
+
f"{roll:.4f}, {pitch:.4f}, {fov:.4f}."
|
| 119 |
+
)
|
| 120 |
+
gen = Cam_Generator()
|
| 121 |
+
cam_map = gen.get_cam(prompt_camera).to(model.device)
|
| 122 |
+
cam_map = cam_map / (math.pi / 2)
|
| 123 |
+
|
| 124 |
+
prompt = prompt_scene + " " + prompt_camera
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
bsz = 4
|
| 128 |
+
with torch.no_grad():
|
| 129 |
+
images, output_reasoning = model.generate(
|
| 130 |
+
prompt=[prompt]*bsz,
|
| 131 |
+
cfg_prompt=[""]*bsz,
|
| 132 |
+
pixel_values_init=None,
|
| 133 |
+
cfg_scale=4.5,
|
| 134 |
+
num_steps=50,
|
| 135 |
+
cam_values=[[cam_map]]*bsz,
|
| 136 |
+
progress_bar=False,
|
| 137 |
+
reasoning=False,
|
| 138 |
+
prompt_reasoning=[""]*bsz,
|
| 139 |
+
generator=generator,
|
| 140 |
+
height=512,
|
| 141 |
+
width=512
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
images = rearrange(images, 'b c h w -> b h w c')
|
| 145 |
+
images = torch.clamp(127.5 * images + 128.0, 0, 255).to("cpu", dtype=torch.uint8).numpy()
|
| 146 |
+
ret_images = [Image.fromarray(image) for image in images]
|
| 147 |
+
return ret_images
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# Gradio interface
|
| 152 |
+
css = '''
|
| 153 |
+
.gradio-container {max-width: 960px !important}
|
| 154 |
+
'''
|
| 155 |
+
with gr.Blocks(css=css) as demo:
|
| 156 |
+
gr.Markdown("# Puffin")
|
| 157 |
+
|
| 158 |
+
with gr.Tab("Camera-controllable Image Generation"):
|
| 159 |
+
gr.Markdown(value="## Camera-controllable Image Generation")
|
| 160 |
+
|
| 161 |
+
prompt_input = gr.Textbox(label="Prompt.")
|
| 162 |
+
|
| 163 |
+
with gr.Accordion("Camera Parameters", open=True):
|
| 164 |
+
with gr.Row():
|
| 165 |
+
roll = gr.Slider(minimum=-0.7854, maximum=0.7854, value=0.1000, step=0.1000, label="roll value")
|
| 166 |
+
pitch = gr.Slider(minimum=-0.7854, maximum=0.7854, value=-0.1000, step=0.1000, label="pitch value")
|
| 167 |
+
fov = gr.Slider(minimum=0.3491, maximum=1.8326, value=1.5000, step=0.1000, label="fov value")
|
| 168 |
+
seed_input = gr.Number(label="Seed (Optional)", precision=0, value=1234)
|
| 169 |
+
|
| 170 |
+
generation_button = gr.Button("Generate Images")
|
| 171 |
+
|
| 172 |
+
image_output = gr.Gallery(label="Generated Images", columns=4, rows=1)
|
| 173 |
+
|
| 174 |
+
examples_t2i = gr.Examples(
|
| 175 |
+
label="Prompt examples.",
|
| 176 |
+
examples=[
|
| 177 |
+
"A sunny day casts light on two warmly colored buildings—yellow with green accents and deeper orange—framed by a lush green tree, with a blue sign and street lamp adding details in the foreground.",
|
| 178 |
+
"A high-vantage-point view of lush, autumn-colored mountains blanketed in green and gold, set against a clear blue sky with scattered white clouds, offering a tranquil and breathtaking vista of a serene valley below.",
|
| 179 |
+
"A grand, historic castle with pointed spires and elaborate stone structures stands against a clear blue sky, flanked by a circular fountain, vibrant red flowers, and neatly trimmed hedges in a beautifully landscaped garden.",
|
| 180 |
+
"A serene aerial view of a coastal landscape at sunrise/sunset, featuring warm pink and orange skies transitioning to cool blues, with calm waters stretching to rugged, snow-capped mountains in the background, creating a tranquil and picturesque scene.",
|
| 181 |
+
"A worn, light-yellow walls room with herringbone terracotta floors and three large arched windows framed in pink trim and white panes, showcasing signs of age and disrepair, overlooks a residential area through glimpses of greenery and neighboring buildings.",
|
| 182 |
+
],
|
| 183 |
+
inputs=prompt_input,
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
with gr.Tab("Multimodal Understanding"):
|
| 187 |
+
gr.Markdown(value="## Multimodal Understanding")
|
| 188 |
+
image_input = gr.Image()
|
| 189 |
+
with gr.Column():
|
| 190 |
+
question_input = gr.Textbox(label="Question")
|
| 191 |
+
|
| 192 |
+
understanding_button = gr.Button("Chat")
|
| 193 |
+
understanding_output = gr.Textbox(label="Response")
|
| 194 |
+
|
| 195 |
+
with gr.Accordion("Advanced options", open=False):
|
| 196 |
+
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
|
| 197 |
+
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
|
| 198 |
+
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
|
| 199 |
+
|
| 200 |
+
examples_inpainting = gr.Examples(
|
| 201 |
+
label="Multimodal Understanding examples",
|
| 202 |
+
examples=[
|
| 203 |
+
[
|
| 204 |
+
"Is the picture taken in winter?",
|
| 205 |
+
"view.jpg",
|
| 206 |
+
],
|
| 207 |
+
[
|
| 208 |
+
"Briefly describe the image.",
|
| 209 |
+
"view.jpg",
|
| 210 |
+
],
|
| 211 |
+
],
|
| 212 |
+
inputs=[question_input, image_input],
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
generation_button.click(
|
| 216 |
+
fn=generate_image,
|
| 217 |
+
inputs=[prompt_input, seed_input, roll, pitch, fov],
|
| 218 |
+
outputs=image_output
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
understanding_button.click(
|
| 222 |
+
multimodal_understanding,
|
| 223 |
+
inputs=[image_input, question_input, und_seed_input, top_p, temperature],
|
| 224 |
+
outputs=understanding_output
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
demo.launch(share=True)
|
configs/models/qwen2_5_1_5b_radio_sd3_dynamic_puffin.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from src.models.puffin.model import Qwen2p5RadioStableDiffusion3HFDynamic
|
| 3 |
+
from src.models.stable_diffusion3.transformer_sd3_dynamic import SD3Transformer2DModel
|
| 4 |
+
from src.models.radiov3.hf_model import RADIOModel
|
| 5 |
+
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
|
| 6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 7 |
+
|
| 8 |
+
llm_name_or_path = 'Qwen/Qwen2.5-1.5B-Instruct'
|
| 9 |
+
sd3_model_name_or_path = "stabilityai/stable-diffusion-3-medium-diffusers"
|
| 10 |
+
|
| 11 |
+
prompt_template = dict(
|
| 12 |
+
SYSTEM=('<|im_start|>system\n{system}<|im_end|>\n'),
|
| 13 |
+
INSTRUCTION=('<|im_start|>user\n{input}<|im_end|>\n'
|
| 14 |
+
'<|im_start|>assistant\n'),
|
| 15 |
+
SUFFIX='<|im_end|>',
|
| 16 |
+
IMG_START_TOKEN='<|vision_start|>',
|
| 17 |
+
IMG_END_TOKEN='<|vision_end|>',
|
| 18 |
+
IMG_CONTEXT_TOKEN='<|image_pad|>',
|
| 19 |
+
GENERATION='Generate an image: {input}',
|
| 20 |
+
GENERATION_CROSS='Generate a target image given an initial view: {input}',
|
| 21 |
+
SUFFIX_AS_EOS=True,
|
| 22 |
+
SEP='\n',
|
| 23 |
+
STOP_WORDS=['<|im_end|>', '<|endoftext|>']
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
model = dict(type=Qwen2p5RadioStableDiffusion3HFDynamic,
|
| 27 |
+
num_queries=64,
|
| 28 |
+
connector_1=dict(
|
| 29 |
+
hidden_size=1024,
|
| 30 |
+
intermediate_size=4096,
|
| 31 |
+
num_hidden_layers=6,
|
| 32 |
+
_attn_implementation='flash_attention_2',
|
| 33 |
+
num_attention_heads=16, ),
|
| 34 |
+
connector_2=dict(
|
| 35 |
+
hidden_size=1024,
|
| 36 |
+
intermediate_size=4096,
|
| 37 |
+
num_hidden_layers=6,
|
| 38 |
+
_attn_implementation='flash_attention_2',
|
| 39 |
+
num_attention_heads=16, ),
|
| 40 |
+
transformer=dict(
|
| 41 |
+
type=SD3Transformer2DModel.from_pretrained,
|
| 42 |
+
pretrained_model_name_or_path=sd3_model_name_or_path,
|
| 43 |
+
subfolder="transformer",
|
| 44 |
+
torch_dtype=torch.bfloat16),
|
| 45 |
+
test_scheduler=dict(
|
| 46 |
+
type=FlowMatchEulerDiscreteScheduler.from_pretrained,
|
| 47 |
+
pretrained_model_name_or_path=sd3_model_name_or_path,
|
| 48 |
+
subfolder="scheduler"),
|
| 49 |
+
train_scheduler=dict(
|
| 50 |
+
type=FlowMatchEulerDiscreteScheduler.from_pretrained,
|
| 51 |
+
pretrained_model_name_or_path=sd3_model_name_or_path,
|
| 52 |
+
subfolder="scheduler"),
|
| 53 |
+
vae=dict(
|
| 54 |
+
type=AutoencoderKL.from_pretrained,
|
| 55 |
+
pretrained_model_name_or_path=sd3_model_name_or_path,
|
| 56 |
+
subfolder="vae",
|
| 57 |
+
torch_dtype=torch.bfloat16),
|
| 58 |
+
freeze_visual_encoder=True,
|
| 59 |
+
freeze_llm=True,
|
| 60 |
+
llm=dict(
|
| 61 |
+
type=AutoModelForCausalLM.from_pretrained,
|
| 62 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
| 63 |
+
torch_dtype=torch.bfloat16,
|
| 64 |
+
attn_implementation='flash_attention_2',
|
| 65 |
+
),
|
| 66 |
+
tokenizer=dict(
|
| 67 |
+
type=AutoTokenizer.from_pretrained,
|
| 68 |
+
pretrained_model_name_or_path=llm_name_or_path),
|
| 69 |
+
prompt_template=prompt_template,
|
| 70 |
+
pretrained_pth=None,
|
| 71 |
+
use_activation_checkpointing=False,
|
| 72 |
+
visual_encoder=dict(
|
| 73 |
+
type=RADIOModel.from_pretrained,
|
| 74 |
+
pretrained_model_name_or_path="nvidia/C-RADIOv3-H",
|
| 75 |
+
torch_dtype=torch.bfloat16,),
|
| 76 |
+
)
|
configs/pipelines/stage_2_base.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from mmengine.config import read_base
|
| 2 |
+
|
| 3 |
+
with read_base():
|
| 4 |
+
from ..models.qwen2_5_1_5b_radio_sd3_dynamic_puffin import model
|
| 5 |
+
|
| 6 |
+
model.freeze_visual_encoder = False
|
| 7 |
+
model.freeze_llm = False
|
| 8 |
+
model.freeze_transformer = False
|
| 9 |
+
model.use_activation_checkpointing = True
|
| 10 |
+
model.visual_encoder_grad_scale = 0.1
|
configs/pipelines/stage_3_thinking.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from mmengine.config import read_base
|
| 2 |
+
|
| 3 |
+
with read_base():
|
| 4 |
+
from ..models.qwen2_5_1_5b_radio_sd3_dynamic_puffin import model
|
| 5 |
+
|
| 6 |
+
model.freeze_visual_encoder = False
|
| 7 |
+
model.freeze_llm = False
|
| 8 |
+
model.freeze_transformer = False
|
| 9 |
+
model.use_activation_checkpointing = True
|
| 10 |
+
model.visual_encoder_grad_scale = 0.1
|
| 11 |
+
#model.pretrained_pth = 'work_dirs/stage_2_base/iter_30000.pth'
|
configs/pipelines/stage_4_instruction_tuning.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from mmengine.config import read_base
|
| 2 |
+
with read_base():
|
| 3 |
+
from ..models.qwen2_5_1_5b_radio_sd3_dynamic_puffin import model
|
| 4 |
+
|
| 5 |
+
model.freeze_visual_encoder = True
|
| 6 |
+
model.freeze_llm = False
|
| 7 |
+
model.freeze_transformer = False
|
| 8 |
+
model.use_activation_checkpointing = True
|
| 9 |
+
model.unconditional_cross_view=0.1
|
requirements.txt
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate==1.6.0
|
| 2 |
+
click==8.1.8
|
| 3 |
+
decorator==5.2.1
|
| 4 |
+
deepspeed==0.16.7
|
| 5 |
+
diffusers==0.34.0
|
| 6 |
+
einops==0.8.1
|
| 7 |
+
feedparser==6.0.11
|
| 8 |
+
flash_attn==2.3.4
|
| 9 |
+
huggingface-hub==0.31.1
|
| 10 |
+
hyperframe==6.1.0
|
| 11 |
+
idna==3.10
|
| 12 |
+
imageio==2.37.0
|
| 13 |
+
importlib_metadata==8.7.0
|
| 14 |
+
json5==0.12.0
|
| 15 |
+
lazy_loader==0.4
|
| 16 |
+
lightning-utilities==0.14.3
|
| 17 |
+
matplotlib==3.10.1
|
| 18 |
+
matplotlib-inline==0.1.7
|
| 19 |
+
mmengine==0.10.7
|
| 20 |
+
networkx==3.4.2
|
| 21 |
+
ninja==1.11.1.4
|
| 22 |
+
numpy==2.2.5
|
| 23 |
+
opencv-python==4.11.0.86
|
| 24 |
+
opencv-python-headless==4.12.0.88
|
| 25 |
+
openpyxl==3.1.5
|
| 26 |
+
pandas==2.2.3
|
| 27 |
+
peft==0.15.2
|
| 28 |
+
pillow==11.2.1
|
| 29 |
+
pytz==2025.2
|
| 30 |
+
PyYAML==6.0.2
|
| 31 |
+
safetensors==0.5.3
|
| 32 |
+
scikit-image==0.25.2
|
| 33 |
+
scipy==1.15.2
|
| 34 |
+
six==1.17.0
|
| 35 |
+
timm==0.9.12
|
| 36 |
+
tokenizers==0.21.2
|
| 37 |
+
torch==2.7.0
|
| 38 |
+
torch-fidelity==0.3.0
|
| 39 |
+
torchmetrics==1.7.2
|
| 40 |
+
torchvision==0.22.0
|
| 41 |
+
tornado==6.4.2
|
| 42 |
+
tqdm==4.67.1
|
| 43 |
+
transformers==4.49.0
|
| 44 |
+
transformers-stream-generator==0.0.5
|
| 45 |
+
triton==3.3.0
|
| 46 |
+
xtuner==0.1.23
|
| 47 |
+
yarl==1.20.0
|
| 48 |
+
|
scripts/camera/cam_dataset.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import argparse
|
| 4 |
+
import torch
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
from scripts.camera.geometry.camera import SimpleRadial
|
| 8 |
+
from scripts.camera.geometry.gravity import Gravity
|
| 9 |
+
from scripts.camera.geometry.perspective_fields import get_perspective_field
|
| 10 |
+
from scripts.camera.utils.conversions import fov2focal
|
| 11 |
+
from scripts.camera.utils.text import parse_camera_params
|
| 12 |
+
|
| 13 |
+
class Cam_Generator:
|
| 14 |
+
def __init__(self, mode="base"):
|
| 15 |
+
self.mode = mode
|
| 16 |
+
|
| 17 |
+
def _load_text(self, caption, h=512, w=512, k1=0, k2=0):
|
| 18 |
+
# Parse camera params from caption
|
| 19 |
+
roll, pitch, vfov = parse_camera_params(caption, self.mode)
|
| 20 |
+
|
| 21 |
+
# Convert vertical FoV to focal length
|
| 22 |
+
f = fov2focal(torch.tensor(vfov), h)
|
| 23 |
+
px, py = w / 2, h / 2
|
| 24 |
+
params = torch.tensor([w, h, f, f, px, py, k1, k2]).float()
|
| 25 |
+
gravity = torch.tensor([roll, pitch]).float()
|
| 26 |
+
return params, gravity
|
| 27 |
+
|
| 28 |
+
def _read_param(self, parameters, gravity):
|
| 29 |
+
# Build camera and gravity objects
|
| 30 |
+
camera = SimpleRadial(parameters).float()
|
| 31 |
+
roll, pitch = gravity.unbind(-1)
|
| 32 |
+
gravity_obj = Gravity.from_rp(roll, pitch)
|
| 33 |
+
camera = camera.scale(torch.Tensor([1, 1]))
|
| 34 |
+
return {"camera": camera, "gravity": gravity_obj}
|
| 35 |
+
|
| 36 |
+
def _get_perspective(self, data):
|
| 37 |
+
# Generate up and latitude fields
|
| 38 |
+
camera = data["camera"]
|
| 39 |
+
gravity_obj = data["gravity"]
|
| 40 |
+
up_field, lat_field = get_perspective_field(
|
| 41 |
+
camera, gravity_obj, use_up=True, use_latitude=True
|
| 42 |
+
)
|
| 43 |
+
del camera, gravity_obj
|
| 44 |
+
return torch.cat([up_field[0], lat_field[0]], dim=0)
|
| 45 |
+
|
| 46 |
+
def get_cam(self, caption):
|
| 47 |
+
params, gravity = self._load_text(caption)
|
| 48 |
+
data = self._read_param(params, gravity)
|
| 49 |
+
return self._get_perspective(data)
|
| 50 |
+
|
| 51 |
+
def process_folders(input_root, output_root, start_idx=0, num_folders=None, mode="base"):
|
| 52 |
+
gen = Cam_Generator(mode=mode)
|
| 53 |
+
all_dirs = sorted([
|
| 54 |
+
d for d in os.listdir(input_root)
|
| 55 |
+
if os.path.isdir(os.path.join(input_root, d))
|
| 56 |
+
])
|
| 57 |
+
if num_folders is None:
|
| 58 |
+
num_folders = len(all_dirs) - start_idx
|
| 59 |
+
selected = all_dirs[start_idx:start_idx + num_folders]
|
| 60 |
+
|
| 61 |
+
for sub in tqdm(selected, desc="Subfolders"):
|
| 62 |
+
in_sub = os.path.join(input_root, sub)
|
| 63 |
+
out_sub = os.path.join(output_root, sub)
|
| 64 |
+
os.makedirs(out_sub, exist_ok=True)
|
| 65 |
+
|
| 66 |
+
json_files = sorted([
|
| 67 |
+
f for f in os.listdir(in_sub)
|
| 68 |
+
if f.lower().endswith('.json')
|
| 69 |
+
])
|
| 70 |
+
|
| 71 |
+
for jf in tqdm(json_files, desc=f"Processing {sub}", leave=False):
|
| 72 |
+
in_path = os.path.join(in_sub, jf)
|
| 73 |
+
with open(in_path, 'r', encoding='utf-8') as f:
|
| 74 |
+
data = json.load(f)
|
| 75 |
+
caption = data.get('caption', '')
|
| 76 |
+
cam = gen.get_cam(caption)
|
| 77 |
+
out_name = os.path.splitext(jf)[0] + '.pt'
|
| 78 |
+
out_path = os.path.join(out_sub, out_name)
|
| 79 |
+
torch.save(cam, out_path)
|
| 80 |
+
|
| 81 |
+
def main():
|
| 82 |
+
parser = argparse.ArgumentParser(
|
| 83 |
+
description="Batch process the captions to the camera maps and save as .pt"
|
| 84 |
+
)
|
| 85 |
+
parser.add_argument('--input_root', type=str,
|
| 86 |
+
help='Root directory of JSON subfolders')
|
| 87 |
+
parser.add_argument('--output_root', type=str,
|
| 88 |
+
help='Root directory to save .pt files')
|
| 89 |
+
parser.add_argument('--start_idx', type=int, default=0,
|
| 90 |
+
help='Start index of subfolders (0-based, default=0)')
|
| 91 |
+
parser.add_argument('--num_folders', type=int, default=None,
|
| 92 |
+
help='Number of subfolders to process (default: all)')
|
| 93 |
+
parser.add_argument('--mode', type=str, default='base',
|
| 94 |
+
help='parse_camera_params mode')
|
| 95 |
+
args = parser.parse_args()
|
| 96 |
+
|
| 97 |
+
process_folders(
|
| 98 |
+
args.input_root,
|
| 99 |
+
args.output_root,
|
| 100 |
+
start_idx=args.start_idx,
|
| 101 |
+
num_folders=args.num_folders,
|
| 102 |
+
mode=args.mode
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
if __name__ == '__main__':
|
| 107 |
+
main()
|
scripts/camera/geometry/__init__.py
ADDED
|
File without changes
|
scripts/camera/geometry/base_camera.py
ADDED
|
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Convenience classes a for camera models.
|
| 2 |
+
|
| 3 |
+
Based on PyTorch tensors: differentiable, batched, with GPU support.
|
| 4 |
+
Adapted from https://github.com/cvg/GeoCalib
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from abc import abstractmethod
|
| 8 |
+
from typing import Dict, Optional, Tuple, Union
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch.func import jacfwd, vmap
|
| 12 |
+
from torch.nn import functional as F
|
| 13 |
+
|
| 14 |
+
from scripts.camera.geometry.gravity import Gravity
|
| 15 |
+
from scripts.camera.utils.conversions import deg2rad, focal2fov, fov2focal, rad2rotmat
|
| 16 |
+
from scripts.camera.utils.tensor import TensorWrapper, autocast
|
| 17 |
+
|
| 18 |
+
# mypy: ignore-errors
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class BaseCamera(TensorWrapper):
|
| 22 |
+
"""Camera tensor class."""
|
| 23 |
+
|
| 24 |
+
eps = 1e-3
|
| 25 |
+
|
| 26 |
+
@autocast
|
| 27 |
+
def __init__(self, data: torch.Tensor):
|
| 28 |
+
"""Camera parameters with shape (..., {w, h, fx, fy, cx, cy, *dist}).
|
| 29 |
+
|
| 30 |
+
Tensor convention: (..., {w, h, fx, fy, cx, cy, pitch, roll, *dist}) where
|
| 31 |
+
- w, h: image size in pixels
|
| 32 |
+
- fx, fy: focal lengths in pixels
|
| 33 |
+
- cx, cy: principal points in normalized image coordinates
|
| 34 |
+
- dist: distortion parameters
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
data (torch.Tensor): Camera parameters with shape (..., {6, 7, 8}).
|
| 38 |
+
"""
|
| 39 |
+
# w, h, fx, fy, cx, cy, dist
|
| 40 |
+
assert data.shape[-1] in {6, 7, 8}, data.shape
|
| 41 |
+
|
| 42 |
+
pad = data.new_zeros(data.shape[:-1] + (8 - data.shape[-1],))
|
| 43 |
+
data = torch.cat([data, pad], -1) if data.shape[-1] != 8 else data
|
| 44 |
+
super().__init__(data)
|
| 45 |
+
|
| 46 |
+
@classmethod
|
| 47 |
+
def from_dict(cls, param_dict: Dict[str, torch.Tensor]) -> "BaseCamera":
|
| 48 |
+
"""Create a Camera object from a dictionary of parameters.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
param_dict (Dict[str, torch.Tensor]): Dictionary of parameters.
|
| 52 |
+
|
| 53 |
+
Returns:
|
| 54 |
+
Camera: Camera object.
|
| 55 |
+
"""
|
| 56 |
+
for key, value in param_dict.items():
|
| 57 |
+
if not isinstance(value, torch.Tensor):
|
| 58 |
+
param_dict[key] = torch.tensor(value)
|
| 59 |
+
|
| 60 |
+
h, w = param_dict["height"], param_dict["width"]
|
| 61 |
+
cx, cy = param_dict.get("cx", w / 2), param_dict.get("cy", h / 2)
|
| 62 |
+
|
| 63 |
+
vfov = param_dict.get("vfov")
|
| 64 |
+
f = param_dict.get("f", fov2focal(vfov, h))
|
| 65 |
+
|
| 66 |
+
if "dist" in param_dict:
|
| 67 |
+
k1, k2 = param_dict["dist"][..., 0], param_dict["dist"][..., 1]
|
| 68 |
+
elif "k1_hat" in param_dict:
|
| 69 |
+
k1 = param_dict["k1_hat"] * (f / h) ** 2
|
| 70 |
+
|
| 71 |
+
k2 = param_dict.get("k2", torch.zeros_like(k1))
|
| 72 |
+
else:
|
| 73 |
+
k1 = param_dict.get("k1", torch.zeros_like(f))
|
| 74 |
+
k2 = param_dict.get("k2", torch.zeros_like(f))
|
| 75 |
+
|
| 76 |
+
fx, fy = f, f
|
| 77 |
+
if "scales" in param_dict:
|
| 78 |
+
scales = param_dict["scales"]
|
| 79 |
+
fx = fx * scales[..., 0] / scales[..., 1]
|
| 80 |
+
|
| 81 |
+
params = torch.stack([w, h, fx, fy, cx, cy, k1, k2], dim=-1)
|
| 82 |
+
return cls(params)
|
| 83 |
+
|
| 84 |
+
def pinhole(self):
|
| 85 |
+
"""Return the pinhole camera model."""
|
| 86 |
+
return self.__class__(self._data[..., :6])
|
| 87 |
+
|
| 88 |
+
@property
|
| 89 |
+
def size(self) -> torch.Tensor:
|
| 90 |
+
"""Size (width height) of the images, with shape (..., 2)."""
|
| 91 |
+
return self._data[..., :2]
|
| 92 |
+
|
| 93 |
+
@property
|
| 94 |
+
def f(self) -> torch.Tensor:
|
| 95 |
+
"""Focal lengths (fx, fy) with shape (..., 2)."""
|
| 96 |
+
return self._data[..., 2:4]
|
| 97 |
+
|
| 98 |
+
@property
|
| 99 |
+
def vfov(self) -> torch.Tensor:
|
| 100 |
+
"""Vertical field of view in radians."""
|
| 101 |
+
return focal2fov(self.f[..., 1], self.size[..., 1])
|
| 102 |
+
|
| 103 |
+
@property
|
| 104 |
+
def hfov(self) -> torch.Tensor:
|
| 105 |
+
"""Horizontal field of view in radians."""
|
| 106 |
+
return focal2fov(self.f[..., 0], self.size[..., 0])
|
| 107 |
+
|
| 108 |
+
@property
|
| 109 |
+
def c(self) -> torch.Tensor:
|
| 110 |
+
"""Principal points (cx, cy) with shape (..., 2)."""
|
| 111 |
+
return self._data[..., 4:6]
|
| 112 |
+
|
| 113 |
+
@property
|
| 114 |
+
def K(self) -> torch.Tensor:
|
| 115 |
+
"""Returns the self intrinsic matrix with shape (..., 3, 3)."""
|
| 116 |
+
shape = self.shape + (3, 3)
|
| 117 |
+
K = self._data.new_zeros(shape)
|
| 118 |
+
K[..., 0, 0] = self.f[..., 0]
|
| 119 |
+
K[..., 1, 1] = self.f[..., 1]
|
| 120 |
+
K[..., 0, 2] = self.c[..., 0]
|
| 121 |
+
K[..., 1, 2] = self.c[..., 1]
|
| 122 |
+
K[..., 2, 2] = 1
|
| 123 |
+
return K
|
| 124 |
+
|
| 125 |
+
def update_focal(self, delta: torch.Tensor, as_log: bool = False):
|
| 126 |
+
"""Update the self parameters after changing the focal length."""
|
| 127 |
+
f = torch.exp(torch.log(self.f) + delta) if as_log else self.f + delta
|
| 128 |
+
|
| 129 |
+
# clamp focal length to a reasonable range for stability during training
|
| 130 |
+
min_f = fov2focal(self.new_ones(self.shape[0]) * deg2rad(150), self.size[..., 1])
|
| 131 |
+
max_f = fov2focal(self.new_ones(self.shape[0]) * deg2rad(5), self.size[..., 1])
|
| 132 |
+
min_f = min_f.unsqueeze(-1).expand(-1, 2)
|
| 133 |
+
max_f = max_f.unsqueeze(-1).expand(-1, 2)
|
| 134 |
+
f = f.clamp(min=min_f, max=max_f)
|
| 135 |
+
|
| 136 |
+
# make sure focal ration stays the same (avoid inplace operations)
|
| 137 |
+
fx = f[..., 1] * self.f[..., 0] / self.f[..., 1]
|
| 138 |
+
f = torch.stack([fx, f[..., 1]], -1)
|
| 139 |
+
|
| 140 |
+
dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape)
|
| 141 |
+
return self.__class__(torch.cat([self.size, f, self.c, dist], -1))
|
| 142 |
+
|
| 143 |
+
def scale(self, scales: Union[float, int, Tuple[Union[float, int]]]):
|
| 144 |
+
"""Update the self parameters after resizing an image."""
|
| 145 |
+
scales = (scales, scales) if isinstance(scales, (int, float)) else scales
|
| 146 |
+
s = scales if isinstance(scales, torch.Tensor) else self.new_tensor(scales)
|
| 147 |
+
|
| 148 |
+
dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape)
|
| 149 |
+
return self.__class__(torch.cat([self.size * s, self.f * s, self.c * s, dist], -1))
|
| 150 |
+
|
| 151 |
+
def crop(self, pad: Tuple[float]):
|
| 152 |
+
"""Update the self parameters after cropping an image."""
|
| 153 |
+
pad = pad if isinstance(pad, torch.Tensor) else self.new_tensor(pad)
|
| 154 |
+
size = self.size + pad.to(self.size)
|
| 155 |
+
c = self.c + pad.to(self.c) / 2
|
| 156 |
+
|
| 157 |
+
dist = self.dist if hasattr(self, "dist") else self.new_zeros(self.f.shape)
|
| 158 |
+
return self.__class__(torch.cat([size, self.f, c, dist], -1))
|
| 159 |
+
|
| 160 |
+
def undo_scale_crop(self, data: Dict[str, torch.Tensor]):
|
| 161 |
+
"""Undo transforms done during scaling and cropping."""
|
| 162 |
+
camera = self.crop(-data["crop_pad"]) if "crop_pad" in data else self
|
| 163 |
+
return camera.scale(1.0 / data["scales"])
|
| 164 |
+
|
| 165 |
+
@autocast
|
| 166 |
+
def in_image(self, p2d: torch.Tensor):
|
| 167 |
+
"""Check if 2D points are within the image boundaries."""
|
| 168 |
+
assert p2d.shape[-1] == 2
|
| 169 |
+
size = self.size.unsqueeze(-2)
|
| 170 |
+
return torch.all((p2d >= 0) & (p2d <= (size - 1)), -1)
|
| 171 |
+
|
| 172 |
+
@autocast
|
| 173 |
+
def project(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]:
|
| 174 |
+
"""Project 3D points into the self plane and check for visibility."""
|
| 175 |
+
z = p3d[..., -1]
|
| 176 |
+
valid = z > self.eps
|
| 177 |
+
z = z.clamp(min=self.eps)
|
| 178 |
+
p2d = p3d[..., :-1] / z.unsqueeze(-1)
|
| 179 |
+
return p2d, valid
|
| 180 |
+
|
| 181 |
+
def J_project(self, p3d: torch.Tensor):
|
| 182 |
+
"""Jacobian of the projection function."""
|
| 183 |
+
x, y, z = p3d[..., 0], p3d[..., 1], p3d[..., 2]
|
| 184 |
+
zero = torch.zeros_like(z)
|
| 185 |
+
z = z.clamp(min=self.eps)
|
| 186 |
+
J = torch.stack([1 / z, zero, -x / z**2, zero, 1 / z, -y / z**2], dim=-1)
|
| 187 |
+
J = J.reshape(p3d.shape[:-1] + (2, 3))
|
| 188 |
+
return J # N x 2 x 3
|
| 189 |
+
|
| 190 |
+
@abstractmethod
|
| 191 |
+
def distort(self, pts: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
|
| 192 |
+
"""Distort normalized 2D coordinates and check for validity of the distortion model."""
|
| 193 |
+
raise NotImplementedError("distort() must be implemented.")
|
| 194 |
+
|
| 195 |
+
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
|
| 196 |
+
"""Jacobian of the distortion function."""
|
| 197 |
+
if wrt == "scale2pts": # (..., 2)
|
| 198 |
+
J = [
|
| 199 |
+
vmap(jacfwd(lambda x: self[idx].distort(x, return_scale=True)[0]))(p2d[idx])[None]
|
| 200 |
+
for idx in range(p2d.shape[0])
|
| 201 |
+
]
|
| 202 |
+
|
| 203 |
+
return torch.cat(J, dim=0).squeeze(-3, -2)
|
| 204 |
+
|
| 205 |
+
elif wrt == "scale2dist": # (..., 1)
|
| 206 |
+
J = []
|
| 207 |
+
for idx in range(p2d.shape[0]): # loop to batch pts dimension
|
| 208 |
+
|
| 209 |
+
def func(x):
|
| 210 |
+
params = torch.cat([self._data[idx, :6], x[None]], -1)
|
| 211 |
+
return self.__class__(params).distort(p2d[idx], return_scale=True)[0]
|
| 212 |
+
|
| 213 |
+
J.append(vmap(jacfwd(func))(self[idx].dist))
|
| 214 |
+
|
| 215 |
+
return torch.cat(J, dim=0)
|
| 216 |
+
|
| 217 |
+
else:
|
| 218 |
+
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
|
| 219 |
+
|
| 220 |
+
@abstractmethod
|
| 221 |
+
def undistort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]:
|
| 222 |
+
"""Undistort normalized 2D coordinates and check for validity of the distortion model."""
|
| 223 |
+
raise NotImplementedError("undistort() must be implemented.")
|
| 224 |
+
|
| 225 |
+
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
|
| 226 |
+
"""Jacobian of the undistortion function."""
|
| 227 |
+
if wrt == "pts": # (..., 2, 2)
|
| 228 |
+
J = [
|
| 229 |
+
vmap(jacfwd(lambda x: self[idx].undistort(x)[0]))(p2d[idx])[None]
|
| 230 |
+
for idx in range(p2d.shape[0])
|
| 231 |
+
]
|
| 232 |
+
|
| 233 |
+
return torch.cat(J, dim=0).squeeze(-3)
|
| 234 |
+
|
| 235 |
+
elif wrt == "dist": # (..., 1)
|
| 236 |
+
J = []
|
| 237 |
+
for batch_idx in range(p2d.shape[0]): # loop to batch pts dimension
|
| 238 |
+
|
| 239 |
+
def func(x):
|
| 240 |
+
params = torch.cat([self._data[batch_idx, :6], x[None]], -1)
|
| 241 |
+
return self.__class__(params).undistort(p2d[batch_idx])[0]
|
| 242 |
+
|
| 243 |
+
J.append(vmap(jacfwd(func))(self[batch_idx].dist))
|
| 244 |
+
|
| 245 |
+
return torch.cat(J, dim=0)
|
| 246 |
+
else:
|
| 247 |
+
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
|
| 248 |
+
|
| 249 |
+
@autocast
|
| 250 |
+
def up_projection_offset(self, p2d: torch.Tensor) -> torch.Tensor:
|
| 251 |
+
"""Compute the offset for the up-projection."""
|
| 252 |
+
return self.J_distort(p2d, wrt="scale2pts") # (B, N, 2)
|
| 253 |
+
|
| 254 |
+
def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
|
| 255 |
+
"""Jacobian of the distortion offset for up-projection."""
|
| 256 |
+
if wrt == "uv": # (B, N, 2, 2)
|
| 257 |
+
J = [
|
| 258 |
+
vmap(jacfwd(lambda x: self[idx].up_projection_offset(x)[0, 0]))(p2d[idx])[None]
|
| 259 |
+
for idx in range(p2d.shape[0])
|
| 260 |
+
]
|
| 261 |
+
|
| 262 |
+
return torch.cat(J, dim=0)
|
| 263 |
+
|
| 264 |
+
elif wrt == "dist": # (B, N, 2)
|
| 265 |
+
J = []
|
| 266 |
+
for batch_idx in range(p2d.shape[0]): # loop to batch pts dimension
|
| 267 |
+
|
| 268 |
+
def func(x):
|
| 269 |
+
params = torch.cat([self._data[batch_idx, :6], x[None]], -1)[None]
|
| 270 |
+
return self.__class__(params).up_projection_offset(p2d[batch_idx][None])
|
| 271 |
+
|
| 272 |
+
J.append(vmap(jacfwd(func))(self[batch_idx].dist))
|
| 273 |
+
|
| 274 |
+
return torch.cat(J, dim=0).squeeze(1)
|
| 275 |
+
else:
|
| 276 |
+
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
|
| 277 |
+
|
| 278 |
+
@autocast
|
| 279 |
+
def denormalize(self, p2d: torch.Tensor) -> torch.Tensor:
|
| 280 |
+
"""Convert normalized 2D coordinates into pixel coordinates."""
|
| 281 |
+
return p2d * self.f.unsqueeze(-2) + self.c.unsqueeze(-2)
|
| 282 |
+
|
| 283 |
+
def J_denormalize(self):
|
| 284 |
+
"""Jacobian of the denormalization function."""
|
| 285 |
+
return torch.diag_embed(self.f) # ..., 2 x 2
|
| 286 |
+
|
| 287 |
+
@autocast
|
| 288 |
+
def normalize(self, p2d: torch.Tensor) -> torch.Tensor:
|
| 289 |
+
"""Convert pixel coordinates into normalized 2D coordinates."""
|
| 290 |
+
return (p2d - self.c.unsqueeze(-2)) / (self.f.unsqueeze(-2))
|
| 291 |
+
|
| 292 |
+
def J_normalize(self, p2d: torch.Tensor, wrt: str = "f"):
|
| 293 |
+
"""Jacobian of the normalization function."""
|
| 294 |
+
# ... x N x 2 x 2
|
| 295 |
+
if wrt == "f":
|
| 296 |
+
J_f = -(p2d - self.c.unsqueeze(-2)) / ((self.f.unsqueeze(-2)) ** 2)
|
| 297 |
+
return torch.diag_embed(J_f)
|
| 298 |
+
elif wrt == "pts":
|
| 299 |
+
J_pts = 1 / self.f
|
| 300 |
+
return torch.diag_embed(J_pts)
|
| 301 |
+
else:
|
| 302 |
+
raise NotImplementedError(f"Jacobian not implemented for wrt={wrt}")
|
| 303 |
+
|
| 304 |
+
def pixel_coordinates(self) -> torch.Tensor:
|
| 305 |
+
"""Pixel coordinates in self frame.
|
| 306 |
+
|
| 307 |
+
Returns:
|
| 308 |
+
torch.Tensor: Pixel coordinates as a tensor of shape (B, h * w, 2).
|
| 309 |
+
"""
|
| 310 |
+
w, h = self.size[0].unbind(-1)
|
| 311 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 312 |
+
|
| 313 |
+
# create grid
|
| 314 |
+
x = torch.arange(0, w, dtype=self.dtype, device=self.device)
|
| 315 |
+
y = torch.arange(0, h, dtype=self.dtype, device=self.device)
|
| 316 |
+
x, y = torch.meshgrid(x, y, indexing="xy")
|
| 317 |
+
xy = torch.stack((x, y), dim=-1).reshape(-1, 2) # shape (h * w, 2)
|
| 318 |
+
|
| 319 |
+
# add batch dimension (normalize() would broadcast but we make it explicit)
|
| 320 |
+
B = self.shape[0]
|
| 321 |
+
xy = xy.unsqueeze(0).expand(B, -1, -1) # if B > 0 else xy
|
| 322 |
+
|
| 323 |
+
return xy.to(self.device).to(self.dtype)
|
| 324 |
+
|
| 325 |
+
def normalized_image_coordinates(self) -> torch.Tensor:
|
| 326 |
+
"""Normalized image coordinates in self frame.
|
| 327 |
+
|
| 328 |
+
Returns:
|
| 329 |
+
torch.Tensor: Normalized image coordinates as a tensor of shape (B, h * w, 3).
|
| 330 |
+
"""
|
| 331 |
+
xy = self.pixel_coordinates()
|
| 332 |
+
uv1, _ = self.image2world(xy)
|
| 333 |
+
|
| 334 |
+
B = self.shape[0]
|
| 335 |
+
uv1 = uv1.reshape(B, -1, 3)
|
| 336 |
+
return uv1.to(self.device).to(self.dtype)
|
| 337 |
+
|
| 338 |
+
@autocast
|
| 339 |
+
def pixel_bearing_many(self, p3d: torch.Tensor) -> torch.Tensor:
|
| 340 |
+
"""Get the bearing vectors of pixel coordinates.
|
| 341 |
+
|
| 342 |
+
Args:
|
| 343 |
+
p2d (torch.Tensor): Pixel coordinates as a tensor of shape (..., 3).
|
| 344 |
+
|
| 345 |
+
Returns:
|
| 346 |
+
torch.Tensor: Bearing vectors as a tensor of shape (..., 3).
|
| 347 |
+
"""
|
| 348 |
+
return F.normalize(p3d, dim=-1)
|
| 349 |
+
|
| 350 |
+
@autocast
|
| 351 |
+
def world2image(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]:
|
| 352 |
+
"""Transform 3D points into 2D pixel coordinates."""
|
| 353 |
+
p2d, visible = self.project(p3d)
|
| 354 |
+
p2d, mask = self.distort(p2d)
|
| 355 |
+
p2d = self.denormalize(p2d)
|
| 356 |
+
valid = visible & mask & self.in_image(p2d)
|
| 357 |
+
return p2d, valid
|
| 358 |
+
|
| 359 |
+
@autocast
|
| 360 |
+
def J_world2image(self, p3d: torch.Tensor):
|
| 361 |
+
"""Jacobian of the world2image function."""
|
| 362 |
+
p2d_proj, valid = self.project(p3d)
|
| 363 |
+
|
| 364 |
+
J_dnorm = self.J_denormalize()
|
| 365 |
+
J_dist = self.J_distort(p2d_proj)
|
| 366 |
+
J_proj = self.J_project(p3d)
|
| 367 |
+
|
| 368 |
+
J = torch.einsum("...ij,...jk,...kl->...il", J_dnorm, J_dist, J_proj)
|
| 369 |
+
return J, valid
|
| 370 |
+
|
| 371 |
+
@autocast
|
| 372 |
+
def image2world(self, p2d: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 373 |
+
"""Transform point in the image plane to 3D world coordinates."""
|
| 374 |
+
p2d = self.normalize(p2d)
|
| 375 |
+
p2d, valid = self.undistort(p2d)
|
| 376 |
+
ones = p2d.new_ones(p2d.shape[:-1] + (1,))
|
| 377 |
+
p3d = torch.cat([p2d, ones], -1)
|
| 378 |
+
return p3d, valid
|
| 379 |
+
|
| 380 |
+
@autocast
|
| 381 |
+
def J_image2world(self, p2d: torch.Tensor, wrt: str = "f") -> Tuple[torch.Tensor, torch.Tensor]:
|
| 382 |
+
"""Jacobian of the image2world function."""
|
| 383 |
+
if wrt == "dist":
|
| 384 |
+
p2d_norm = self.normalize(p2d)
|
| 385 |
+
return self.J_undistort(p2d_norm, wrt)
|
| 386 |
+
elif wrt == "f":
|
| 387 |
+
J_norm2f = self.J_normalize(p2d, wrt)
|
| 388 |
+
p2d_norm = self.normalize(p2d)
|
| 389 |
+
J_dist2norm = self.J_undistort(p2d_norm, "pts")
|
| 390 |
+
|
| 391 |
+
return torch.einsum("...ij,...jk->...ik", J_dist2norm, J_norm2f)
|
| 392 |
+
else:
|
| 393 |
+
raise ValueError(f"Unknown wrt: {wrt}")
|
| 394 |
+
|
| 395 |
+
@autocast
|
| 396 |
+
def undistort_image(self, img: torch.Tensor) -> torch.Tensor:
|
| 397 |
+
"""Undistort an image using the distortion model."""
|
| 398 |
+
assert self.shape[0] == 1, "Batch size must be 1."
|
| 399 |
+
W, H = self.size.unbind(-1)
|
| 400 |
+
H, W = H.int().item(), W.int().item()
|
| 401 |
+
|
| 402 |
+
x, y = torch.arange(0, W), torch.arange(0, H)
|
| 403 |
+
x, y = torch.meshgrid(x, y, indexing="xy")
|
| 404 |
+
coords = torch.stack((x, y), dim=-1).reshape(-1, 2)
|
| 405 |
+
|
| 406 |
+
p3d, _ = self.pinhole().image2world(coords.to(self.device).to(self.dtype))
|
| 407 |
+
p2d, _ = self.world2image(p3d)
|
| 408 |
+
|
| 409 |
+
mapx, mapy = p2d[..., 0].reshape((1, H, W)), p2d[..., 1].reshape((1, H, W))
|
| 410 |
+
grid = torch.stack((mapx, mapy), dim=-1)
|
| 411 |
+
grid = 2.0 * grid / torch.tensor([W - 1, H - 1]).to(grid) - 1
|
| 412 |
+
return F.grid_sample(img, grid, align_corners=True)
|
| 413 |
+
|
| 414 |
+
def get_img_from_pano(
|
| 415 |
+
self,
|
| 416 |
+
pano_img: torch.Tensor,
|
| 417 |
+
gravity: Gravity,
|
| 418 |
+
yaws: torch.Tensor = 0.0,
|
| 419 |
+
resize_factor: Optional[torch.Tensor] = None,
|
| 420 |
+
) -> torch.Tensor:
|
| 421 |
+
"""Render an image from a panorama.
|
| 422 |
+
|
| 423 |
+
Args:
|
| 424 |
+
pano_img (torch.Tensor): Panorama image of shape (3, H, W) in [0, 1].
|
| 425 |
+
gravity (Gravity): Gravity direction of the camera.
|
| 426 |
+
yaws (torch.Tensor | list, optional): Yaw angle in radians. Defaults to 0.0.
|
| 427 |
+
resize_factor (torch.Tensor, optional): Resize the panorama to be a multiple of the
|
| 428 |
+
field of view. Defaults to 1.
|
| 429 |
+
|
| 430 |
+
Returns:
|
| 431 |
+
torch.Tensor: Image rendered from the panorama.
|
| 432 |
+
"""
|
| 433 |
+
B = self.shape[0]
|
| 434 |
+
if B > 0:
|
| 435 |
+
assert self.size[..., 0].unique().shape[0] == 1, "All images must have the same width."
|
| 436 |
+
assert self.size[..., 1].unique().shape[0] == 1, "All images must have the same height."
|
| 437 |
+
|
| 438 |
+
w, h = self.size[0].unbind(-1)
|
| 439 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 440 |
+
|
| 441 |
+
if isinstance(yaws, (int, float)):
|
| 442 |
+
yaws = [yaws]
|
| 443 |
+
if isinstance(resize_factor, (int, float)):
|
| 444 |
+
resize_factor = [resize_factor]
|
| 445 |
+
|
| 446 |
+
yaws = (
|
| 447 |
+
yaws.to(self.dtype).to(self.device)
|
| 448 |
+
if isinstance(yaws, torch.Tensor)
|
| 449 |
+
else self.new_tensor(yaws)
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
if isinstance(resize_factor, torch.Tensor):
|
| 453 |
+
resize_factor = resize_factor.to(self.dtype).to(self.device)
|
| 454 |
+
elif resize_factor is not None:
|
| 455 |
+
resize_factor = self.new_tensor(resize_factor)
|
| 456 |
+
|
| 457 |
+
assert isinstance(pano_img, torch.Tensor), "Panorama image must be a torch.Tensor."
|
| 458 |
+
pano_img = pano_img if pano_img.dim() == 4 else pano_img.unsqueeze(0) # B x 3 x H x W
|
| 459 |
+
|
| 460 |
+
pano_imgs = []
|
| 461 |
+
for i, yaw in enumerate(yaws):
|
| 462 |
+
if resize_factor is not None:
|
| 463 |
+
# resize the panorama such that the fov of the panorama has the same height as the
|
| 464 |
+
# image
|
| 465 |
+
vfov = self.vfov[i] if B != 0 else self.vfov
|
| 466 |
+
scale = torch.pi / float(vfov) * float(h) / pano_img.shape[-2] * resize_factor[i]
|
| 467 |
+
pano_shape = (int(pano_img.shape[-2] * scale), int(pano_img.shape[-1] * scale))
|
| 468 |
+
|
| 469 |
+
mode = "bicubic" if scale >= 1 else "area"
|
| 470 |
+
resized_pano = F.interpolate(pano_img, size=pano_shape, mode=mode)
|
| 471 |
+
else:
|
| 472 |
+
# make sure to copy: resized_pano = pano_img
|
| 473 |
+
resized_pano = pano_img
|
| 474 |
+
pano_shape = pano_img.shape[-2:][::-1]
|
| 475 |
+
|
| 476 |
+
pano_imgs.append((resized_pano, pano_shape))
|
| 477 |
+
|
| 478 |
+
xy = self.pixel_coordinates()
|
| 479 |
+
uv1, valid = self.image2world(xy)
|
| 480 |
+
bearings = self.pixel_bearing_many(uv1)
|
| 481 |
+
|
| 482 |
+
# rotate bearings
|
| 483 |
+
R_yaw = rad2rotmat(self.new_zeros(yaw.shape), self.new_zeros(yaw.shape), yaws)
|
| 484 |
+
rotated_bearings = bearings @ gravity.R @ R_yaw
|
| 485 |
+
|
| 486 |
+
# spherical coordinates
|
| 487 |
+
lon = torch.atan2(rotated_bearings[..., 0], rotated_bearings[..., 2])
|
| 488 |
+
lat = torch.atan2(
|
| 489 |
+
rotated_bearings[..., 1], torch.norm(rotated_bearings[..., [0, 2]], dim=-1)
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
images = []
|
| 493 |
+
for idx, (resized_pano, pano_shape) in enumerate(pano_imgs):
|
| 494 |
+
min_lon, max_lon = -torch.pi, torch.pi
|
| 495 |
+
min_lat, max_lat = -torch.pi / 2.0, torch.pi / 2.0
|
| 496 |
+
min_x, max_x = 0, pano_shape[0] - 1.0
|
| 497 |
+
min_y, max_y = 0, pano_shape[1] - 1.0
|
| 498 |
+
|
| 499 |
+
# map Spherical Coordinates to Panoramic Coordinates
|
| 500 |
+
nx = (lon[idx] - min_lon) / (max_lon - min_lon) * (max_x - min_x) + min_x
|
| 501 |
+
ny = (lat[idx] - min_lat) / (max_lat - min_lat) * (max_y - min_y) + min_y
|
| 502 |
+
|
| 503 |
+
# reshape and cast to numpy for remap
|
| 504 |
+
mapx = nx.reshape((1, h, w))
|
| 505 |
+
mapy = ny.reshape((1, h, w))
|
| 506 |
+
|
| 507 |
+
grid = torch.stack((mapx, mapy), dim=-1) # Add batch dimension
|
| 508 |
+
# Normalize to [-1, 1]
|
| 509 |
+
grid = 2.0 * grid / torch.tensor([pano_shape[-2] - 1, pano_shape[-1] - 1]).to(grid) - 1
|
| 510 |
+
# Apply grid sample
|
| 511 |
+
image = F.grid_sample(resized_pano, grid, align_corners=True)#True
|
| 512 |
+
images.append(image)
|
| 513 |
+
|
| 514 |
+
return torch.concatenate(images, 0) if B > 0 else images[0]
|
| 515 |
+
|
| 516 |
+
def __repr__(self):
|
| 517 |
+
"""Print the Camera object."""
|
| 518 |
+
return f"{self.__class__.__name__} {self.shape} {self.dtype} {self.device}"
|
scripts/camera/geometry/camera.py
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Implementation of the pinhole, simple radial, and simple divisional camera models."""
|
| 2 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 3 |
+
|
| 4 |
+
from typing import Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
from scripts.camera.geometry.base_camera import BaseCamera
|
| 9 |
+
from scripts.camera.utils.tensor import autocast
|
| 10 |
+
|
| 11 |
+
# flake8: noqa: E741
|
| 12 |
+
|
| 13 |
+
# mypy: ignore-errors
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class Pinhole(BaseCamera):
|
| 17 |
+
"""Implementation of the pinhole camera model."""
|
| 18 |
+
|
| 19 |
+
def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
|
| 20 |
+
"""Distort normalized 2D coordinates."""
|
| 21 |
+
if return_scale:
|
| 22 |
+
return p2d.new_ones(p2d.shape[:-1] + (1,))
|
| 23 |
+
|
| 24 |
+
return p2d, p2d.new_ones((p2d.shape[0], 1)).bool()
|
| 25 |
+
|
| 26 |
+
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
|
| 27 |
+
"""Jacobian of the distortion function."""
|
| 28 |
+
if wrt == "pts":
|
| 29 |
+
return torch.eye(2, device=p2d.device, dtype=p2d.dtype).expand(p2d.shape[:-1] + (2, 2))
|
| 30 |
+
else:
|
| 31 |
+
raise ValueError(f"Unknown wrt: {wrt}")
|
| 32 |
+
|
| 33 |
+
def undistort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]:
|
| 34 |
+
"""Undistort normalized 2D coordinates."""
|
| 35 |
+
return pts, pts.new_ones((pts.shape[0], 1)).bool()
|
| 36 |
+
|
| 37 |
+
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
|
| 38 |
+
"""Jacobian of the undistortion function."""
|
| 39 |
+
if wrt == "pts":
|
| 40 |
+
return torch.eye(2, device=p2d.device, dtype=p2d.dtype).expand(p2d.shape[:-1] + (2, 2))
|
| 41 |
+
else:
|
| 42 |
+
raise ValueError(f"Unknown wrt: {wrt}")
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class SimpleRadial(BaseCamera):
|
| 46 |
+
"""Implementation of the simple radial camera model."""
|
| 47 |
+
|
| 48 |
+
@property
|
| 49 |
+
def dist(self) -> torch.Tensor:
|
| 50 |
+
"""Distortion parameters, with shape (..., 1)."""
|
| 51 |
+
return self._data[..., 6:]
|
| 52 |
+
|
| 53 |
+
@property
|
| 54 |
+
def k1(self) -> torch.Tensor:
|
| 55 |
+
"""Distortion parameters, with shape (...)."""
|
| 56 |
+
return self._data[..., 6]
|
| 57 |
+
|
| 58 |
+
@property
|
| 59 |
+
def k1_hat(self) -> torch.Tensor:
|
| 60 |
+
"""Distortion parameters, with shape (...)."""
|
| 61 |
+
return self.k1 / (self.f[..., 1] / self.size[..., 1]) ** 2
|
| 62 |
+
|
| 63 |
+
def update_dist(self, delta: torch.Tensor, dist_range: Tuple[float, float] = (-0.7, 0.7)):
|
| 64 |
+
"""Update the self parameters after changing the k1 distortion parameter."""
|
| 65 |
+
delta_dist = self.new_ones(self.dist.shape) * delta
|
| 66 |
+
dist = (self.dist + delta_dist).clamp(*dist_range)
|
| 67 |
+
data = torch.cat([self.size, self.f, self.c, dist], -1)
|
| 68 |
+
return self.__class__(data)
|
| 69 |
+
|
| 70 |
+
@autocast
|
| 71 |
+
def check_valid(self, p2d: torch.Tensor) -> torch.Tensor:
|
| 72 |
+
"""Check if the distorted points are valid."""
|
| 73 |
+
return p2d.new_ones(p2d.shape[:-1]).bool()
|
| 74 |
+
|
| 75 |
+
def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
|
| 76 |
+
"""Distort normalized 2D coordinates and check for validity of the distortion model."""
|
| 77 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 78 |
+
radial = 1 + self.k1[..., None, None] * r2
|
| 79 |
+
|
| 80 |
+
if return_scale:
|
| 81 |
+
return radial, None
|
| 82 |
+
|
| 83 |
+
return p2d * radial, self.check_valid(p2d)
|
| 84 |
+
|
| 85 |
+
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts"):
|
| 86 |
+
"""Jacobian of the distortion function."""
|
| 87 |
+
k1 = self.k1[..., None, None]
|
| 88 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 89 |
+
if wrt == "pts": # (..., 2, 2)
|
| 90 |
+
radial = 1 + k1 * r2
|
| 91 |
+
ppT = torch.einsum("...i,...j->...ij", p2d, p2d) # (..., 2, 2)
|
| 92 |
+
return (2 * k1 * ppT) + torch.diag_embed(radial.expand(radial.shape[:-1] + (2,)))
|
| 93 |
+
elif wrt == "dist": # (..., 2)
|
| 94 |
+
return r2 * p2d
|
| 95 |
+
elif wrt == "scale2dist": # (..., 1)
|
| 96 |
+
return r2
|
| 97 |
+
elif wrt == "scale2pts": # (..., 2)
|
| 98 |
+
return 2 * k1 * p2d
|
| 99 |
+
else:
|
| 100 |
+
return super().J_distort(p2d, wrt)
|
| 101 |
+
|
| 102 |
+
@autocast
|
| 103 |
+
def undistort(self, p2d: torch.Tensor) -> Tuple[torch.Tensor]:
|
| 104 |
+
"""Undistort normalized 2D coordinates and check for validity of the distortion model."""
|
| 105 |
+
b1 = -self.k1[..., None, None]
|
| 106 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 107 |
+
radial = 1 + b1 * r2
|
| 108 |
+
return p2d * radial, self.check_valid(p2d)
|
| 109 |
+
|
| 110 |
+
@autocast
|
| 111 |
+
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
|
| 112 |
+
"""Jacobian of the undistortion function."""
|
| 113 |
+
b1 = -self.k1[..., None, None]
|
| 114 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 115 |
+
if wrt == "dist":
|
| 116 |
+
return -r2 * p2d
|
| 117 |
+
elif wrt == "pts":
|
| 118 |
+
radial = 1 + b1 * r2
|
| 119 |
+
ppT = torch.einsum("...i,...j->...ij", p2d, p2d) # (..., 2, 2)
|
| 120 |
+
return (2 * b1[..., None] * ppT) + torch.diag_embed(
|
| 121 |
+
radial.expand(radial.shape[:-1] + (2,))
|
| 122 |
+
)
|
| 123 |
+
else:
|
| 124 |
+
return super().J_undistort(p2d, wrt)
|
| 125 |
+
|
| 126 |
+
def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
|
| 127 |
+
"""Jacobian of the up-projection offset."""
|
| 128 |
+
if wrt == "uv": # (..., 2, 2)
|
| 129 |
+
return torch.diag_embed((2 * self.k1[..., None, None]).expand(p2d.shape[:-1] + (2,)))
|
| 130 |
+
elif wrt == "dist":
|
| 131 |
+
return 2 * p2d # (..., 2)
|
| 132 |
+
else:
|
| 133 |
+
return super().J_up_projection_offset(p2d, wrt)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class SimpleDivisional(BaseCamera):
|
| 137 |
+
"""Implementation of the simple divisional camera model."""
|
| 138 |
+
|
| 139 |
+
@property
|
| 140 |
+
def dist(self) -> torch.Tensor:
|
| 141 |
+
"""Distortion parameters, with shape (..., 1)."""
|
| 142 |
+
return self._data[..., 6:]
|
| 143 |
+
|
| 144 |
+
@property
|
| 145 |
+
def k1(self) -> torch.Tensor:
|
| 146 |
+
"""Distortion parameters, with shape (...)."""
|
| 147 |
+
return self._data[..., 6]
|
| 148 |
+
|
| 149 |
+
def update_dist(self, delta: torch.Tensor, dist_range: Tuple[float, float] = (-3.0, 3.0)):
|
| 150 |
+
"""Update the self parameters after changing the k1 distortion parameter."""
|
| 151 |
+
delta_dist = self.new_ones(self.dist.shape) * delta
|
| 152 |
+
dist = (self.dist + delta_dist).clamp(*dist_range)
|
| 153 |
+
data = torch.cat([self.size, self.f, self.c, dist], -1)
|
| 154 |
+
return self.__class__(data)
|
| 155 |
+
|
| 156 |
+
@autocast
|
| 157 |
+
def check_valid(self, p2d: torch.Tensor) -> torch.Tensor:
|
| 158 |
+
"""Check if the distorted points are valid."""
|
| 159 |
+
return p2d.new_ones(p2d.shape[:-1]).bool()
|
| 160 |
+
|
| 161 |
+
def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
|
| 162 |
+
"""Distort normalized 2D coordinates and check for validity of the distortion model."""
|
| 163 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 164 |
+
radial = 1 - torch.sqrt((1 - 4 * self.k1[..., None, None] * r2).clamp(min=0))
|
| 165 |
+
denom = 2 * self.k1[..., None, None] * r2
|
| 166 |
+
|
| 167 |
+
ones = radial.new_ones(radial.shape)
|
| 168 |
+
radial = torch.where(denom == 0, ones, radial / denom.masked_fill(denom == 0, 1e6))
|
| 169 |
+
|
| 170 |
+
if return_scale:
|
| 171 |
+
return radial, None
|
| 172 |
+
|
| 173 |
+
return p2d * radial, self.check_valid(p2d)
|
| 174 |
+
|
| 175 |
+
def J_distort(self, p2d: torch.Tensor, wrt: str = "pts"):
|
| 176 |
+
"""Jacobian of the distortion function."""
|
| 177 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 178 |
+
t0 = torch.sqrt((1 - 4 * self.k1[..., None, None] * r2).clamp(min=1e-6))
|
| 179 |
+
if wrt == "scale2pts": # (B, N, 2)
|
| 180 |
+
d1 = t0 * 2 * r2
|
| 181 |
+
d2 = self.k1[..., None, None] * r2**2
|
| 182 |
+
denom = d1 * d2
|
| 183 |
+
return p2d * (4 * d2 - (1 - t0) * d1) / denom.masked_fill(denom == 0, 1e6)
|
| 184 |
+
|
| 185 |
+
elif wrt == "scale2dist":
|
| 186 |
+
d1 = 2 * self.k1[..., None, None] * t0
|
| 187 |
+
d2 = 2 * r2 * self.k1[..., None, None] ** 2
|
| 188 |
+
denom = d1 * d2
|
| 189 |
+
return (2 * d2 - (1 - t0) * d1) / denom.masked_fill(denom == 0, 1e6)
|
| 190 |
+
|
| 191 |
+
else:
|
| 192 |
+
return super().J_distort(p2d, wrt)
|
| 193 |
+
|
| 194 |
+
@autocast
|
| 195 |
+
def undistort(self, p2d: torch.Tensor) -> Tuple[torch.Tensor]:
|
| 196 |
+
"""Undistort normalized 2D coordinates and check for validity of the distortion model."""
|
| 197 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 198 |
+
denom = 1 + self.k1[..., None, None] * r2
|
| 199 |
+
radial = 1 / denom.masked_fill(denom == 0, 1e6)
|
| 200 |
+
return p2d * radial, self.check_valid(p2d)
|
| 201 |
+
|
| 202 |
+
def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
|
| 203 |
+
"""Jacobian of the undistortion function."""
|
| 204 |
+
# return super().J_undistort(p2d, wrt)
|
| 205 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 206 |
+
k1 = self.k1[..., None, None]
|
| 207 |
+
if wrt == "dist":
|
| 208 |
+
denom = (1 + k1 * r2) ** 2
|
| 209 |
+
return -r2 / denom.masked_fill(denom == 0, 1e6) * p2d
|
| 210 |
+
elif wrt == "pts":
|
| 211 |
+
t0 = 1 + k1 * r2
|
| 212 |
+
t0 = t0.masked_fill(t0 == 0, 1e6)
|
| 213 |
+
ppT = torch.einsum("...i,...j->...ij", p2d, p2d) # (..., 2, 2)
|
| 214 |
+
J = torch.diag_embed((1 / t0).expand(p2d.shape[:-1] + (2,)))
|
| 215 |
+
return J - 2 * k1[..., None] * ppT / t0[..., None] ** 2 # (..., N, 2, 2)
|
| 216 |
+
|
| 217 |
+
else:
|
| 218 |
+
return super().J_undistort(p2d, wrt)
|
| 219 |
+
|
| 220 |
+
def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
|
| 221 |
+
"""Jacobian of the up-projection offset.
|
| 222 |
+
|
| 223 |
+
func(uv, dist) = 4 / (2 * norm2(uv)^2 * (1-4*k1*norm2(uv)^2)^0.5) * uv
|
| 224 |
+
- (1-(1-4*k1*norm2(uv)^2)^0.5) / (k1 * norm2(uv)^4) * uv
|
| 225 |
+
"""
|
| 226 |
+
k1 = self.k1[..., None, None]
|
| 227 |
+
r2 = torch.sum(p2d**2, -1, keepdim=True)
|
| 228 |
+
t0 = (1 - 4 * k1 * r2).clamp(min=1e-6)
|
| 229 |
+
t1 = torch.sqrt(t0)
|
| 230 |
+
if wrt == "dist":
|
| 231 |
+
denom = 4 * t0 ** (3 / 2)
|
| 232 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 233 |
+
J = 16 / denom
|
| 234 |
+
|
| 235 |
+
denom = r2 * t1 * k1
|
| 236 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 237 |
+
J = J - 2 / denom
|
| 238 |
+
|
| 239 |
+
denom = (r2 * k1) ** 2
|
| 240 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 241 |
+
J = J + (1 - t1) / denom
|
| 242 |
+
|
| 243 |
+
return J * p2d
|
| 244 |
+
elif wrt == "uv":
|
| 245 |
+
# ! unstable (gradient checker might fail), rewrite to use single division (by denom)
|
| 246 |
+
ppT = torch.einsum("...i,...j->...ij", p2d, p2d) # (..., 2, 2)
|
| 247 |
+
|
| 248 |
+
denom = 2 * r2 * t1
|
| 249 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 250 |
+
J = torch.diag_embed((4 / denom).expand(p2d.shape[:-1] + (2,)))
|
| 251 |
+
|
| 252 |
+
denom = 4 * t1 * r2**2
|
| 253 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 254 |
+
J = J - 16 / denom[..., None] * ppT
|
| 255 |
+
|
| 256 |
+
denom = 4 * r2 * t0 ** (3 / 2)
|
| 257 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 258 |
+
J = J + (32 * k1[..., None]) / denom[..., None] * ppT
|
| 259 |
+
|
| 260 |
+
denom = r2**2 * t1
|
| 261 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 262 |
+
J = J - 4 / denom[..., None] * ppT
|
| 263 |
+
|
| 264 |
+
denom = k1 * r2**3
|
| 265 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 266 |
+
J = J + (4 * (1 - t1) / denom)[..., None] * ppT
|
| 267 |
+
|
| 268 |
+
denom = k1 * r2**2
|
| 269 |
+
denom = denom.masked_fill(denom == 0, 1e6)
|
| 270 |
+
J = J - torch.diag_embed(((1 - t1) / denom).expand(p2d.shape[:-1] + (2,)))
|
| 271 |
+
|
| 272 |
+
return J
|
| 273 |
+
else:
|
| 274 |
+
return super().J_up_projection_offset(p2d, wrt)
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
camera_models = {
|
| 278 |
+
"pinhole": Pinhole,
|
| 279 |
+
"simple_radial": SimpleRadial,
|
| 280 |
+
"simple_divisional": SimpleDivisional,
|
| 281 |
+
}
|
scripts/camera/geometry/gravity.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Tensor class for gravity vector in camera frame."""
|
| 2 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
from scripts.camera.geometry.manifolds import EuclideanManifold, SphericalManifold
|
| 8 |
+
from scripts.camera.utils.conversions import rad2rotmat
|
| 9 |
+
from scripts.camera.utils.tensor import TensorWrapper, autocast
|
| 10 |
+
|
| 11 |
+
# mypy: ignore-errors
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Gravity(TensorWrapper):
|
| 15 |
+
"""Gravity vector in camera frame."""
|
| 16 |
+
|
| 17 |
+
eps = 1e-4
|
| 18 |
+
|
| 19 |
+
@autocast
|
| 20 |
+
def __init__(self, data: torch.Tensor) -> None:
|
| 21 |
+
"""Create gravity vector from data.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
data (torch.Tensor): gravity vector as 3D vector in camera frame.
|
| 25 |
+
"""
|
| 26 |
+
assert data.shape[-1] == 3, data.shape
|
| 27 |
+
|
| 28 |
+
data = F.normalize(data, dim=-1)
|
| 29 |
+
|
| 30 |
+
super().__init__(data)
|
| 31 |
+
|
| 32 |
+
@classmethod
|
| 33 |
+
def from_rp(cls, roll: torch.Tensor, pitch: torch.Tensor) -> "Gravity":
|
| 34 |
+
"""Create gravity vector from roll and pitch angles."""
|
| 35 |
+
if not isinstance(roll, torch.Tensor):
|
| 36 |
+
roll = torch.tensor(roll)
|
| 37 |
+
if not isinstance(pitch, torch.Tensor):
|
| 38 |
+
pitch = torch.tensor(pitch)
|
| 39 |
+
|
| 40 |
+
sr, cr = torch.sin(roll), torch.cos(roll)
|
| 41 |
+
sp, cp = torch.sin(pitch), torch.cos(pitch)
|
| 42 |
+
return cls(torch.stack([-sr * cp, -cr * cp, sp], dim=-1))
|
| 43 |
+
|
| 44 |
+
@property
|
| 45 |
+
def vec3d(self) -> torch.Tensor:
|
| 46 |
+
"""Return the gravity vector in the representation."""
|
| 47 |
+
return self._data
|
| 48 |
+
|
| 49 |
+
@property
|
| 50 |
+
def x(self) -> torch.Tensor:
|
| 51 |
+
"""Return first component of the gravity vector."""
|
| 52 |
+
return self._data[..., 0]
|
| 53 |
+
|
| 54 |
+
@property
|
| 55 |
+
def y(self) -> torch.Tensor:
|
| 56 |
+
"""Return second component of the gravity vector."""
|
| 57 |
+
return self._data[..., 1]
|
| 58 |
+
|
| 59 |
+
@property
|
| 60 |
+
def z(self) -> torch.Tensor:
|
| 61 |
+
"""Return third component of the gravity vector."""
|
| 62 |
+
return self._data[..., 2]
|
| 63 |
+
|
| 64 |
+
@property
|
| 65 |
+
def roll(self) -> torch.Tensor:
|
| 66 |
+
"""Return the roll angle of the gravity vector."""
|
| 67 |
+
roll = torch.asin(-self.x / (torch.sqrt(1 - self.z**2) + self.eps))
|
| 68 |
+
offset = -torch.pi * torch.sign(self.x)
|
| 69 |
+
return torch.where(self.y < 0, roll, -roll + offset)
|
| 70 |
+
|
| 71 |
+
def J_roll(self) -> torch.Tensor:
|
| 72 |
+
"""Return the Jacobian of the roll angle of the gravity vector."""
|
| 73 |
+
cp, _ = torch.cos(self.pitch), torch.sin(self.pitch)
|
| 74 |
+
cr, sr = torch.cos(self.roll), torch.sin(self.roll)
|
| 75 |
+
Jr = self.new_zeros(self.shape + (3,))
|
| 76 |
+
Jr[..., 0] = -cr * cp
|
| 77 |
+
Jr[..., 1] = sr * cp
|
| 78 |
+
return Jr
|
| 79 |
+
|
| 80 |
+
@property
|
| 81 |
+
def pitch(self) -> torch.Tensor:
|
| 82 |
+
"""Return the pitch angle of the gravity vector."""
|
| 83 |
+
return torch.asin(self.z)
|
| 84 |
+
|
| 85 |
+
def J_pitch(self) -> torch.Tensor:
|
| 86 |
+
"""Return the Jacobian of the pitch angle of the gravity vector."""
|
| 87 |
+
cp, sp = torch.cos(self.pitch), torch.sin(self.pitch)
|
| 88 |
+
cr, sr = torch.cos(self.roll), torch.sin(self.roll)
|
| 89 |
+
|
| 90 |
+
Jp = self.new_zeros(self.shape + (3,))
|
| 91 |
+
Jp[..., 0] = sr * sp
|
| 92 |
+
Jp[..., 1] = cr * sp
|
| 93 |
+
Jp[..., 2] = cp
|
| 94 |
+
return Jp
|
| 95 |
+
|
| 96 |
+
@property
|
| 97 |
+
def rp(self) -> torch.Tensor:
|
| 98 |
+
"""Return the roll and pitch angles of the gravity vector."""
|
| 99 |
+
return torch.stack([self.roll, self.pitch], dim=-1)
|
| 100 |
+
|
| 101 |
+
def J_rp(self) -> torch.Tensor:
|
| 102 |
+
"""Return the Jacobian of the roll and pitch angles of the gravity vector."""
|
| 103 |
+
return torch.stack([self.J_roll(), self.J_pitch()], dim=-1)
|
| 104 |
+
|
| 105 |
+
@property
|
| 106 |
+
def R(self) -> torch.Tensor:
|
| 107 |
+
"""Return the rotation matrix from the gravity vector."""
|
| 108 |
+
return rad2rotmat(roll=self.roll, pitch=self.pitch)
|
| 109 |
+
|
| 110 |
+
def J_R(self) -> torch.Tensor:
|
| 111 |
+
"""Return the Jacobian of the rotation matrix from the gravity vector."""
|
| 112 |
+
raise NotImplementedError
|
| 113 |
+
|
| 114 |
+
def update(self, delta: torch.Tensor, spherical: bool = False) -> "Gravity":
|
| 115 |
+
"""Update the gravity vector by adding a delta."""
|
| 116 |
+
if spherical:
|
| 117 |
+
data = SphericalManifold.plus(self.vec3d, delta)
|
| 118 |
+
return self.__class__(data)
|
| 119 |
+
|
| 120 |
+
data = EuclideanManifold.plus(self.rp, delta)
|
| 121 |
+
return self.from_rp(data[..., 0], data[..., 1])
|
| 122 |
+
|
| 123 |
+
def J_update(self, spherical: bool = False) -> torch.Tensor:
|
| 124 |
+
"""Return the Jacobian of the update."""
|
| 125 |
+
return SphericalManifold if spherical else EuclideanManifold
|
| 126 |
+
|
| 127 |
+
def __repr__(self):
|
| 128 |
+
"""Print the Camera object."""
|
| 129 |
+
return f"{self.__class__.__name__} {self.shape} {self.dtype} {self.device}"
|
scripts/camera/geometry/jacobians.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Jacobians for optimization."""
|
| 2 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
@torch.jit.script
|
| 8 |
+
def J_vecnorm(vec: torch.Tensor) -> torch.Tensor:
|
| 9 |
+
"""Compute the jacobian of vec / norm2(vec).
|
| 10 |
+
|
| 11 |
+
Args:
|
| 12 |
+
vec (torch.Tensor): [..., D] tensor.
|
| 13 |
+
|
| 14 |
+
Returns:
|
| 15 |
+
torch.Tensor: [..., D, D] Jacobian.
|
| 16 |
+
"""
|
| 17 |
+
D = vec.shape[-1]
|
| 18 |
+
norm_x = torch.norm(vec, dim=-1, keepdim=True).unsqueeze(-1) # (..., 1, 1)
|
| 19 |
+
|
| 20 |
+
if (norm_x == 0).any():
|
| 21 |
+
norm_x = norm_x + 1e-6
|
| 22 |
+
|
| 23 |
+
xxT = torch.einsum("...i,...j->...ij", vec, vec) # (..., D, D)
|
| 24 |
+
identity = torch.eye(D, device=vec.device, dtype=vec.dtype) # (D, D)
|
| 25 |
+
|
| 26 |
+
return identity / norm_x - (xxT / norm_x**3) # (..., D, D)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@torch.jit.script
|
| 30 |
+
def J_focal2fov(focal: torch.Tensor, h: torch.Tensor) -> torch.Tensor:
|
| 31 |
+
"""Compute the jacobian of the focal2fov function."""
|
| 32 |
+
return -4 * h / (4 * focal**2 + h**2)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
@torch.jit.script
|
| 36 |
+
def J_up_projection(uv: torch.Tensor, abc: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
|
| 37 |
+
"""Compute the jacobian of the up-vector projection.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
uv (torch.Tensor): Normalized image coordinates of shape (..., 2).
|
| 41 |
+
abc (torch.Tensor): Gravity vector of shape (..., 3).
|
| 42 |
+
wrt (str, optional): Parameter to differentiate with respect to. Defaults to "uv".
|
| 43 |
+
|
| 44 |
+
Raises:
|
| 45 |
+
ValueError: If the wrt parameter is unknown.
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
torch.Tensor: Jacobian with respect to the parameter.
|
| 49 |
+
"""
|
| 50 |
+
if wrt == "uv":
|
| 51 |
+
c = abc[..., 2][..., None, None, None]
|
| 52 |
+
return -c * torch.eye(2, device=uv.device, dtype=uv.dtype).expand(uv.shape[:-1] + (2, 2))
|
| 53 |
+
|
| 54 |
+
elif wrt == "abc":
|
| 55 |
+
J = uv.new_zeros(uv.shape[:-1] + (2, 3))
|
| 56 |
+
J[..., 0, 0] = 1
|
| 57 |
+
J[..., 1, 1] = 1
|
| 58 |
+
J[..., 0, 2] = -uv[..., 0]
|
| 59 |
+
J[..., 1, 2] = -uv[..., 1]
|
| 60 |
+
return J
|
| 61 |
+
|
| 62 |
+
else:
|
| 63 |
+
raise ValueError(f"Unknown wrt: {wrt}")
|
scripts/camera/geometry/manifolds.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Implementation of manifolds."""
|
| 2 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 3 |
+
|
| 4 |
+
import logging
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class EuclideanManifold:
|
| 12 |
+
"""Simple euclidean manifold."""
|
| 13 |
+
|
| 14 |
+
@staticmethod
|
| 15 |
+
def J_plus(x: torch.Tensor) -> torch.Tensor:
|
| 16 |
+
"""Plus operator Jacobian."""
|
| 17 |
+
return torch.eye(x.shape[-1]).to(x)
|
| 18 |
+
|
| 19 |
+
@staticmethod
|
| 20 |
+
def plus(x: torch.Tensor, delta: torch.Tensor) -> torch.Tensor:
|
| 21 |
+
"""Plus operator."""
|
| 22 |
+
return x + delta
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class SphericalManifold:
|
| 26 |
+
"""Implementation of the spherical manifold.
|
| 27 |
+
|
| 28 |
+
Following the derivation from 'Integrating Generic Sensor Fusion Algorithms with Sound State
|
| 29 |
+
Representations through Encapsulation of Manifolds' by Hertzberg et al. (B.2, p. 25).
|
| 30 |
+
|
| 31 |
+
Householder transformation following Algorithm 5.1.1 (p. 210) from 'Matrix Computations' by
|
| 32 |
+
Golub et al.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
@staticmethod
|
| 36 |
+
def householder_vector(x: torch.Tensor) -> torch.Tensor:
|
| 37 |
+
"""Return the Householder vector and beta.
|
| 38 |
+
|
| 39 |
+
Algorithm 5.1.1 (p. 210) from 'Matrix Computations' by Golub et al. (Johns Hopkins Studies
|
| 40 |
+
in Mathematical Sciences) but using the nth element of the input vector as pivot instead of
|
| 41 |
+
first.
|
| 42 |
+
|
| 43 |
+
This computes the vector v with v(n) = 1 and beta such that H = I - beta * v * v^T is
|
| 44 |
+
orthogonal and H * x = ||x||_2 * e_n.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
x (torch.Tensor): [..., n] tensor.
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
torch.Tensor: v of shape [..., n]
|
| 51 |
+
torch.Tensor: beta of shape [...]
|
| 52 |
+
"""
|
| 53 |
+
sigma = torch.sum(x[..., :-1] ** 2, -1)
|
| 54 |
+
xpiv = x[..., -1]
|
| 55 |
+
norm = torch.norm(x, dim=-1)
|
| 56 |
+
if torch.any(sigma < 1e-7):
|
| 57 |
+
sigma = torch.where(sigma < 1e-7, sigma + 1e-7, sigma)
|
| 58 |
+
logger.warning("sigma < 1e-7")
|
| 59 |
+
|
| 60 |
+
vpiv = torch.where(xpiv < 0, xpiv - norm, -sigma / (xpiv + norm))
|
| 61 |
+
beta = 2 * vpiv**2 / (sigma + vpiv**2)
|
| 62 |
+
v = torch.cat([x[..., :-1] / vpiv[..., None], torch.ones_like(vpiv)[..., None]], -1)
|
| 63 |
+
return v, beta
|
| 64 |
+
|
| 65 |
+
@staticmethod
|
| 66 |
+
def apply_householder(y: torch.Tensor, v: torch.Tensor, beta: torch.Tensor) -> torch.Tensor:
|
| 67 |
+
"""Apply Householder transformation.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
y (torch.Tensor): Vector to transform of shape [..., n].
|
| 71 |
+
v (torch.Tensor): Householder vector of shape [..., n].
|
| 72 |
+
beta (torch.Tensor): Householder beta of shape [...].
|
| 73 |
+
|
| 74 |
+
Returns:
|
| 75 |
+
torch.Tensor: Transformed vector of shape [..., n].
|
| 76 |
+
"""
|
| 77 |
+
return y - v * (beta * torch.einsum("...i,...i->...", v, y))[..., None]
|
| 78 |
+
|
| 79 |
+
@classmethod
|
| 80 |
+
def J_plus(cls, x: torch.Tensor) -> torch.Tensor:
|
| 81 |
+
"""Plus operator Jacobian."""
|
| 82 |
+
v, beta = cls.householder_vector(x)
|
| 83 |
+
H = -torch.einsum("..., ...k, ...l->...kl", beta, v, v)
|
| 84 |
+
H = H + torch.eye(H.shape[-1]).to(H)
|
| 85 |
+
return H[..., :-1] # J
|
| 86 |
+
|
| 87 |
+
@classmethod
|
| 88 |
+
def plus(cls, x: torch.Tensor, delta: torch.Tensor) -> torch.Tensor:
|
| 89 |
+
"""Plus operator.
|
| 90 |
+
|
| 91 |
+
Equation 109 (p. 25) from 'Integrating Generic Sensor Fusion Algorithms with Sound State
|
| 92 |
+
Representations through Encapsulation of Manifolds' by Hertzberg et al. but using the nth
|
| 93 |
+
element of the input vector as pivot instead of first.
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
x: point on the manifold
|
| 97 |
+
delta: tangent vector
|
| 98 |
+
"""
|
| 99 |
+
eps = 1e-7
|
| 100 |
+
# keep norm is not equal to 1
|
| 101 |
+
nx = torch.norm(x, dim=-1, keepdim=True)
|
| 102 |
+
nd = torch.norm(delta, dim=-1, keepdim=True)
|
| 103 |
+
|
| 104 |
+
# make sure we don't divide by zero in backward as torch.where computes grad for both
|
| 105 |
+
# branches
|
| 106 |
+
nd_ = torch.where(nd < eps, nd + eps, nd)
|
| 107 |
+
sinc = torch.where(nd < eps, nd.new_ones(nd.shape), torch.sin(nd_) / nd_)
|
| 108 |
+
|
| 109 |
+
# cos is applied to last dim instead of first
|
| 110 |
+
exp_delta = torch.cat([sinc * delta, torch.cos(nd)], -1)
|
| 111 |
+
|
| 112 |
+
v, beta = cls.householder_vector(x)
|
| 113 |
+
return nx * cls.apply_householder(exp_delta, v, beta)
|
scripts/camera/geometry/perspective_fields.py
ADDED
|
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Implementation of perspective fields.
|
| 2 |
+
|
| 3 |
+
Adapted from https://github.com/jinlinyi/PerspectiveFields/blob/main/perspective2d/utils/panocam.py
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from typing import Tuple
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from torch.nn import functional as F
|
| 10 |
+
|
| 11 |
+
from scripts.camera.geometry.base_camera import BaseCamera
|
| 12 |
+
from scripts.camera.geometry.gravity import Gravity
|
| 13 |
+
from scripts.camera.geometry.jacobians import J_up_projection, J_vecnorm
|
| 14 |
+
from scripts.camera.geometry.manifolds import SphericalManifold
|
| 15 |
+
|
| 16 |
+
# flake8: noqa: E266
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_horizon_line(camera: BaseCamera, gravity: Gravity, relative: bool = True) -> torch.Tensor:
|
| 20 |
+
"""Get the horizon line from the camera parameters.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
camera (Camera): Camera parameters.
|
| 24 |
+
gravity (Gravity): Gravity vector.
|
| 25 |
+
relative (bool, optional): Whether to normalize horizon line by img_h. Defaults to True.
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
torch.Tensor: In image frame, fraction of image left/right border intersection with
|
| 29 |
+
respect to image height.
|
| 30 |
+
"""
|
| 31 |
+
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
|
| 32 |
+
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
|
| 33 |
+
|
| 34 |
+
# project horizon midpoint to image plane
|
| 35 |
+
horizon_midpoint = camera.new_tensor([0, 0, 1])
|
| 36 |
+
horizon_midpoint = camera.K @ gravity.R @ horizon_midpoint
|
| 37 |
+
midpoint = horizon_midpoint[:2] / horizon_midpoint[2]
|
| 38 |
+
|
| 39 |
+
# compute left and right offset to borders
|
| 40 |
+
left_offset = midpoint[0] * torch.tan(gravity.roll)
|
| 41 |
+
right_offset = (camera.size[0] - midpoint[0]) * torch.tan(gravity.roll)
|
| 42 |
+
left, right = midpoint[1] + left_offset, midpoint[1] - right_offset
|
| 43 |
+
|
| 44 |
+
horizon = camera.new_tensor([left, right])
|
| 45 |
+
return horizon / camera.size[1] if relative else horizon
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_up_field(camera: BaseCamera, gravity: Gravity, normalize: bool = True) -> torch.Tensor:
|
| 49 |
+
"""Get the up vector field from the camera parameters.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
camera (Camera): Camera parameters.
|
| 53 |
+
normalize (bool, optional): Whether to normalize the up vector. Defaults to True.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
torch.Tensor: up vector field as tensor of shape (..., h, w, 2).
|
| 57 |
+
"""
|
| 58 |
+
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
|
| 59 |
+
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
|
| 60 |
+
|
| 61 |
+
w, h = camera.size[0].unbind(-1)
|
| 62 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 63 |
+
|
| 64 |
+
uv = camera.normalize(camera.pixel_coordinates())
|
| 65 |
+
|
| 66 |
+
# projected up is (a, b) - c * (u, v)
|
| 67 |
+
abc = gravity.vec3d
|
| 68 |
+
projected_up2d = abc[..., None, :2] - abc[..., 2, None, None] * uv # (..., N, 2)
|
| 69 |
+
|
| 70 |
+
if hasattr(camera, "dist"):
|
| 71 |
+
d_uv = camera.distort(uv, return_scale=True)[0] # (..., N, 1)
|
| 72 |
+
d_uv = torch.diag_embed(d_uv.expand(d_uv.shape[:-1] + (2,))) # (..., N, 2, 2)
|
| 73 |
+
offset = camera.up_projection_offset(uv) # (..., N, 2)
|
| 74 |
+
offset = torch.einsum("...i,...j->...ij", offset, uv) # (..., N, 2, 2)
|
| 75 |
+
|
| 76 |
+
# (..., N, 2)
|
| 77 |
+
projected_up2d = torch.einsum("...Nij,...Nj->...Ni", d_uv + offset, projected_up2d)
|
| 78 |
+
|
| 79 |
+
if normalize:
|
| 80 |
+
projected_up2d = F.normalize(projected_up2d, dim=-1) # (..., N, 2)
|
| 81 |
+
|
| 82 |
+
try:
|
| 83 |
+
del uv, abc, d_uv, offset
|
| 84 |
+
except NameError:
|
| 85 |
+
pass
|
| 86 |
+
|
| 87 |
+
return projected_up2d.reshape(camera.shape[0], h, w, 2)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def J_up_field(
|
| 91 |
+
camera: BaseCamera, gravity: Gravity, spherical: bool = False, log_focal: bool = False
|
| 92 |
+
) -> torch.Tensor:
|
| 93 |
+
"""Get the jacobian of the up field.
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
camera (Camera): Camera parameters.
|
| 97 |
+
gravity (Gravity): Gravity vector.
|
| 98 |
+
spherical (bool, optional): Whether to use spherical coordinates. Defaults to False.
|
| 99 |
+
log_focal (bool, optional): Whether to use log-focal length. Defaults to False.
|
| 100 |
+
|
| 101 |
+
Returns:
|
| 102 |
+
torch.Tensor: Jacobian of the up field as a tensor of shape (..., h, w, 2, 2, 3).
|
| 103 |
+
"""
|
| 104 |
+
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
|
| 105 |
+
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
|
| 106 |
+
|
| 107 |
+
w, h = camera.size[0].unbind(-1)
|
| 108 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 109 |
+
|
| 110 |
+
# Forward
|
| 111 |
+
xy = camera.pixel_coordinates()
|
| 112 |
+
uv = camera.normalize(xy)
|
| 113 |
+
|
| 114 |
+
projected_up2d = gravity.vec3d[..., None, :2] - gravity.vec3d[..., 2, None, None] * uv
|
| 115 |
+
|
| 116 |
+
# Backward
|
| 117 |
+
J = []
|
| 118 |
+
|
| 119 |
+
# (..., N, 2, 2)
|
| 120 |
+
J_norm2proj = J_vecnorm(
|
| 121 |
+
get_up_field(camera, gravity, normalize=False).reshape(camera.shape[0], -1, 2)
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# distortion values
|
| 125 |
+
if hasattr(camera, "dist"):
|
| 126 |
+
d_uv = camera.distort(uv, return_scale=True)[0] # (..., N, 1)
|
| 127 |
+
d_uv = torch.diag_embed(d_uv.expand(d_uv.shape[:-1] + (2,))) # (..., N, 2, 2)
|
| 128 |
+
offset = camera.up_projection_offset(uv) # (..., N, 2)
|
| 129 |
+
offset_uv = torch.einsum("...i,...j->...ij", offset, uv) # (..., N, 2, 2)
|
| 130 |
+
|
| 131 |
+
######################
|
| 132 |
+
## Gravity Jacobian ##
|
| 133 |
+
######################
|
| 134 |
+
|
| 135 |
+
J_proj2abc = J_up_projection(uv, gravity.vec3d, wrt="abc") # (..., N, 2, 3)
|
| 136 |
+
|
| 137 |
+
if hasattr(camera, "dist"):
|
| 138 |
+
# (..., N, 2, 3)
|
| 139 |
+
J_proj2abc = torch.einsum("...Nij,...Njk->...Nik", d_uv + offset_uv, J_proj2abc)
|
| 140 |
+
|
| 141 |
+
J_abc2delta = SphericalManifold.J_plus(gravity.vec3d) if spherical else gravity.J_rp()
|
| 142 |
+
J_proj2delta = torch.einsum("...Nij,...jk->...Nik", J_proj2abc, J_abc2delta)
|
| 143 |
+
J_up2delta = torch.einsum("...Nij,...Njk->...Nik", J_norm2proj, J_proj2delta)
|
| 144 |
+
J.append(J_up2delta)
|
| 145 |
+
|
| 146 |
+
######################
|
| 147 |
+
### Focal Jacobian ###
|
| 148 |
+
######################
|
| 149 |
+
|
| 150 |
+
J_proj2uv = J_up_projection(uv, gravity.vec3d, wrt="uv") # (..., N, 2, 2)
|
| 151 |
+
|
| 152 |
+
if hasattr(camera, "dist"):
|
| 153 |
+
J_proj2up = torch.einsum("...Nij,...Njk->...Nik", d_uv + offset_uv, J_proj2uv)
|
| 154 |
+
J_proj2duv = torch.einsum("...i,...j->...ji", offset, projected_up2d)
|
| 155 |
+
|
| 156 |
+
inner = (uv * projected_up2d).sum(-1)[..., None, None]
|
| 157 |
+
J_proj2offset1 = inner * camera.J_up_projection_offset(uv, wrt="uv")
|
| 158 |
+
J_proj2offset2 = torch.einsum("...i,...j->...ij", offset, projected_up2d) # (..., N, 2, 2)
|
| 159 |
+
J_proj2uv = (J_proj2duv + J_proj2offset1 + J_proj2offset2) + J_proj2up
|
| 160 |
+
|
| 161 |
+
J_uv2f = camera.J_normalize(xy) # (..., N, 2, 2)
|
| 162 |
+
|
| 163 |
+
if log_focal:
|
| 164 |
+
J_uv2f = J_uv2f * camera.f[..., None, None, :] # (..., N, 2, 2)
|
| 165 |
+
|
| 166 |
+
J_uv2f = J_uv2f.sum(-1) # (..., N, 2)
|
| 167 |
+
|
| 168 |
+
J_proj2f = torch.einsum("...ij,...j->...i", J_proj2uv, J_uv2f) # (..., N, 2)
|
| 169 |
+
J_up2f = torch.einsum("...Nij,...Nj->...Ni", J_norm2proj, J_proj2f)[..., None] # (..., N, 2, 1)
|
| 170 |
+
J.append(J_up2f)
|
| 171 |
+
|
| 172 |
+
######################
|
| 173 |
+
##### K1 Jacobian ####
|
| 174 |
+
######################
|
| 175 |
+
|
| 176 |
+
if hasattr(camera, "dist"):
|
| 177 |
+
J_duv = camera.J_distort(uv, wrt="scale2dist")
|
| 178 |
+
J_duv = torch.diag_embed(J_duv.expand(J_duv.shape[:-1] + (2,))) # (..., N, 2, 2)
|
| 179 |
+
J_offset = torch.einsum(
|
| 180 |
+
"...i,...j->...ij", camera.J_up_projection_offset(uv, wrt="dist"), uv
|
| 181 |
+
)
|
| 182 |
+
J_proj2k1 = torch.einsum("...Nij,...Nj->...Ni", J_duv + J_offset, projected_up2d)
|
| 183 |
+
J_k1 = torch.einsum("...Nij,...Nj->...Ni", J_norm2proj, J_proj2k1)[..., None]
|
| 184 |
+
J.append(J_k1)
|
| 185 |
+
|
| 186 |
+
n_params = sum(j.shape[-1] for j in J)
|
| 187 |
+
return torch.cat(J, axis=-1).reshape(camera.shape[0], h, w, 2, n_params)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def get_latitude_field(camera: BaseCamera, gravity: Gravity) -> torch.Tensor:
|
| 191 |
+
"""Get the latitudes of the camera pixels in radians.
|
| 192 |
+
|
| 193 |
+
Latitudes are defined as the angle between the ray and the up vector.
|
| 194 |
+
|
| 195 |
+
Args:
|
| 196 |
+
camera (Camera): Camera parameters.
|
| 197 |
+
gravity (Gravity): Gravity vector.
|
| 198 |
+
|
| 199 |
+
Returns:
|
| 200 |
+
torch.Tensor: Latitudes in radians as a tensor of shape (..., h, w, 1).
|
| 201 |
+
"""
|
| 202 |
+
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
|
| 203 |
+
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
|
| 204 |
+
|
| 205 |
+
w, h = camera.size[0].unbind(-1)
|
| 206 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 207 |
+
|
| 208 |
+
uv1, _ = camera.image2world(camera.pixel_coordinates())
|
| 209 |
+
rays = camera.pixel_bearing_many(uv1)
|
| 210 |
+
|
| 211 |
+
lat = torch.einsum("...Nj,...j->...N", rays, gravity.vec3d)
|
| 212 |
+
|
| 213 |
+
eps = 1e-6
|
| 214 |
+
lat_asin = torch.asin(lat.clamp(min=-1 + eps, max=1 - eps))
|
| 215 |
+
|
| 216 |
+
try:
|
| 217 |
+
del uv1, rays
|
| 218 |
+
except NameError:
|
| 219 |
+
pass
|
| 220 |
+
|
| 221 |
+
return lat_asin.reshape(camera.shape[0], h, w, 1)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def J_latitude_field(
|
| 225 |
+
camera: BaseCamera, gravity: Gravity, spherical: bool = False, log_focal: bool = False
|
| 226 |
+
) -> torch.Tensor:
|
| 227 |
+
"""Get the jacobian of the latitude field.
|
| 228 |
+
|
| 229 |
+
Args:
|
| 230 |
+
camera (Camera): Camera parameters.
|
| 231 |
+
gravity (Gravity): Gravity vector.
|
| 232 |
+
spherical (bool, optional): Whether to use spherical coordinates. Defaults to False.
|
| 233 |
+
log_focal (bool, optional): Whether to use log-focal length. Defaults to False.
|
| 234 |
+
|
| 235 |
+
Returns:
|
| 236 |
+
torch.Tensor: Jacobian of the latitude field as a tensor of shape (..., h, w, 1, 3).
|
| 237 |
+
"""
|
| 238 |
+
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
|
| 239 |
+
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
|
| 240 |
+
|
| 241 |
+
w, h = camera.size[0].unbind(-1)
|
| 242 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 243 |
+
|
| 244 |
+
# Forward
|
| 245 |
+
xy = camera.pixel_coordinates()
|
| 246 |
+
uv1, _ = camera.image2world(xy)
|
| 247 |
+
uv1_norm = camera.pixel_bearing_many(uv1) # (..., N, 3)
|
| 248 |
+
|
| 249 |
+
# Backward
|
| 250 |
+
J = []
|
| 251 |
+
J_norm2w_to_img = J_vecnorm(uv1)[..., :2] # (..., N, 2)
|
| 252 |
+
|
| 253 |
+
######################
|
| 254 |
+
## Gravity Jacobian ##
|
| 255 |
+
######################
|
| 256 |
+
|
| 257 |
+
J_delta = SphericalManifold.J_plus(gravity.vec3d) if spherical else gravity.J_rp()
|
| 258 |
+
J_delta = torch.einsum("...Ni,...ij->...Nj", uv1_norm, J_delta) # (..., N, 2)
|
| 259 |
+
J.append(J_delta)
|
| 260 |
+
|
| 261 |
+
######################
|
| 262 |
+
### Focal Jacobian ###
|
| 263 |
+
######################
|
| 264 |
+
|
| 265 |
+
J_w_to_img2f = camera.J_image2world(xy, "f") # (..., N, 2, 2)
|
| 266 |
+
if log_focal:
|
| 267 |
+
J_w_to_img2f = J_w_to_img2f * camera.f[..., None, None, :]
|
| 268 |
+
J_w_to_img2f = J_w_to_img2f.sum(-1) # (..., N, 2)
|
| 269 |
+
|
| 270 |
+
J_norm2f = torch.einsum("...Nij,...Nj->...Ni", J_norm2w_to_img, J_w_to_img2f) # (..., N, 3)
|
| 271 |
+
J_f = torch.einsum("...Ni,...i->...N", J_norm2f, gravity.vec3d).unsqueeze(-1) # (..., N, 1)
|
| 272 |
+
J.append(J_f)
|
| 273 |
+
|
| 274 |
+
######################
|
| 275 |
+
##### K1 Jacobian ####
|
| 276 |
+
######################
|
| 277 |
+
|
| 278 |
+
if hasattr(camera, "dist"):
|
| 279 |
+
J_w_to_img2k1 = camera.J_image2world(xy, "dist") # (..., N, 2)
|
| 280 |
+
# (..., N, 2)
|
| 281 |
+
J_norm2k1 = torch.einsum("...Nij,...Nj->...Ni", J_norm2w_to_img, J_w_to_img2k1)
|
| 282 |
+
# (..., N, 1)
|
| 283 |
+
J_k1 = torch.einsum("...Ni,...i->...N", J_norm2k1, gravity.vec3d).unsqueeze(-1)
|
| 284 |
+
J.append(J_k1)
|
| 285 |
+
|
| 286 |
+
n_params = sum(j.shape[-1] for j in J)
|
| 287 |
+
return torch.cat(J, axis=-1).reshape(camera.shape[0], h, w, 1, n_params)
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def get_perspective_field(
|
| 291 |
+
camera: BaseCamera,
|
| 292 |
+
gravity: Gravity,
|
| 293 |
+
use_up: bool = True,
|
| 294 |
+
use_latitude: bool = True,
|
| 295 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 296 |
+
"""Get the perspective field from the camera parameters.
|
| 297 |
+
|
| 298 |
+
Args:
|
| 299 |
+
camera (Camera): Camera parameters.
|
| 300 |
+
gravity (Gravity): Gravity vector.
|
| 301 |
+
use_up (bool, optional): Whether to include the up vector field. Defaults to True.
|
| 302 |
+
use_latitude (bool, optional): Whether to include the latitude field. Defaults to True.
|
| 303 |
+
|
| 304 |
+
Returns:
|
| 305 |
+
Tuple[torch.Tensor, torch.Tensor]: Up and latitude fields as tensors of shape
|
| 306 |
+
(..., 2, h, w) and (..., 1, h, w).
|
| 307 |
+
"""
|
| 308 |
+
assert use_up or use_latitude, "At least one of use_up or use_latitude must be True."
|
| 309 |
+
|
| 310 |
+
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
|
| 311 |
+
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
|
| 312 |
+
|
| 313 |
+
w, h = camera.size[0].unbind(-1)
|
| 314 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 315 |
+
|
| 316 |
+
if use_up:
|
| 317 |
+
permute = (0, 3, 1, 2)
|
| 318 |
+
# (..., 2, h, w)
|
| 319 |
+
up = get_up_field(camera, gravity).permute(permute)
|
| 320 |
+
else:
|
| 321 |
+
shape = (camera.shape[0], 2, h, w)
|
| 322 |
+
up = camera.new_zeros(shape)
|
| 323 |
+
|
| 324 |
+
if use_latitude:
|
| 325 |
+
permute = (0, 3, 1, 2)
|
| 326 |
+
# (..., 1, h, w)
|
| 327 |
+
lat = get_latitude_field(camera, gravity).permute(permute)
|
| 328 |
+
else:
|
| 329 |
+
shape = (camera.shape[0], 1, h, w)
|
| 330 |
+
lat = camera.new_zeros(shape)
|
| 331 |
+
|
| 332 |
+
torch.cuda.empty_cache()
|
| 333 |
+
|
| 334 |
+
return up, lat
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
def J_perspective_field(
|
| 338 |
+
camera: BaseCamera,
|
| 339 |
+
gravity: Gravity,
|
| 340 |
+
use_up: bool = True,
|
| 341 |
+
use_latitude: bool = True,
|
| 342 |
+
spherical: bool = False,
|
| 343 |
+
log_focal: bool = False,
|
| 344 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 345 |
+
"""Get the jacobian of the perspective field.
|
| 346 |
+
|
| 347 |
+
Args:
|
| 348 |
+
camera (Camera): Camera parameters.
|
| 349 |
+
gravity (Gravity): Gravity vector.
|
| 350 |
+
use_up (bool, optional): Whether to include the up vector field. Defaults to True.
|
| 351 |
+
use_latitude (bool, optional): Whether to include the latitude field. Defaults to True.
|
| 352 |
+
spherical (bool, optional): Whether to use spherical coordinates. Defaults to False.
|
| 353 |
+
log_focal (bool, optional): Whether to use log-focal length. Defaults to False.
|
| 354 |
+
|
| 355 |
+
Returns:
|
| 356 |
+
Tuple[torch.Tensor, torch.Tensor]: Up and latitude jacobians as tensors of shape
|
| 357 |
+
(..., h, w, 2, 4) and (..., h, w, 1, 4).
|
| 358 |
+
"""
|
| 359 |
+
assert use_up or use_latitude, "At least one of use_up or use_latitude must be True."
|
| 360 |
+
|
| 361 |
+
camera = camera.unsqueeze(0) if len(camera.shape) == 0 else camera
|
| 362 |
+
gravity = gravity.unsqueeze(0) if len(gravity.shape) == 0 else gravity
|
| 363 |
+
|
| 364 |
+
w, h = camera.size[0].unbind(-1)
|
| 365 |
+
h, w = h.round().to(int), w.round().to(int)
|
| 366 |
+
|
| 367 |
+
if use_up:
|
| 368 |
+
J_up = J_up_field(camera, gravity, spherical, log_focal) # (..., h, w, 2, 4)
|
| 369 |
+
else:
|
| 370 |
+
shape = (camera.shape[0], h, w, 2, 4)
|
| 371 |
+
J_up = camera.new_zeros(shape)
|
| 372 |
+
|
| 373 |
+
if use_latitude:
|
| 374 |
+
J_lat = J_latitude_field(camera, gravity, spherical, log_focal) # (..., h, w, 1, 4)
|
| 375 |
+
else:
|
| 376 |
+
shape = (camera.shape[0], h, w, 1, 4)
|
| 377 |
+
J_lat = camera.new_zeros(shape)
|
| 378 |
+
|
| 379 |
+
return J_up, J_lat
|
scripts/camera/utils/conversions.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Utility functions for conversions between different representations."""
|
| 2 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 3 |
+
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def skew_symmetric(v: torch.Tensor) -> torch.Tensor:
|
| 10 |
+
"""Create a skew-symmetric matrix from a (batched) vector of size (..., 3).
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
(torch.Tensor): Vector of size (..., 3).
|
| 14 |
+
|
| 15 |
+
Returns:
|
| 16 |
+
(torch.Tensor): Skew-symmetric matrix of size (..., 3, 3).
|
| 17 |
+
"""
|
| 18 |
+
z = torch.zeros_like(v[..., 0])
|
| 19 |
+
return torch.stack(
|
| 20 |
+
[
|
| 21 |
+
z,
|
| 22 |
+
-v[..., 2],
|
| 23 |
+
v[..., 1],
|
| 24 |
+
v[..., 2],
|
| 25 |
+
z,
|
| 26 |
+
-v[..., 0],
|
| 27 |
+
-v[..., 1],
|
| 28 |
+
v[..., 0],
|
| 29 |
+
z,
|
| 30 |
+
],
|
| 31 |
+
dim=-1,
|
| 32 |
+
).reshape(v.shape[:-1] + (3, 3))
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def rad2rotmat(
|
| 36 |
+
roll: torch.Tensor, pitch: torch.Tensor, yaw: Optional[torch.Tensor] = None
|
| 37 |
+
) -> torch.Tensor:
|
| 38 |
+
"""Convert (batched) roll, pitch, yaw angles (in radians) to rotation matrix.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
roll (torch.Tensor): Roll angle in radians.
|
| 42 |
+
pitch (torch.Tensor): Pitch angle in radians.
|
| 43 |
+
yaw (torch.Tensor, optional): Yaw angle in radians. Defaults to None.
|
| 44 |
+
|
| 45 |
+
Returns:
|
| 46 |
+
torch.Tensor: Rotation matrix of shape (..., 3, 3).
|
| 47 |
+
"""
|
| 48 |
+
if yaw is None:
|
| 49 |
+
yaw = roll.new_zeros(roll.shape)
|
| 50 |
+
|
| 51 |
+
Rx = pitch.new_zeros(pitch.shape + (3, 3))
|
| 52 |
+
Rx[..., 0, 0] = 1
|
| 53 |
+
Rx[..., 1, 1] = torch.cos(pitch)
|
| 54 |
+
Rx[..., 1, 2] = torch.sin(pitch)
|
| 55 |
+
Rx[..., 2, 1] = -torch.sin(pitch)
|
| 56 |
+
Rx[..., 2, 2] = torch.cos(pitch)
|
| 57 |
+
|
| 58 |
+
Ry = yaw.new_zeros(yaw.shape + (3, 3))
|
| 59 |
+
Ry[..., 0, 0] = torch.cos(yaw)
|
| 60 |
+
Ry[..., 0, 2] = -torch.sin(yaw)
|
| 61 |
+
Ry[..., 1, 1] = 1
|
| 62 |
+
Ry[..., 2, 0] = torch.sin(yaw)
|
| 63 |
+
Ry[..., 2, 2] = torch.cos(yaw)
|
| 64 |
+
|
| 65 |
+
Rz = roll.new_zeros(roll.shape + (3, 3))
|
| 66 |
+
Rz[..., 0, 0] = torch.cos(roll)
|
| 67 |
+
Rz[..., 0, 1] = torch.sin(roll)
|
| 68 |
+
Rz[..., 1, 0] = -torch.sin(roll)
|
| 69 |
+
Rz[..., 1, 1] = torch.cos(roll)
|
| 70 |
+
Rz[..., 2, 2] = 1
|
| 71 |
+
|
| 72 |
+
return Rz @ Rx @ Ry
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def fov2focal(fov: torch.Tensor, size: torch.Tensor) -> torch.Tensor:
|
| 76 |
+
"""Compute focal length from (vertical/horizontal) field of view.
|
| 77 |
+
|
| 78 |
+
Args:
|
| 79 |
+
fov (torch.Tensor): Field of view in radians.
|
| 80 |
+
size (torch.Tensor): Image height / width in pixels.
|
| 81 |
+
|
| 82 |
+
Returns:
|
| 83 |
+
torch.Tensor: Focal length in pixels.
|
| 84 |
+
"""
|
| 85 |
+
return size / 2 / torch.tan(fov / 2)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def focal2fov(focal: torch.Tensor, size: torch.Tensor) -> torch.Tensor:
|
| 89 |
+
"""Compute (vertical/horizontal) field of view from focal length.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
focal (torch.Tensor): Focal length in pixels.
|
| 93 |
+
size (torch.Tensor): Image height / width in pixels.
|
| 94 |
+
|
| 95 |
+
Returns:
|
| 96 |
+
torch.Tensor: Field of view in radians.
|
| 97 |
+
"""
|
| 98 |
+
return 2 * torch.arctan(size / (2 * focal))
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def pitch2rho(pitch: torch.Tensor, f: torch.Tensor, h: torch.Tensor) -> torch.Tensor:
|
| 102 |
+
"""Compute the distance from principal point to the horizon.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
pitch (torch.Tensor): Pitch angle in radians.
|
| 106 |
+
f (torch.Tensor): Focal length in pixels.
|
| 107 |
+
h (torch.Tensor): Image height in pixels.
|
| 108 |
+
|
| 109 |
+
Returns:
|
| 110 |
+
torch.Tensor: Relative distance to the horizon.
|
| 111 |
+
"""
|
| 112 |
+
return torch.tan(pitch) * f / h
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def rho2pitch(rho: torch.Tensor, f: torch.Tensor, h: torch.Tensor) -> torch.Tensor:
|
| 116 |
+
"""Compute the pitch angle from the distance to the horizon.
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
rho (torch.Tensor): Relative distance to the horizon.
|
| 120 |
+
f (torch.Tensor): Focal length in pixels.
|
| 121 |
+
h (torch.Tensor): Image height in pixels.
|
| 122 |
+
|
| 123 |
+
Returns:
|
| 124 |
+
torch.Tensor: Pitch angle in radians.
|
| 125 |
+
"""
|
| 126 |
+
return torch.atan(rho * h / f)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def rad2deg(rad: torch.Tensor) -> torch.Tensor:
|
| 130 |
+
"""Convert radians to degrees.
|
| 131 |
+
|
| 132 |
+
Args:
|
| 133 |
+
rad (torch.Tensor): Angle in radians.
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
torch.Tensor: Angle in degrees.
|
| 137 |
+
"""
|
| 138 |
+
return rad / torch.pi * 180
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def deg2rad(deg: torch.Tensor) -> torch.Tensor:
|
| 142 |
+
"""Convert degrees to radians.
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
deg (torch.Tensor): Angle in degrees.
|
| 146 |
+
|
| 147 |
+
Returns:
|
| 148 |
+
torch.Tensor: Angle in radians.
|
| 149 |
+
"""
|
| 150 |
+
return deg / 180 * torch.pi
|
scripts/camera/utils/image.py
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Image preprocessing utilities."""
|
| 2 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 3 |
+
|
| 4 |
+
import collections.abc as collections
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import Optional, Tuple
|
| 7 |
+
|
| 8 |
+
import cv2
|
| 9 |
+
import kornia
|
| 10 |
+
import numpy as np
|
| 11 |
+
import torch
|
| 12 |
+
import torchvision
|
| 13 |
+
from omegaconf import OmegaConf
|
| 14 |
+
from PIL import Image
|
| 15 |
+
|
| 16 |
+
from tensor import fit_features_to_multiple
|
| 17 |
+
|
| 18 |
+
# mypy: ignore-errors
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class ImagePreprocessor:
|
| 22 |
+
"""Preprocess images for calibration."""
|
| 23 |
+
|
| 24 |
+
default_conf = {
|
| 25 |
+
"resize": None, # target edge length (320), None for no resizing
|
| 26 |
+
"edge_divisible_by": None,
|
| 27 |
+
"side": "short",
|
| 28 |
+
"interpolation": "bilinear",
|
| 29 |
+
"align_corners": None,
|
| 30 |
+
"antialias": True,
|
| 31 |
+
"square_crop": False,
|
| 32 |
+
"add_padding_mask": False,
|
| 33 |
+
"resize_backend": "kornia", # torchvision, kornia
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
def __init__(self, conf) -> None:
|
| 37 |
+
"""Initialize the image preprocessor."""
|
| 38 |
+
super().__init__()
|
| 39 |
+
default_conf = OmegaConf.create(self.default_conf)
|
| 40 |
+
OmegaConf.set_struct(default_conf, True)
|
| 41 |
+
self.conf = OmegaConf.merge(default_conf, conf)
|
| 42 |
+
|
| 43 |
+
def __call__(self, img: torch.Tensor, interpolation: Optional[str] = None) -> dict:
|
| 44 |
+
"""Resize and preprocess an image, return image and resize scale."""
|
| 45 |
+
h, w = img.shape[-2:]
|
| 46 |
+
size = h, w
|
| 47 |
+
|
| 48 |
+
if self.conf.square_crop:
|
| 49 |
+
min_size = min(h, w)
|
| 50 |
+
offset = (h - min_size) // 2, (w - min_size) // 2
|
| 51 |
+
img = img[:, offset[0] : offset[0] + min_size, offset[1] : offset[1] + min_size]
|
| 52 |
+
size = img.shape[-2:]
|
| 53 |
+
|
| 54 |
+
if self.conf.resize is not None:
|
| 55 |
+
if interpolation is None:
|
| 56 |
+
interpolation = self.conf.interpolation
|
| 57 |
+
size = self.get_new_image_size(h, w)
|
| 58 |
+
img = self.resize(img, size, interpolation)
|
| 59 |
+
|
| 60 |
+
scale = torch.Tensor([img.shape[-1] / w, img.shape[-2] / h]).to(img)
|
| 61 |
+
T = np.diag([scale[0].cpu(), scale[1].cpu(), 1])
|
| 62 |
+
|
| 63 |
+
data = {
|
| 64 |
+
"scales": scale,
|
| 65 |
+
"image_size": np.array(size[::-1]),
|
| 66 |
+
"transform": T,
|
| 67 |
+
"original_image_size": np.array([w, h]),
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
if self.conf.edge_divisible_by is not None:
|
| 71 |
+
# crop to make the edge divisible by a number
|
| 72 |
+
w_, h_ = img.shape[-1], img.shape[-2]
|
| 73 |
+
img, _ = fit_features_to_multiple(img, self.conf.edge_divisible_by, crop=True)
|
| 74 |
+
crop_pad = torch.Tensor([img.shape[-1] - w_, img.shape[-2] - h_]).to(img)
|
| 75 |
+
data["crop_pad"] = crop_pad
|
| 76 |
+
data["image_size"] = np.array([img.shape[-1], img.shape[-2]])
|
| 77 |
+
|
| 78 |
+
data["image"] = img
|
| 79 |
+
return data
|
| 80 |
+
|
| 81 |
+
def resize(self, img: torch.Tensor, size: Tuple[int, int], interpolation: str) -> torch.Tensor:
|
| 82 |
+
"""Resize an image using the specified backend."""
|
| 83 |
+
if self.conf.resize_backend == "kornia":
|
| 84 |
+
return kornia.geometry.transform.resize(
|
| 85 |
+
img,
|
| 86 |
+
size,
|
| 87 |
+
side=self.conf.side,
|
| 88 |
+
antialias=self.conf.antialias,
|
| 89 |
+
align_corners=self.conf.align_corners,
|
| 90 |
+
interpolation=interpolation,
|
| 91 |
+
)
|
| 92 |
+
elif self.conf.resize_backend == "PIL":
|
| 93 |
+
device = img.device
|
| 94 |
+
imgs = []
|
| 95 |
+
has_batch_dim = img.ndim == 4
|
| 96 |
+
img = img if has_batch_dim else img[None]
|
| 97 |
+
for im in img:
|
| 98 |
+
im = (im.permute(1, 2, 0) * 255).cpu().numpy().astype(np.uint8)
|
| 99 |
+
im = Image.fromarray(im).resize(size[::-1], Image.BILINEAR)
|
| 100 |
+
im = torch.tensor(np.array(im)).permute(2, 0, 1) / 255.0
|
| 101 |
+
imgs.append(im.to(device))
|
| 102 |
+
imgs = torch.stack(imgs)
|
| 103 |
+
return imgs if has_batch_dim else imgs[0]
|
| 104 |
+
|
| 105 |
+
elif self.conf.resize_backend == "torchvision":
|
| 106 |
+
return torchvision.transforms.Resize(size, antialias=self.conf.antialias)(img)
|
| 107 |
+
else:
|
| 108 |
+
raise ValueError(f"{self.conf.resize_backend} not implemented.")
|
| 109 |
+
|
| 110 |
+
def load_image(self, image_path: Path) -> dict:
|
| 111 |
+
"""Load an image from a path and preprocess it."""
|
| 112 |
+
return self(load_image(image_path))
|
| 113 |
+
|
| 114 |
+
def get_new_image_size(self, h: int, w: int) -> Tuple[int, int]:
|
| 115 |
+
"""Get the new image size after resizing."""
|
| 116 |
+
side = self.conf.side
|
| 117 |
+
if isinstance(self.conf.resize, collections.Iterable):
|
| 118 |
+
assert len(self.conf.resize) == 2
|
| 119 |
+
return tuple(self.conf.resize)
|
| 120 |
+
side_size = self.conf.resize
|
| 121 |
+
aspect_ratio = w / h
|
| 122 |
+
if side not in ("short", "long", "vert", "horz"):
|
| 123 |
+
raise ValueError(
|
| 124 |
+
f"side can be one of 'short', 'long', 'vert', and 'horz'. Got '{side}'"
|
| 125 |
+
)
|
| 126 |
+
return (
|
| 127 |
+
(side_size, int(side_size * aspect_ratio))
|
| 128 |
+
if side == "vert" or (side != "horz" and (side == "short") ^ (aspect_ratio < 1.0))
|
| 129 |
+
else (int(side_size / aspect_ratio), side_size)
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def numpy_image_to_torch(image: np.ndarray) -> torch.Tensor:
|
| 134 |
+
"""Normalize the image tensor and reorder the dimensions."""
|
| 135 |
+
if image.ndim == 3:
|
| 136 |
+
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
|
| 137 |
+
elif image.ndim == 2:
|
| 138 |
+
image = image[None] # add channel axis
|
| 139 |
+
else:
|
| 140 |
+
raise ValueError(f"Not an image: {image.shape}")
|
| 141 |
+
return torch.tensor(image / 255.0, dtype=torch.float)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def torch_image_to_numpy(image: torch.Tensor) -> np.ndarray:
|
| 145 |
+
"""Normalize and reorder the dimensions of an image tensor."""
|
| 146 |
+
if image.ndim == 3:
|
| 147 |
+
image = image.permute((1, 2, 0)) # CxHxW to HxWxC
|
| 148 |
+
elif image.ndim == 2:
|
| 149 |
+
image = image[None] # add channel axis
|
| 150 |
+
else:
|
| 151 |
+
raise ValueError(f"Not an image: {image.shape}")
|
| 152 |
+
return (image.cpu().detach().numpy() * 255).astype(np.uint8)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def read_image(path: Path, grayscale: bool = False) -> np.ndarray:
|
| 156 |
+
"""Read an image from path as RGB or grayscale."""
|
| 157 |
+
if not Path(path).exists():
|
| 158 |
+
raise FileNotFoundError(f"No image at path {path}.")
|
| 159 |
+
mode = cv2.IMREAD_GRAYSCALE if grayscale else cv2.IMREAD_COLOR
|
| 160 |
+
image = cv2.imread(str(path), mode)
|
| 161 |
+
if image is None:
|
| 162 |
+
raise IOError(f"Could not read image at {path}.")
|
| 163 |
+
if not grayscale:
|
| 164 |
+
image = image[..., ::-1]
|
| 165 |
+
return image
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def write_image(img: torch.Tensor, path: Path):
|
| 169 |
+
"""Write an image tensor to a file."""
|
| 170 |
+
img = torch_image_to_numpy(img) if isinstance(img, torch.Tensor) else img
|
| 171 |
+
cv2.imwrite(str(path), img[..., ::-1])
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def load_image(path: Path, grayscale: bool = False, return_tensor: bool = True) -> torch.Tensor:
|
| 175 |
+
"""Load an image from a path and return as a tensor."""
|
| 176 |
+
image = read_image(path, grayscale=grayscale)
|
| 177 |
+
if return_tensor:
|
| 178 |
+
return numpy_image_to_torch(image)
|
| 179 |
+
|
| 180 |
+
assert image.ndim in [2, 3], f"Not an image: {image.shape}"
|
| 181 |
+
image = image[None] if image.ndim == 2 else image
|
| 182 |
+
return torch.tensor(image.copy(), dtype=torch.uint8)
|
scripts/camera/utils/tensor.py
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 2 |
+
|
| 3 |
+
import collections.abc as collections
|
| 4 |
+
import functools
|
| 5 |
+
import inspect
|
| 6 |
+
from typing import Callable, List, Tuple
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
# flake8: noqa
|
| 12 |
+
# mypy: ignore-errors
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
string_classes = (str, bytes)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def autocast(func: Callable) -> Callable:
|
| 19 |
+
"""Cast the inputs of a TensorWrapper method to PyTorch tensors if they are numpy arrays.
|
| 20 |
+
|
| 21 |
+
Use the device and dtype of the wrapper.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
func (Callable): Method of a TensorWrapper class.
|
| 25 |
+
|
| 26 |
+
Returns:
|
| 27 |
+
Callable: Wrapped method.
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
@functools.wraps(func)
|
| 31 |
+
def wrap(self, *args):
|
| 32 |
+
device = torch.device("cpu")
|
| 33 |
+
dtype = None
|
| 34 |
+
if isinstance(self, TensorWrapper):
|
| 35 |
+
if self._data is not None:
|
| 36 |
+
device = self.device
|
| 37 |
+
dtype = self.dtype
|
| 38 |
+
elif not inspect.isclass(self) or not issubclass(self, TensorWrapper):
|
| 39 |
+
raise ValueError(self)
|
| 40 |
+
|
| 41 |
+
cast_args = []
|
| 42 |
+
for arg in args:
|
| 43 |
+
if isinstance(arg, np.ndarray):
|
| 44 |
+
arg = torch.from_numpy(arg)
|
| 45 |
+
arg = arg.to(device=device, dtype=dtype)
|
| 46 |
+
cast_args.append(arg)
|
| 47 |
+
return func(self, *cast_args)
|
| 48 |
+
|
| 49 |
+
return wrap
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class TensorWrapper:
|
| 53 |
+
"""Wrapper for PyTorch tensors."""
|
| 54 |
+
|
| 55 |
+
_data = None
|
| 56 |
+
|
| 57 |
+
@autocast
|
| 58 |
+
def __init__(self, data: torch.Tensor):
|
| 59 |
+
"""Wrapper for PyTorch tensors."""
|
| 60 |
+
self._data = data
|
| 61 |
+
|
| 62 |
+
@property
|
| 63 |
+
def shape(self) -> torch.Size:
|
| 64 |
+
"""Shape of the underlying tensor."""
|
| 65 |
+
return self._data.shape[:-1]
|
| 66 |
+
|
| 67 |
+
@property
|
| 68 |
+
def device(self) -> torch.device:
|
| 69 |
+
"""Get the device of the underlying tensor."""
|
| 70 |
+
return self._data.device
|
| 71 |
+
|
| 72 |
+
@property
|
| 73 |
+
def dtype(self) -> torch.dtype:
|
| 74 |
+
"""Get the dtype of the underlying tensor."""
|
| 75 |
+
return self._data.dtype
|
| 76 |
+
|
| 77 |
+
def __getitem__(self, index) -> torch.Tensor:
|
| 78 |
+
"""Get the underlying tensor."""
|
| 79 |
+
return self.__class__(self._data[index])
|
| 80 |
+
|
| 81 |
+
def __setitem__(self, index, item):
|
| 82 |
+
"""Set the underlying tensor."""
|
| 83 |
+
self._data[index] = item.data
|
| 84 |
+
|
| 85 |
+
def to(self, *args, **kwargs):
|
| 86 |
+
"""Move the underlying tensor to a new device."""
|
| 87 |
+
return self.__class__(self._data.to(*args, **kwargs))
|
| 88 |
+
|
| 89 |
+
def cpu(self):
|
| 90 |
+
"""Move the underlying tensor to the CPU."""
|
| 91 |
+
return self.__class__(self._data.cpu())
|
| 92 |
+
|
| 93 |
+
def cuda(self):
|
| 94 |
+
"""Move the underlying tensor to the GPU."""
|
| 95 |
+
return self.__class__(self._data.cuda())
|
| 96 |
+
|
| 97 |
+
def pin_memory(self):
|
| 98 |
+
"""Pin the underlying tensor to memory."""
|
| 99 |
+
return self.__class__(self._data.pin_memory())
|
| 100 |
+
|
| 101 |
+
def float(self):
|
| 102 |
+
"""Cast the underlying tensor to float."""
|
| 103 |
+
return self.__class__(self._data.float())
|
| 104 |
+
|
| 105 |
+
def double(self):
|
| 106 |
+
"""Cast the underlying tensor to double."""
|
| 107 |
+
return self.__class__(self._data.double())
|
| 108 |
+
|
| 109 |
+
def detach(self):
|
| 110 |
+
"""Detach the underlying tensor."""
|
| 111 |
+
return self.__class__(self._data.detach())
|
| 112 |
+
|
| 113 |
+
def numpy(self):
|
| 114 |
+
"""Convert the underlying tensor to a numpy array."""
|
| 115 |
+
return self._data.detach().cpu().numpy()
|
| 116 |
+
|
| 117 |
+
def new_tensor(self, *args, **kwargs):
|
| 118 |
+
"""Create a new tensor of the same type and device."""
|
| 119 |
+
return self._data.new_tensor(*args, **kwargs)
|
| 120 |
+
|
| 121 |
+
def new_zeros(self, *args, **kwargs):
|
| 122 |
+
"""Create a new tensor of the same type and device."""
|
| 123 |
+
return self._data.new_zeros(*args, **kwargs)
|
| 124 |
+
|
| 125 |
+
def new_ones(self, *args, **kwargs):
|
| 126 |
+
"""Create a new tensor of the same type and device."""
|
| 127 |
+
return self._data.new_ones(*args, **kwargs)
|
| 128 |
+
|
| 129 |
+
def new_full(self, *args, **kwargs):
|
| 130 |
+
"""Create a new tensor of the same type and device."""
|
| 131 |
+
return self._data.new_full(*args, **kwargs)
|
| 132 |
+
|
| 133 |
+
def new_empty(self, *args, **kwargs):
|
| 134 |
+
"""Create a new tensor of the same type and device."""
|
| 135 |
+
return self._data.new_empty(*args, **kwargs)
|
| 136 |
+
|
| 137 |
+
def unsqueeze(self, *args, **kwargs):
|
| 138 |
+
"""Create a new tensor of the same type and device."""
|
| 139 |
+
return self.__class__(self._data.unsqueeze(*args, **kwargs))
|
| 140 |
+
|
| 141 |
+
def squeeze(self, *args, **kwargs):
|
| 142 |
+
"""Create a new tensor of the same type and device."""
|
| 143 |
+
return self.__class__(self._data.squeeze(*args, **kwargs))
|
| 144 |
+
|
| 145 |
+
@classmethod
|
| 146 |
+
def stack(cls, objects: List, dim=0, *, out=None):
|
| 147 |
+
"""Stack a list of objects with the same type and shape."""
|
| 148 |
+
data = torch.stack([obj._data for obj in objects], dim=dim, out=out)
|
| 149 |
+
return cls(data)
|
| 150 |
+
|
| 151 |
+
@classmethod
|
| 152 |
+
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
| 153 |
+
"""Support torch functions."""
|
| 154 |
+
if kwargs is None:
|
| 155 |
+
kwargs = {}
|
| 156 |
+
return cls.stack(*args, **kwargs) if func is torch.stack else NotImplemented
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def map_tensor(input_, func):
|
| 160 |
+
if isinstance(input_, string_classes):
|
| 161 |
+
return input_
|
| 162 |
+
elif isinstance(input_, collections.Mapping):
|
| 163 |
+
return {k: map_tensor(sample, func) for k, sample in input_.items()}
|
| 164 |
+
elif isinstance(input_, collections.Sequence):
|
| 165 |
+
return [map_tensor(sample, func) for sample in input_]
|
| 166 |
+
elif input_ is None:
|
| 167 |
+
return None
|
| 168 |
+
else:
|
| 169 |
+
return func(input_)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def batch_to_numpy(batch):
|
| 173 |
+
return map_tensor(batch, lambda tensor: tensor.cpu().numpy())
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def batch_to_device(batch, device, non_blocking=True, detach=False):
|
| 177 |
+
def _func(tensor):
|
| 178 |
+
t = tensor.to(device=device, non_blocking=non_blocking, dtype=torch.float32)
|
| 179 |
+
return t.detach() if detach else t
|
| 180 |
+
|
| 181 |
+
return map_tensor(batch, _func)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def remove_batch_dim(data: dict) -> dict:
|
| 185 |
+
"""Remove batch dimension from elements in data"""
|
| 186 |
+
return {
|
| 187 |
+
k: v[0] if isinstance(v, (torch.Tensor, np.ndarray, list)) else v for k, v in data.items()
|
| 188 |
+
}
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def add_batch_dim(data: dict) -> dict:
|
| 192 |
+
"""Add batch dimension to elements in data"""
|
| 193 |
+
return {
|
| 194 |
+
k: v[None] if isinstance(v, (torch.Tensor, np.ndarray, list)) else v
|
| 195 |
+
for k, v in data.items()
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def fit_to_multiple(x: torch.Tensor, multiple: int, mode: str = "center", crop: bool = False):
|
| 200 |
+
"""Get padding to make the image size a multiple of the given number.
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
x (torch.Tensor): Input tensor.
|
| 204 |
+
multiple (int, optional): Multiple.
|
| 205 |
+
crop (bool, optional): Whether to crop or pad. Defaults to False.
|
| 206 |
+
|
| 207 |
+
Returns:
|
| 208 |
+
torch.Tensor: Padding.
|
| 209 |
+
"""
|
| 210 |
+
h, w = x.shape[-2:]
|
| 211 |
+
|
| 212 |
+
if crop:
|
| 213 |
+
pad_w = (w // multiple) * multiple - w
|
| 214 |
+
pad_h = (h // multiple) * multiple - h
|
| 215 |
+
else:
|
| 216 |
+
pad_w = (multiple - w % multiple) % multiple
|
| 217 |
+
pad_h = (multiple - h % multiple) % multiple
|
| 218 |
+
|
| 219 |
+
if mode == "center":
|
| 220 |
+
pad_l = pad_w // 2
|
| 221 |
+
pad_r = pad_w - pad_l
|
| 222 |
+
pad_t = pad_h // 2
|
| 223 |
+
pad_b = pad_h - pad_t
|
| 224 |
+
elif mode == "left":
|
| 225 |
+
pad_l = 0
|
| 226 |
+
pad_r = pad_w
|
| 227 |
+
pad_t = 0
|
| 228 |
+
pad_b = pad_h
|
| 229 |
+
else:
|
| 230 |
+
raise ValueError(f"Unknown mode {mode}")
|
| 231 |
+
|
| 232 |
+
return (pad_l, pad_r, pad_t, pad_b)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def fit_features_to_multiple(
|
| 236 |
+
features: torch.Tensor, multiple: int = 32, crop: bool = False
|
| 237 |
+
) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
| 238 |
+
"""Pad image to a multiple of the given number.
|
| 239 |
+
|
| 240 |
+
Args:
|
| 241 |
+
features (torch.Tensor): Input features.
|
| 242 |
+
multiple (int, optional): Multiple. Defaults to 32.
|
| 243 |
+
crop (bool, optional): Whether to crop or pad. Defaults to False.
|
| 244 |
+
|
| 245 |
+
Returns:
|
| 246 |
+
Tuple[torch.Tensor, Tuple[int, int]]: Padded features and padding.
|
| 247 |
+
"""
|
| 248 |
+
pad = fit_to_multiple(features, multiple, crop=crop)
|
| 249 |
+
return torch.nn.functional.pad(features, pad, mode="reflect"), pad
|
scripts/camera/utils/text.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from typing import Tuple
|
| 3 |
+
|
| 4 |
+
def parse_camera_params(
|
| 5 |
+
text: str,
|
| 6 |
+
mode: str = "base"
|
| 7 |
+
) -> Tuple[float, float, float]:
|
| 8 |
+
"""
|
| 9 |
+
Extract roll, pitch, fov from text using one of two patterns:
|
| 10 |
+
- 'base' mode: ... are: roll, pitch, fov.
|
| 11 |
+
- 'cot' mode: <answer>roll, pitch, fov</answer>
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
text: The full text to search.
|
| 15 |
+
mode: One of {"base", "cot"}.
|
| 16 |
+
|
| 17 |
+
Returns:
|
| 18 |
+
roll, pitch, fov as floats.
|
| 19 |
+
|
| 20 |
+
Raises:
|
| 21 |
+
ValueError if the chosen pattern is not found, or mode is invalid.
|
| 22 |
+
"""
|
| 23 |
+
# compile both regexes
|
| 24 |
+
pat_base = re.compile(
|
| 25 |
+
r"are:\s*([+-]?\d+(?:\.\d+)?)\s*,\s*"
|
| 26 |
+
r"([+-]?\d+(?:\.\d+)?)\s*,\s*"
|
| 27 |
+
r"([+-]?\d+(?:\.\d+)?)[\.\s]*$"
|
| 28 |
+
)
|
| 29 |
+
pat_cot = re.compile(
|
| 30 |
+
r"<answer>\s*([+-]?\d+(?:\.\d+)?)\s*,\s*"
|
| 31 |
+
r"([+-]?\d+(?:\.\d+)?)\s*,\s*"
|
| 32 |
+
r"([+-]?\d+(?:\.\d+)?)\s*</answer>"
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
m = None
|
| 36 |
+
if mode == "base":
|
| 37 |
+
m = pat_base.search(text)
|
| 38 |
+
elif mode == "cot":
|
| 39 |
+
m = pat_cot.search(text)
|
| 40 |
+
else:
|
| 41 |
+
raise ValueError(f"Invalid mode: {mode!r}. Choose 'base', 'cot', or 'auto'.")
|
| 42 |
+
|
| 43 |
+
if not m:
|
| 44 |
+
raise ValueError(f"No camera parameters found using mode '{mode}'.")
|
| 45 |
+
|
| 46 |
+
roll_s, pitch_s, fov_s = m.group(1), m.group(2), m.group(3)
|
| 47 |
+
return float(roll_s), float(pitch_s), float(fov_s)
|
scripts/camera/visualization/visualize_batch.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Visualization of predicted and ground truth for a single batch."""
|
| 2 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 3 |
+
|
| 4 |
+
from typing import Any, Dict
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
from scripts.camera.geometry.perspective_fields import get_latitude_field
|
| 10 |
+
from scripts.camera.utils.conversions import rad2deg
|
| 11 |
+
from scripts.camera.utils.tensor import batch_to_device
|
| 12 |
+
from scripts.camera.visualization.viz2d import (
|
| 13 |
+
plot_confidences,
|
| 14 |
+
plot_heatmaps,
|
| 15 |
+
plot_image_grid,
|
| 16 |
+
plot_latitudes,
|
| 17 |
+
plot_vector_fields,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def make_up_figure(
|
| 22 |
+
pred: Dict[str, torch.Tensor], data: Dict[str, torch.Tensor], n_pairs: int = 2
|
| 23 |
+
) -> Dict[str, Any]:
|
| 24 |
+
"""Get predicted and ground truth up fields and errors.
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
pred (Dict[str, torch.Tensor]): Predicted up field.
|
| 28 |
+
data (Dict[str, torch.Tensor]): Ground truth up field.
|
| 29 |
+
n_pairs (int): Number of pairs to visualize.
|
| 30 |
+
|
| 31 |
+
Returns:
|
| 32 |
+
Dict[str, Any]: Dictionary with figure.
|
| 33 |
+
"""
|
| 34 |
+
pred = batch_to_device(pred, "cpu", detach=True)
|
| 35 |
+
data = batch_to_device(data, "cpu", detach=True)
|
| 36 |
+
|
| 37 |
+
n_pairs = min(n_pairs, len(data["image"]))
|
| 38 |
+
|
| 39 |
+
if "up_field" not in pred.keys():
|
| 40 |
+
return {}
|
| 41 |
+
|
| 42 |
+
up_fields = []
|
| 43 |
+
for i in range(n_pairs):
|
| 44 |
+
row = [data["up_field"][i]]
|
| 45 |
+
titles = ["Up GT"]
|
| 46 |
+
|
| 47 |
+
if "up_confidence" in pred.keys():
|
| 48 |
+
row += [pred["up_confidence"][i]]
|
| 49 |
+
titles += ["Up Confidence"]
|
| 50 |
+
|
| 51 |
+
row = [r.float().numpy() if isinstance(r, torch.Tensor) else r for r in row]
|
| 52 |
+
up_fields.append(row)
|
| 53 |
+
|
| 54 |
+
# create figure
|
| 55 |
+
N, M = len(up_fields), len(up_fields[0]) + 1
|
| 56 |
+
imgs = [[data["image"][i].permute(1, 2, 0).cpu().clip(0, 1)] * M for i in range(n_pairs)]
|
| 57 |
+
fig, ax = plot_image_grid(imgs, return_fig=True, set_lim=True)
|
| 58 |
+
ax = np.array(ax)
|
| 59 |
+
|
| 60 |
+
for i in range(n_pairs):
|
| 61 |
+
plot_vector_fields([up_fields[i][0]], axes=ax[i, [1]])
|
| 62 |
+
#plot_heatmaps([up_fields[i][2]], cmap="turbo", colorbar=True, axes=ax[i, [3]])
|
| 63 |
+
|
| 64 |
+
if "up_confidence" in pred.keys():
|
| 65 |
+
plot_confidences([up_fields[i][3]], axes=ax[i, [4]])
|
| 66 |
+
|
| 67 |
+
return {"up": fig}
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def make_latitude_figure(
|
| 71 |
+
pred: Dict[str, torch.Tensor], data: Dict[str, torch.Tensor], n_pairs: int = 2
|
| 72 |
+
) -> Dict[str, Any]:
|
| 73 |
+
"""Get predicted and ground truth latitude fields and errors.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
pred (Dict[str, torch.Tensor]): Predicted latitude field.
|
| 77 |
+
data (Dict[str, torch.Tensor]): Ground truth latitude field.
|
| 78 |
+
n_pairs (int, optional): Number of pairs to visualize. Defaults to 2.
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
Dict[str, Any]: Dictionary with figure.
|
| 82 |
+
"""
|
| 83 |
+
pred = batch_to_device(pred, "cpu", detach=True)
|
| 84 |
+
data = batch_to_device(data, "cpu", detach=True)
|
| 85 |
+
|
| 86 |
+
n_pairs = min(n_pairs, len(data["image"]))
|
| 87 |
+
latitude_fields = []
|
| 88 |
+
|
| 89 |
+
if "latitude_field" not in pred.keys():
|
| 90 |
+
return {}
|
| 91 |
+
|
| 92 |
+
for i in range(n_pairs):
|
| 93 |
+
row = [
|
| 94 |
+
rad2deg(data["latitude_field"][i][0]),
|
| 95 |
+
#rad2deg(pred["latitude_field"][i][0]),
|
| 96 |
+
#errors[i],
|
| 97 |
+
]
|
| 98 |
+
titles = ["Latitude GT"]
|
| 99 |
+
|
| 100 |
+
if "latitude_confidence" in pred.keys():
|
| 101 |
+
row += [pred["latitude_confidence"][i]]
|
| 102 |
+
titles += ["Latitude Confidence"]
|
| 103 |
+
|
| 104 |
+
row = [r.float().numpy() if isinstance(r, torch.Tensor) else r for r in row]
|
| 105 |
+
latitude_fields.append(row)
|
| 106 |
+
|
| 107 |
+
# create figure
|
| 108 |
+
N, M = len(latitude_fields), len(latitude_fields[0]) + 1
|
| 109 |
+
imgs = [[data["image"][i].permute(1, 2, 0).cpu().clip(0, 1)] * M for i in range(n_pairs)]
|
| 110 |
+
fig, ax = plot_image_grid(imgs, return_fig=True, set_lim=True)
|
| 111 |
+
ax = np.array(ax)
|
| 112 |
+
|
| 113 |
+
for i in range(n_pairs):
|
| 114 |
+
plot_latitudes([latitude_fields[i][0]], is_radians=False, axes=ax[i, [1]])
|
| 115 |
+
#plot_heatmaps([latitude_fields[i][2]], cmap="turbo", colorbar=True, axes=ax[i, [3]])
|
| 116 |
+
|
| 117 |
+
if "latitude_confidence" in pred.keys():
|
| 118 |
+
plot_confidences([latitude_fields[i][3]], axes=ax[i, [4]])
|
| 119 |
+
|
| 120 |
+
return {"latitude": fig}
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def make_camera_figure(
|
| 124 |
+
pred: Dict[str, torch.Tensor], data: Dict[str, torch.Tensor], n_pairs: int = 2
|
| 125 |
+
) -> Dict[str, Any]:
|
| 126 |
+
"""Get predicted and ground truth camera parameters.
|
| 127 |
+
|
| 128 |
+
Args:
|
| 129 |
+
pred (Dict[str, torch.Tensor]): Predicted camera parameters.
|
| 130 |
+
data (Dict[str, torch.Tensor]): Ground truth camera parameters.
|
| 131 |
+
n_pairs (int, optional): Number of pairs to visualize. Defaults to 2.
|
| 132 |
+
|
| 133 |
+
Returns:
|
| 134 |
+
Dict[str, Any]: Dictionary with figure.
|
| 135 |
+
"""
|
| 136 |
+
pred = batch_to_device(pred, "cpu", detach=True)
|
| 137 |
+
data = batch_to_device(data, "cpu", detach=True)
|
| 138 |
+
|
| 139 |
+
n_pairs = min(n_pairs, len(data["image"]))
|
| 140 |
+
|
| 141 |
+
if "camera" not in pred.keys():
|
| 142 |
+
return {}
|
| 143 |
+
|
| 144 |
+
latitudes = []
|
| 145 |
+
for i in range(n_pairs):
|
| 146 |
+
titles = ["Cameras GT"]
|
| 147 |
+
row = [get_latitude_field(data["camera"][i], data["gravity"][i])]
|
| 148 |
+
|
| 149 |
+
if "camera" in pred.keys() and "gravity" in pred.keys():
|
| 150 |
+
row += [get_latitude_field(pred["camera"][i], pred["gravity"][i])]
|
| 151 |
+
titles += ["Cameras Pred"]
|
| 152 |
+
|
| 153 |
+
row = [rad2deg(r).squeeze(-1).float().numpy()[0] for r in row]
|
| 154 |
+
latitudes.append(row)
|
| 155 |
+
|
| 156 |
+
# create figure
|
| 157 |
+
N, M = len(latitudes), len(latitudes[0]) + 1
|
| 158 |
+
imgs = [[data["image"][i].permute(1, 2, 0).cpu().clip(0, 1)] * M for i in range(n_pairs)]
|
| 159 |
+
fig, ax = plot_image_grid(imgs, titles=[["Image"] + titles] * N, return_fig=True, set_lim=True)
|
| 160 |
+
ax = np.array(ax)
|
| 161 |
+
|
| 162 |
+
for i in range(n_pairs):
|
| 163 |
+
plot_latitudes(latitudes[i], is_radians=False, axes=ax[i, 1:])
|
| 164 |
+
|
| 165 |
+
return {"camera": fig}
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def make_perspective_figures(
|
| 169 |
+
pred: Dict[str, torch.Tensor], data: Dict[str, torch.Tensor], n_pairs: int = 2
|
| 170 |
+
) -> Dict[str, Any]:
|
| 171 |
+
"""Get predicted and ground truth perspective fields.
|
| 172 |
+
|
| 173 |
+
Args:
|
| 174 |
+
pred (Dict[str, torch.Tensor]): Predicted perspective fields.
|
| 175 |
+
data (Dict[str, torch.Tensor]): Ground truth perspective fields.
|
| 176 |
+
n_pairs (int, optional): Number of pairs to visualize. Defaults to 2.
|
| 177 |
+
|
| 178 |
+
Returns:
|
| 179 |
+
Dict[str, Any]: Dictionary with figure.
|
| 180 |
+
"""
|
| 181 |
+
n_pairs = min(n_pairs, len(data["image"]))
|
| 182 |
+
figures = make_up_figure(pred, data, n_pairs)
|
| 183 |
+
figures |= make_latitude_figure(pred, data, n_pairs)
|
| 184 |
+
#figures |= make_camera_figure(pred, data, n_pairs)
|
| 185 |
+
|
| 186 |
+
{f.tight_layout() for f in figures.values()}
|
| 187 |
+
|
| 188 |
+
return figures
|
scripts/camera/visualization/viz2d.py
ADDED
|
@@ -0,0 +1,521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
2D visualization primitives based on Matplotlib.
|
| 3 |
+
1) Plot images with `plot_images`.
|
| 4 |
+
2) Call TODO: add functions
|
| 5 |
+
3) Optionally: save a .png or .pdf plot (nice in papers!) with `save_plot`.
|
| 6 |
+
"""
|
| 7 |
+
"""Adapted from https://github.com/cvg/GeoCalib"""
|
| 8 |
+
|
| 9 |
+
import matplotlib.patheffects as path_effects
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
from scripts.camera.geometry.perspective_fields import get_perspective_field
|
| 15 |
+
from scripts.camera.utils.conversions import rad2deg
|
| 16 |
+
|
| 17 |
+
# flake8: noqa
|
| 18 |
+
# mypy: ignore-errors
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def cm_ranking(sc, ths=None):
|
| 22 |
+
if ths is None:
|
| 23 |
+
ths = [512, 1024, 2048, 4096]
|
| 24 |
+
|
| 25 |
+
ls = sc.shape[0]
|
| 26 |
+
colors = ["red", "yellow", "lime", "cyan", "blue"]
|
| 27 |
+
out = ["gray"] * ls
|
| 28 |
+
for i in range(ls):
|
| 29 |
+
for c, th in zip(colors[: len(ths) + 1], ths + [ls]):
|
| 30 |
+
if i < th:
|
| 31 |
+
out[i] = c
|
| 32 |
+
break
|
| 33 |
+
sid = np.argsort(sc, axis=0).flip(0)
|
| 34 |
+
return np.array(out)[sid]
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def cm_RdBl(x):
|
| 38 |
+
"""Custom colormap: red (0) -> yellow (0.5) -> green (1)."""
|
| 39 |
+
x = np.clip(x, 0, 1)[..., None] * 2
|
| 40 |
+
c = x * np.array([[0, 0, 1.0]]) + (2 - x) * np.array([[1.0, 0, 0]])
|
| 41 |
+
return np.clip(c, 0, 1)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def cm_RdGn(x):
|
| 45 |
+
"""Custom colormap: red (0) -> yellow (0.5) -> green (1)."""
|
| 46 |
+
x = np.clip(x, 0, 1)[..., None] * 2
|
| 47 |
+
c = x * np.array([[0, 1.0, 0]]) + (2 - x) * np.array([[1.0, 0, 0]])
|
| 48 |
+
return np.clip(c, 0, 1)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def cm_BlRdGn(x_):
|
| 52 |
+
"""Custom colormap: blue (-1) -> red (0.0) -> green (1)."""
|
| 53 |
+
x = np.clip(x_, 0, 1)[..., None] * 2
|
| 54 |
+
c = x * np.array([[0, 1.0, 0, 1.0]]) + (2 - x) * np.array([[1.0, 0, 0, 1.0]])
|
| 55 |
+
|
| 56 |
+
xn = -np.clip(x_, -1, 0)[..., None] * 2
|
| 57 |
+
cn = xn * np.array([[0, 1.0, 0, 1.0]]) + (2 - xn) * np.array([[1.0, 0, 0, 1.0]])
|
| 58 |
+
return np.clip(np.where(x_[..., None] < 0, cn, c), 0, 1)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def plot_images(imgs, titles=None, cmaps="gray", dpi=200, pad=0.5, adaptive=True):
|
| 62 |
+
"""Plot a list of images.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
imgs (List[np.ndarray]): List of images to plot.
|
| 66 |
+
titles (List[str], optional): Titles. Defaults to None.
|
| 67 |
+
cmaps (str, optional): Colormaps. Defaults to "gray".
|
| 68 |
+
dpi (int, optional): Dots per inch. Defaults to 200.
|
| 69 |
+
pad (float, optional): Padding. Defaults to 0.5.
|
| 70 |
+
adaptive (bool, optional): Whether to adapt the aspect ratio. Defaults to True.
|
| 71 |
+
|
| 72 |
+
Returns:
|
| 73 |
+
plt.Figure: Figure of the images.
|
| 74 |
+
"""
|
| 75 |
+
n = len(imgs)
|
| 76 |
+
if not isinstance(cmaps, (list, tuple)):
|
| 77 |
+
cmaps = [cmaps] * n
|
| 78 |
+
|
| 79 |
+
ratios = [i.shape[1] / i.shape[0] for i in imgs] if adaptive else [4 / 3] * n
|
| 80 |
+
figsize = [sum(ratios) * 4.5, 4.5]
|
| 81 |
+
fig, axs = plt.subplots(1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios})
|
| 82 |
+
if n == 1:
|
| 83 |
+
axs = [axs]
|
| 84 |
+
for i, (img, ax) in enumerate(zip(imgs, axs)):
|
| 85 |
+
ax.imshow(img, cmap=plt.get_cmap(cmaps[i]))
|
| 86 |
+
ax.set_axis_off()
|
| 87 |
+
if titles:
|
| 88 |
+
ax.set_title(titles[i])
|
| 89 |
+
fig.tight_layout(pad=pad)
|
| 90 |
+
|
| 91 |
+
return fig
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def plot_image_grid(
|
| 95 |
+
imgs,
|
| 96 |
+
titles=None,
|
| 97 |
+
cmaps="gray",
|
| 98 |
+
dpi=100,
|
| 99 |
+
pad=0.5,
|
| 100 |
+
fig=None,
|
| 101 |
+
adaptive=True,
|
| 102 |
+
figs=3.0,
|
| 103 |
+
return_fig=False,
|
| 104 |
+
set_lim=False,
|
| 105 |
+
) -> plt.Figure:
|
| 106 |
+
"""Plot a grid of images.
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
imgs (List[np.ndarray]): List of images to plot.
|
| 110 |
+
titles (List[str], optional): Titles. Defaults to None.
|
| 111 |
+
cmaps (str, optional): Colormaps. Defaults to "gray".
|
| 112 |
+
dpi (int, optional): Dots per inch. Defaults to 100.
|
| 113 |
+
pad (float, optional): Padding. Defaults to 0.5.
|
| 114 |
+
fig (_type_, optional): Figure to plot on. Defaults to None.
|
| 115 |
+
adaptive (bool, optional): Whether to adapt the aspect ratio. Defaults to True.
|
| 116 |
+
figs (float, optional): Figure size. Defaults to 3.0.
|
| 117 |
+
return_fig (bool, optional): Whether to return the figure. Defaults to False.
|
| 118 |
+
set_lim (bool, optional): Whether to set the limits. Defaults to False.
|
| 119 |
+
|
| 120 |
+
Returns:
|
| 121 |
+
plt.Figure: Figure and axes or just axes.
|
| 122 |
+
"""
|
| 123 |
+
nr, n = len(imgs), len(imgs[0])
|
| 124 |
+
if not isinstance(cmaps, (list, tuple)):
|
| 125 |
+
cmaps = [cmaps] * n
|
| 126 |
+
|
| 127 |
+
if adaptive:
|
| 128 |
+
ratios = [i.shape[1] / i.shape[0] for i in imgs[0]] # W / H
|
| 129 |
+
else:
|
| 130 |
+
ratios = [4 / 3] * n
|
| 131 |
+
|
| 132 |
+
figsize = [sum(ratios) * figs, nr * figs]
|
| 133 |
+
if fig is None:
|
| 134 |
+
fig, axs = plt.subplots(
|
| 135 |
+
nr, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios}
|
| 136 |
+
)
|
| 137 |
+
else:
|
| 138 |
+
axs = fig.subplots(nr, n, gridspec_kw={"width_ratios": ratios})
|
| 139 |
+
fig.figure.set_size_inches(figsize)
|
| 140 |
+
|
| 141 |
+
if nr == 1 and n == 1:
|
| 142 |
+
axs = [[axs]]
|
| 143 |
+
elif n == 1:
|
| 144 |
+
axs = axs[:, None]
|
| 145 |
+
elif nr == 1:
|
| 146 |
+
axs = [axs]
|
| 147 |
+
|
| 148 |
+
for j in range(nr):
|
| 149 |
+
for i in range(n):
|
| 150 |
+
ax = axs[j][i]
|
| 151 |
+
ax.imshow(imgs[j][i], cmap=plt.get_cmap(cmaps[i]))
|
| 152 |
+
ax.set_axis_off()
|
| 153 |
+
if set_lim:
|
| 154 |
+
ax.set_xlim([0, imgs[j][i].shape[1]])
|
| 155 |
+
ax.set_ylim([imgs[j][i].shape[0], 0])
|
| 156 |
+
if titles:
|
| 157 |
+
ax.set_title(titles[j][i])
|
| 158 |
+
if isinstance(fig, plt.Figure):
|
| 159 |
+
fig.tight_layout(pad=pad)
|
| 160 |
+
return (fig, axs) if return_fig else axs
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def add_text(
|
| 164 |
+
idx,
|
| 165 |
+
text,
|
| 166 |
+
pos=(0.01, 0.99),
|
| 167 |
+
fs=15,
|
| 168 |
+
color="w",
|
| 169 |
+
lcolor="k",
|
| 170 |
+
lwidth=4,
|
| 171 |
+
ha="left",
|
| 172 |
+
va="top",
|
| 173 |
+
axes=None,
|
| 174 |
+
**kwargs,
|
| 175 |
+
):
|
| 176 |
+
"""Add text to a plot.
|
| 177 |
+
|
| 178 |
+
Args:
|
| 179 |
+
idx (int): Index of the axes.
|
| 180 |
+
text (str): Text to add.
|
| 181 |
+
pos (tuple, optional): Text position. Defaults to (0.01, 0.99).
|
| 182 |
+
fs (int, optional): Font size. Defaults to 15.
|
| 183 |
+
color (str, optional): Text color. Defaults to "w".
|
| 184 |
+
lcolor (str, optional): Line color. Defaults to "k".
|
| 185 |
+
lwidth (int, optional): Line width. Defaults to 4.
|
| 186 |
+
ha (str, optional): Horizontal alignment. Defaults to "left".
|
| 187 |
+
va (str, optional): Vertical alignment. Defaults to "top".
|
| 188 |
+
axes (List[plt.Axes], optional): Axes to put text on. Defaults to None.
|
| 189 |
+
|
| 190 |
+
Returns:
|
| 191 |
+
plt.Text: Text object.
|
| 192 |
+
"""
|
| 193 |
+
if axes is None:
|
| 194 |
+
axes = plt.gcf().axes
|
| 195 |
+
|
| 196 |
+
ax = axes[idx]
|
| 197 |
+
|
| 198 |
+
t = ax.text(
|
| 199 |
+
*pos,
|
| 200 |
+
text,
|
| 201 |
+
fontsize=fs,
|
| 202 |
+
ha=ha,
|
| 203 |
+
va=va,
|
| 204 |
+
color=color,
|
| 205 |
+
transform=ax.transAxes,
|
| 206 |
+
zorder=5,
|
| 207 |
+
**kwargs,
|
| 208 |
+
)
|
| 209 |
+
if lcolor is not None:
|
| 210 |
+
t.set_path_effects(
|
| 211 |
+
[
|
| 212 |
+
path_effects.Stroke(linewidth=lwidth, foreground=lcolor),
|
| 213 |
+
path_effects.Normal(),
|
| 214 |
+
]
|
| 215 |
+
)
|
| 216 |
+
return t
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def plot_heatmaps(
|
| 220 |
+
heatmaps,
|
| 221 |
+
vmin=-1e-6, # include negative zero
|
| 222 |
+
vmax=None,
|
| 223 |
+
cmap="Spectral",
|
| 224 |
+
a=0.5,
|
| 225 |
+
axes=None,
|
| 226 |
+
contours_every=None,
|
| 227 |
+
contour_style="solid",
|
| 228 |
+
colorbar=False,
|
| 229 |
+
):
|
| 230 |
+
"""Plot heatmaps with optional contours.
|
| 231 |
+
|
| 232 |
+
To plot latitude field, set vmin=-90, vmax=90 and contours_every=15.
|
| 233 |
+
|
| 234 |
+
Args:
|
| 235 |
+
heatmaps (List[np.ndarray | torch.Tensor]): List of 2D heatmaps.
|
| 236 |
+
vmin (float, optional): Min Value. Defaults to -1e-6.
|
| 237 |
+
vmax (float, optional): Max Value. Defaults to None.
|
| 238 |
+
cmap (str, optional): Colormap. Defaults to "Spectral".
|
| 239 |
+
a (float, optional): Alpha value. Defaults to 0.5.
|
| 240 |
+
axes (List[plt.Axes], optional): Axes to plot on. Defaults to None.
|
| 241 |
+
contours_every (int, optional): If not none, will draw contours. Defaults to None.
|
| 242 |
+
contour_style (str, optional): Style of the contours. Defaults to "solid".
|
| 243 |
+
colorbar (bool, optional): Whether to show colorbar. Defaults to False.
|
| 244 |
+
|
| 245 |
+
Returns:
|
| 246 |
+
List[plt.Artist]: List of artists.
|
| 247 |
+
"""
|
| 248 |
+
if axes is None:
|
| 249 |
+
axes = plt.gcf().axes
|
| 250 |
+
artists = []
|
| 251 |
+
|
| 252 |
+
for i in range(len(axes)):
|
| 253 |
+
a_ = a if isinstance(a, float) else a[i]
|
| 254 |
+
|
| 255 |
+
if isinstance(heatmaps[i], torch.Tensor):
|
| 256 |
+
heatmaps[i] = heatmaps[i].detach().cpu().numpy()
|
| 257 |
+
|
| 258 |
+
alpha = a_
|
| 259 |
+
# Plot the heatmap
|
| 260 |
+
art = axes[i].imshow(
|
| 261 |
+
heatmaps[i],
|
| 262 |
+
alpha=alpha,
|
| 263 |
+
vmin=vmin,
|
| 264 |
+
vmax=vmax,
|
| 265 |
+
cmap=cmap,
|
| 266 |
+
)
|
| 267 |
+
if colorbar:
|
| 268 |
+
cmax = vmax or np.percentile(heatmaps[i], 99)
|
| 269 |
+
art.set_clim(vmin, cmax)
|
| 270 |
+
cbar = plt.colorbar(art, ax=axes[i])
|
| 271 |
+
artists.append(cbar)
|
| 272 |
+
|
| 273 |
+
artists.append(art)
|
| 274 |
+
|
| 275 |
+
if contours_every is not None:
|
| 276 |
+
# Add contour lines to the heatmap
|
| 277 |
+
contour_data = np.arange(vmin, vmax + contours_every, contours_every)
|
| 278 |
+
|
| 279 |
+
# Get the colormap colors for contour lines
|
| 280 |
+
contour_colors = [
|
| 281 |
+
plt.colormaps.get_cmap(cmap)(plt.Normalize(vmin=vmin, vmax=vmax)(level))
|
| 282 |
+
for level in contour_data
|
| 283 |
+
]
|
| 284 |
+
contours = axes[i].contour(
|
| 285 |
+
heatmaps[i],
|
| 286 |
+
levels=contour_data,
|
| 287 |
+
linewidths=2,
|
| 288 |
+
colors=contour_colors,
|
| 289 |
+
linestyles=contour_style,
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
contours.set_clim(vmin, vmax)
|
| 293 |
+
|
| 294 |
+
fmt = {
|
| 295 |
+
level: f"{label}°"
|
| 296 |
+
for level, label in zip(contour_data, contour_data.astype(int).astype(str))
|
| 297 |
+
}
|
| 298 |
+
t = axes[i].clabel(contours, inline=True, fmt=fmt, fontsize=16, colors="white")
|
| 299 |
+
|
| 300 |
+
for label in t:
|
| 301 |
+
label.set_path_effects(
|
| 302 |
+
[
|
| 303 |
+
path_effects.Stroke(linewidth=1, foreground="k"),
|
| 304 |
+
path_effects.Normal(),
|
| 305 |
+
]
|
| 306 |
+
)
|
| 307 |
+
artists.append(contours)
|
| 308 |
+
|
| 309 |
+
return artists
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
def plot_horizon_lines(
|
| 313 |
+
cameras, gravities, line_colors="orange", lw=2, styles="solid", alpha=1.0, ax=None
|
| 314 |
+
):
|
| 315 |
+
"""Plot horizon lines on the perspective field.
|
| 316 |
+
|
| 317 |
+
Args:
|
| 318 |
+
cameras (List[Camera]): List of cameras.
|
| 319 |
+
gravities (List[Gravity]): Gravities.
|
| 320 |
+
line_colors (str, optional): Line Colors. Defaults to "orange".
|
| 321 |
+
lw (int, optional): Line width. Defaults to 2.
|
| 322 |
+
styles (str, optional): Line styles. Defaults to "solid".
|
| 323 |
+
alpha (float, optional): Alphas. Defaults to 1.0.
|
| 324 |
+
ax (List[plt.Axes], optional): Axes to draw horizon line on. Defaults to None.
|
| 325 |
+
"""
|
| 326 |
+
if not isinstance(line_colors, list):
|
| 327 |
+
line_colors = [line_colors] * len(cameras)
|
| 328 |
+
|
| 329 |
+
if not isinstance(styles, list):
|
| 330 |
+
styles = [styles] * len(cameras)
|
| 331 |
+
|
| 332 |
+
fig = plt.gcf()
|
| 333 |
+
ax = fig.gca() if ax is None else ax
|
| 334 |
+
|
| 335 |
+
if isinstance(ax, plt.Axes):
|
| 336 |
+
ax = [ax] * len(cameras)
|
| 337 |
+
|
| 338 |
+
assert len(ax) == len(cameras), f"{len(ax)}, {len(cameras)}"
|
| 339 |
+
|
| 340 |
+
for i in range(len(cameras)):
|
| 341 |
+
_, lat = get_perspective_field(cameras[i], gravities[i])
|
| 342 |
+
# horizon line is zero level of the latitude field
|
| 343 |
+
lat = lat[0, 0].cpu().numpy()
|
| 344 |
+
contours = ax[i].contour(lat, levels=[0], linewidths=lw, colors=line_colors[i])
|
| 345 |
+
for contour_line in contours.collections:
|
| 346 |
+
contour_line.set_linestyle(styles[i])
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def plot_vector_fields(
|
| 350 |
+
vector_fields,
|
| 351 |
+
cmap="lime",
|
| 352 |
+
subsample=15,
|
| 353 |
+
scale=None,
|
| 354 |
+
lw=None,
|
| 355 |
+
alphas=0.8,
|
| 356 |
+
axes=None,
|
| 357 |
+
):
|
| 358 |
+
"""Plot vector fields.
|
| 359 |
+
|
| 360 |
+
Args:
|
| 361 |
+
vector_fields (List[torch.Tensor]): List of vector fields of shape (2, H, W).
|
| 362 |
+
cmap (str, optional): Color of the vectors. Defaults to "lime".
|
| 363 |
+
subsample (int, optional): Subsample the vector field. Defaults to 15.
|
| 364 |
+
scale (float, optional): Scale of the vectors. Defaults to None.
|
| 365 |
+
lw (float, optional): Line width of the vectors. Defaults to None.
|
| 366 |
+
alphas (float | np.ndarray, optional): Alpha per vector or global. Defaults to 0.8.
|
| 367 |
+
axes (List[plt.Axes], optional): List of axes to draw on. Defaults to None.
|
| 368 |
+
|
| 369 |
+
Returns:
|
| 370 |
+
List[plt.Artist]: List of artists.
|
| 371 |
+
"""
|
| 372 |
+
if axes is None:
|
| 373 |
+
axes = plt.gcf().axes
|
| 374 |
+
|
| 375 |
+
vector_fields = [v.cpu().numpy() if isinstance(v, torch.Tensor) else v for v in vector_fields]
|
| 376 |
+
|
| 377 |
+
artists = []
|
| 378 |
+
|
| 379 |
+
H, W = vector_fields[0].shape[-2:]
|
| 380 |
+
if scale is None:
|
| 381 |
+
scale = subsample / min(H, W)
|
| 382 |
+
|
| 383 |
+
if lw is None:
|
| 384 |
+
lw = 0.1 / subsample
|
| 385 |
+
|
| 386 |
+
if alphas is None:
|
| 387 |
+
alphas = np.ones_like(vector_fields[0][0])
|
| 388 |
+
alphas = np.stack([alphas] * len(vector_fields), 0)
|
| 389 |
+
elif isinstance(alphas, float):
|
| 390 |
+
alphas = np.ones_like(vector_fields[0][0]) * alphas
|
| 391 |
+
alphas = np.stack([alphas] * len(vector_fields), 0)
|
| 392 |
+
else:
|
| 393 |
+
alphas = np.array(alphas)
|
| 394 |
+
|
| 395 |
+
subsample = min(W, H) // subsample
|
| 396 |
+
offset_x = ((W % subsample) + subsample) // 2
|
| 397 |
+
|
| 398 |
+
samples_x = np.arange(offset_x, W, subsample)
|
| 399 |
+
samples_y = np.arange(int(subsample * 0.9), H, subsample)
|
| 400 |
+
|
| 401 |
+
x_grid, y_grid = np.meshgrid(samples_x, samples_y)
|
| 402 |
+
|
| 403 |
+
for i in range(len(axes)):
|
| 404 |
+
# vector field of shape (2, H, W) with vectors of norm == 1
|
| 405 |
+
vector_field = vector_fields[i]
|
| 406 |
+
|
| 407 |
+
a = alphas[i][samples_y][:, samples_x]
|
| 408 |
+
x, y = vector_field[:, samples_y][:, :, samples_x]
|
| 409 |
+
|
| 410 |
+
c = cmap
|
| 411 |
+
if not isinstance(cmap, str):
|
| 412 |
+
c = cmap[i][samples_y][:, samples_x].reshape(-1, 3)
|
| 413 |
+
|
| 414 |
+
s = scale * min(H, W)
|
| 415 |
+
arrows = axes[i].quiver(
|
| 416 |
+
x_grid,
|
| 417 |
+
y_grid,
|
| 418 |
+
x,
|
| 419 |
+
y,
|
| 420 |
+
scale=s,
|
| 421 |
+
scale_units="width" if H > W else "height",
|
| 422 |
+
units="width" if H > W else "height",
|
| 423 |
+
alpha=a,
|
| 424 |
+
color=c,
|
| 425 |
+
angles="xy",
|
| 426 |
+
antialiased=True,
|
| 427 |
+
width=lw,
|
| 428 |
+
headaxislength=3.5,
|
| 429 |
+
zorder=5,
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
artists.append(arrows)
|
| 433 |
+
|
| 434 |
+
return artists
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def plot_latitudes(
|
| 438 |
+
latitude,
|
| 439 |
+
is_radians=True,
|
| 440 |
+
vmin=-90,
|
| 441 |
+
vmax=90,
|
| 442 |
+
cmap="seismic",
|
| 443 |
+
contours_every=15,
|
| 444 |
+
alpha=0.4,
|
| 445 |
+
axes=None,
|
| 446 |
+
**kwargs,
|
| 447 |
+
):
|
| 448 |
+
"""Plot latitudes.
|
| 449 |
+
|
| 450 |
+
Args:
|
| 451 |
+
latitude (List[torch.Tensor]): List of latitudes.
|
| 452 |
+
is_radians (bool, optional): Whether the latitudes are in radians. Defaults to True.
|
| 453 |
+
vmin (int, optional): Min value to clip to. Defaults to -90.
|
| 454 |
+
vmax (int, optional): Max value to clip to. Defaults to 90.
|
| 455 |
+
cmap (str, optional): Colormap. Defaults to "seismic".
|
| 456 |
+
contours_every (int, optional): Contours every. Defaults to 15.
|
| 457 |
+
alpha (float, optional): Alpha value. Defaults to 0.4.
|
| 458 |
+
axes (List[plt.Axes], optional): Axes to plot on. Defaults to None.
|
| 459 |
+
|
| 460 |
+
Returns:
|
| 461 |
+
List[plt.Artist]: List of artists.
|
| 462 |
+
"""
|
| 463 |
+
if axes is None:
|
| 464 |
+
axes = plt.gcf().axes
|
| 465 |
+
|
| 466 |
+
assert len(axes) == len(latitude), f"{len(axes)}, {len(latitude)}"
|
| 467 |
+
lat = [rad2deg(lat) for lat in latitude] if is_radians else latitude
|
| 468 |
+
return plot_heatmaps(
|
| 469 |
+
lat,
|
| 470 |
+
vmin=vmin,
|
| 471 |
+
vmax=vmax,
|
| 472 |
+
cmap=cmap,
|
| 473 |
+
a=alpha,
|
| 474 |
+
axes=axes,
|
| 475 |
+
contours_every=contours_every,
|
| 476 |
+
**kwargs,
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
def plot_confidences(
|
| 481 |
+
confidence,
|
| 482 |
+
as_log=True,
|
| 483 |
+
vmin=-4,
|
| 484 |
+
vmax=0,
|
| 485 |
+
cmap="turbo",
|
| 486 |
+
alpha=0.4,
|
| 487 |
+
axes=None,
|
| 488 |
+
**kwargs,
|
| 489 |
+
):
|
| 490 |
+
"""Plot confidences.
|
| 491 |
+
|
| 492 |
+
Args:
|
| 493 |
+
confidence (List[torch.Tensor]): Confidence maps.
|
| 494 |
+
as_log (bool, optional): Whether to plot in log scale. Defaults to True.
|
| 495 |
+
vmin (int, optional): Min value to clip to. Defaults to -4.
|
| 496 |
+
vmax (int, optional): Max value to clip to. Defaults to 0.
|
| 497 |
+
cmap (str, optional): Colormap. Defaults to "turbo".
|
| 498 |
+
alpha (float, optional): Alpha value. Defaults to 0.4.
|
| 499 |
+
axes (List[plt.Axes], optional): Axes to plot on. Defaults to None.
|
| 500 |
+
|
| 501 |
+
Returns:
|
| 502 |
+
List[plt.Artist]: List of artists.
|
| 503 |
+
"""
|
| 504 |
+
if axes is None:
|
| 505 |
+
axes = plt.gcf().axes
|
| 506 |
+
|
| 507 |
+
confidence = [c.cpu() if isinstance(c, torch.Tensor) else torch.tensor(c) for c in confidence]
|
| 508 |
+
|
| 509 |
+
assert len(axes) == len(confidence), f"{len(axes)}, {len(confidence)}"
|
| 510 |
+
|
| 511 |
+
if as_log:
|
| 512 |
+
confidence = [torch.log10(c.clip(1e-5)).clip(vmin, vmax) for c in confidence]
|
| 513 |
+
|
| 514 |
+
# normalize to [0, 1]
|
| 515 |
+
confidence = [(c - c.min()) / (c.max() - c.min()) for c in confidence]
|
| 516 |
+
return plot_heatmaps(confidence, vmin=0, vmax=1, cmap=cmap, a=alpha, axes=axes, **kwargs)
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
def save_plot(path, **kw):
|
| 520 |
+
"""Save the current figure without any white margin."""
|
| 521 |
+
plt.savefig(path, bbox_inches="tight", pad_inches=0, **kw)
|
src/datasets/utils.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import random
|
| 3 |
+
from xtuner.dataset.utils import get_bos_eos_token_ids
|
| 4 |
+
from xtuner.utils import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, IMAGE_TOKEN_INDEX
|
| 5 |
+
import json
|
| 6 |
+
|
| 7 |
+
INPUT_IMAGE_TOKEN_INDEX = IMAGE_TOKEN_INDEX
|
| 8 |
+
OUTPUT_IMAGE_TOKEN_INDEX = -300
|
| 9 |
+
QUERY_TOKEN_INDEX = -400
|
| 10 |
+
QUERY_TOKEN = '<query>'
|
| 11 |
+
|
| 12 |
+
def crop2square(pil_img):
|
| 13 |
+
width, height = pil_img.width, pil_img.height
|
| 14 |
+
|
| 15 |
+
if width > height:
|
| 16 |
+
y0, y1 = 0, height
|
| 17 |
+
x0 = random.randint(0, width - height)
|
| 18 |
+
x1 = x0 + height
|
| 19 |
+
else:
|
| 20 |
+
x0, x1 = 0, width
|
| 21 |
+
y0 = random.randint(0, height - width)
|
| 22 |
+
y1 = y0 + width
|
| 23 |
+
|
| 24 |
+
return pil_img.crop(box=(x0, y0, x1, y1))
|
| 25 |
+
|
| 26 |
+
def load_jsonl(json_file):
|
| 27 |
+
with open(json_file) as f:
|
| 28 |
+
lines = f.readlines()
|
| 29 |
+
data = []
|
| 30 |
+
for line in lines:
|
| 31 |
+
data.append(json.loads(line))
|
| 32 |
+
return data
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def encode_fn(example,
|
| 36 |
+
tokenizer,
|
| 37 |
+
max_length=None,
|
| 38 |
+
image_length=1,
|
| 39 |
+
query_length=1,
|
| 40 |
+
input_ids_with_output=True,
|
| 41 |
+
with_image_token=False,
|
| 42 |
+
prompt_template=None,
|
| 43 |
+
truncation='right'):
|
| 44 |
+
"""Only support the following three scenarios:
|
| 45 |
+
|
| 46 |
+
1. Incremental pretraining dataset.
|
| 47 |
+
example['conversation'] = [
|
| 48 |
+
{
|
| 49 |
+
'input': '',
|
| 50 |
+
'output': '### Human: Can you write xxx'
|
| 51 |
+
}
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
2. Single-turn conversation dataset.
|
| 55 |
+
example['conversation'] = [
|
| 56 |
+
{
|
| 57 |
+
'input': 'Give three tips for staying healthy.',
|
| 58 |
+
'output': '1.Eat a balanced diet xxx'
|
| 59 |
+
}
|
| 60 |
+
]
|
| 61 |
+
|
| 62 |
+
3. Multi-turn conversation dataset.
|
| 63 |
+
example['conversation'] = [
|
| 64 |
+
{
|
| 65 |
+
'input': 'Give three tips for staying healthy.',
|
| 66 |
+
'output': '1.Eat a balanced diet xxx'
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
'input': 'Please expand on the second point.',
|
| 70 |
+
'output': 'Here is an expanded explanation of the xxx'
|
| 71 |
+
}
|
| 72 |
+
]
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
bos_token_id, eos_token_id = get_bos_eos_token_ids(tokenizer)
|
| 76 |
+
is_multi_turn_conversation = len(example['conversation']) > 1
|
| 77 |
+
if is_multi_turn_conversation:
|
| 78 |
+
assert input_ids_with_output
|
| 79 |
+
|
| 80 |
+
input_ids, labels = [], []
|
| 81 |
+
next_needs_bos_token = True
|
| 82 |
+
for single_turn_conversation in example['conversation']:
|
| 83 |
+
input = single_turn_conversation['input']
|
| 84 |
+
if DEFAULT_IMAGE_TOKEN in input and with_image_token:
|
| 85 |
+
chunk_encode = [
|
| 86 |
+
tokenizer.encode(chunk, add_special_tokens=False)
|
| 87 |
+
for chunk in input.split(DEFAULT_IMAGE_TOKEN)
|
| 88 |
+
]
|
| 89 |
+
assert len(chunk_encode) == 2
|
| 90 |
+
input_encode = []
|
| 91 |
+
for idx, cur_chunk_encode in enumerate(chunk_encode):
|
| 92 |
+
input_encode.extend(cur_chunk_encode)
|
| 93 |
+
if idx != len(chunk_encode) - 1:
|
| 94 |
+
input_encode += [INPUT_IMAGE_TOKEN_INDEX] * image_length
|
| 95 |
+
else:
|
| 96 |
+
input_encode = tokenizer.encode(input, add_special_tokens=False)
|
| 97 |
+
if next_needs_bos_token:
|
| 98 |
+
input_ids += bos_token_id
|
| 99 |
+
labels += [IGNORE_INDEX] * len(bos_token_id)
|
| 100 |
+
input_ids += input_encode
|
| 101 |
+
labels += [IGNORE_INDEX] * len(input_encode)
|
| 102 |
+
if input_ids_with_output and 'output' in single_turn_conversation:
|
| 103 |
+
# Add output
|
| 104 |
+
output_with_loss = single_turn_conversation.get(
|
| 105 |
+
'output_with_loss', True)
|
| 106 |
+
output = single_turn_conversation['output']
|
| 107 |
+
if DEFAULT_IMAGE_TOKEN in output and with_image_token:
|
| 108 |
+
chunk_encode = [
|
| 109 |
+
tokenizer.encode(chunk, add_special_tokens=False)
|
| 110 |
+
for chunk in output.split(DEFAULT_IMAGE_TOKEN)
|
| 111 |
+
]
|
| 112 |
+
assert len(chunk_encode) == 2
|
| 113 |
+
output_encode = []
|
| 114 |
+
for idx, cur_chunk_encode in enumerate(chunk_encode):
|
| 115 |
+
output_encode.extend(cur_chunk_encode)
|
| 116 |
+
if idx != len(chunk_encode) - 1:
|
| 117 |
+
output_encode += [OUTPUT_IMAGE_TOKEN_INDEX] * image_length
|
| 118 |
+
elif QUERY_TOKEN in output:
|
| 119 |
+
chunk_encode = [
|
| 120 |
+
tokenizer.encode(chunk, add_special_tokens=False)
|
| 121 |
+
for chunk in output.split(QUERY_TOKEN)
|
| 122 |
+
]
|
| 123 |
+
assert len(chunk_encode) == 2
|
| 124 |
+
output_encode = []
|
| 125 |
+
for idx, cur_chunk_encode in enumerate(chunk_encode):
|
| 126 |
+
output_encode.extend(cur_chunk_encode)
|
| 127 |
+
if idx != len(chunk_encode) - 1:
|
| 128 |
+
output_encode += [QUERY_TOKEN_INDEX] * query_length
|
| 129 |
+
else:
|
| 130 |
+
output_encode = tokenizer.encode(output, add_special_tokens=False)
|
| 131 |
+
input_ids += output_encode
|
| 132 |
+
if output_with_loss:
|
| 133 |
+
labels += copy.deepcopy(output_encode)
|
| 134 |
+
else:
|
| 135 |
+
labels += [IGNORE_INDEX] * len(output_encode)
|
| 136 |
+
# Add EOS_TOKEN (with loss)
|
| 137 |
+
if single_turn_conversation.get('need_eos_token', True):
|
| 138 |
+
next_needs_bos_token = True
|
| 139 |
+
input_ids += eos_token_id
|
| 140 |
+
if output_with_loss:
|
| 141 |
+
labels += copy.deepcopy(eos_token_id)
|
| 142 |
+
else:
|
| 143 |
+
labels += [IGNORE_INDEX] * len(eos_token_id)
|
| 144 |
+
else:
|
| 145 |
+
next_needs_bos_token = False
|
| 146 |
+
# Add SEP (without loss)
|
| 147 |
+
sep = single_turn_conversation.get('sep', '')
|
| 148 |
+
if sep != '':
|
| 149 |
+
sep_encode = tokenizer.encode(sep, add_special_tokens=False)
|
| 150 |
+
input_ids += sep_encode
|
| 151 |
+
labels += [IGNORE_INDEX] * len(sep_encode)
|
| 152 |
+
|
| 153 |
+
if max_length is not None and len(input_ids) > max_length:
|
| 154 |
+
if truncation == 'right':
|
| 155 |
+
input_ids = input_ids[:max_length]
|
| 156 |
+
labels = labels[:max_length]
|
| 157 |
+
elif truncation == 'left':
|
| 158 |
+
input_ids = input_ids[-max_length:]
|
| 159 |
+
labels = labels[-max_length:]
|
| 160 |
+
else:
|
| 161 |
+
assert truncation is None
|
| 162 |
+
return {'input_ids': input_ids, 'labels': labels}
|
src/models/connector/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .configuration_connector import ConnectorConfig
|
| 2 |
+
from .modeling_connector import ConnectorEncoder
|
src/models/connector/configuration_connector.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
+
from transformers.utils import logging
|
| 3 |
+
|
| 4 |
+
logger = logging.get_logger(__name__)
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class ConnectorConfig(PretrainedConfig):
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
hidden_size=768,
|
| 11 |
+
intermediate_size=3072,
|
| 12 |
+
num_hidden_layers=12,
|
| 13 |
+
num_attention_heads=12,
|
| 14 |
+
hidden_act="gelu_pytorch_tanh",
|
| 15 |
+
layer_norm_eps=1e-6,
|
| 16 |
+
attention_dropout=0.0,
|
| 17 |
+
**kwargs,
|
| 18 |
+
):
|
| 19 |
+
super().__init__(**kwargs)
|
| 20 |
+
|
| 21 |
+
self.hidden_size = hidden_size
|
| 22 |
+
self.intermediate_size = intermediate_size
|
| 23 |
+
self.num_hidden_layers = num_hidden_layers
|
| 24 |
+
self.num_attention_heads = num_attention_heads
|
| 25 |
+
self.attention_dropout = attention_dropout
|
| 26 |
+
self.layer_norm_eps = layer_norm_eps
|
| 27 |
+
self.hidden_act = hidden_act
|
src/models/connector/modeling_connector.py
ADDED
|
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""PyTorch Connector model."""
|
| 16 |
+
|
| 17 |
+
import math
|
| 18 |
+
import warnings
|
| 19 |
+
from typing import Any, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import torch.utils.checkpoint
|
| 23 |
+
from torch import nn
|
| 24 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
| 25 |
+
|
| 26 |
+
from transformers.activations import ACT2FN
|
| 27 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
| 28 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
|
| 29 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 30 |
+
from transformers.utils import (
|
| 31 |
+
ModelOutput,
|
| 32 |
+
is_flash_attn_2_available,
|
| 33 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 34 |
+
logging,
|
| 35 |
+
replace_return_docstrings,
|
| 36 |
+
torch_int,
|
| 37 |
+
)
|
| 38 |
+
from .configuration_connector import ConnectorConfig
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
if is_flash_attn_2_available():
|
| 42 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
logger = logging.get_logger(__name__)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def init_weights(module):
|
| 49 |
+
"""Initialize the weights"""
|
| 50 |
+
if isinstance(module, nn.Embedding):
|
| 51 |
+
default_flax_embed_init(module.weight)
|
| 52 |
+
elif isinstance(module, ConnectorAttention):
|
| 53 |
+
nn.init.xavier_uniform_(module.q_proj.weight)
|
| 54 |
+
nn.init.xavier_uniform_(module.k_proj.weight)
|
| 55 |
+
nn.init.xavier_uniform_(module.v_proj.weight)
|
| 56 |
+
nn.init.xavier_uniform_(module.out_proj.weight)
|
| 57 |
+
nn.init.zeros_(module.q_proj.bias)
|
| 58 |
+
nn.init.zeros_(module.k_proj.bias)
|
| 59 |
+
nn.init.zeros_(module.v_proj.bias)
|
| 60 |
+
nn.init.zeros_(module.out_proj.bias)
|
| 61 |
+
elif isinstance(module, ConnectorMLP):
|
| 62 |
+
nn.init.xavier_uniform_(module.fc1.weight)
|
| 63 |
+
nn.init.xavier_uniform_(module.fc2.weight)
|
| 64 |
+
nn.init.normal_(module.fc1.bias, std=1e-6)
|
| 65 |
+
nn.init.normal_(module.fc2.bias, std=1e-6)
|
| 66 |
+
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 67 |
+
lecun_normal_(module.weight)
|
| 68 |
+
if module.bias is not None:
|
| 69 |
+
nn.init.zeros_(module.bias)
|
| 70 |
+
elif isinstance(module, nn.LayerNorm):
|
| 71 |
+
module.bias.data.zero_()
|
| 72 |
+
module.weight.data.fill_(1.0)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
| 76 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 77 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 78 |
+
def norm_cdf(x):
|
| 79 |
+
# Computes standard normal cumulative distribution function
|
| 80 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
| 81 |
+
|
| 82 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 83 |
+
warnings.warn(
|
| 84 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
| 85 |
+
"The distribution of values may be incorrect.",
|
| 86 |
+
stacklevel=2,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Values are generated by using a truncated uniform distribution and
|
| 90 |
+
# then using the inverse CDF for the normal distribution.
|
| 91 |
+
# Get upper and lower cdf values
|
| 92 |
+
l = norm_cdf((a - mean) / std)
|
| 93 |
+
u = norm_cdf((b - mean) / std)
|
| 94 |
+
|
| 95 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
| 96 |
+
# [2l-1, 2u-1].
|
| 97 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 98 |
+
|
| 99 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 100 |
+
# standard normal
|
| 101 |
+
tensor.erfinv_()
|
| 102 |
+
|
| 103 |
+
# Transform to proper mean, std
|
| 104 |
+
tensor.mul_(std * math.sqrt(2.0))
|
| 105 |
+
tensor.add_(mean)
|
| 106 |
+
|
| 107 |
+
# Clamp to ensure it's in the proper range
|
| 108 |
+
tensor.clamp_(min=a, max=b)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def trunc_normal_tf_(
|
| 112 |
+
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
| 113 |
+
) -> torch.Tensor:
|
| 114 |
+
"""Fills the input Tensor with values drawn from a truncated
|
| 115 |
+
normal distribution. The values are effectively drawn from the
|
| 116 |
+
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 117 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 118 |
+
the bounds. The method used for generating the random values works
|
| 119 |
+
best when :math:`a \\leq \text{mean} \\leq b`.
|
| 120 |
+
|
| 121 |
+
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
| 122 |
+
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
| 123 |
+
and the result is subsequently scaled and shifted by the mean and std args.
|
| 124 |
+
|
| 125 |
+
Args:
|
| 126 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 127 |
+
mean: the mean of the normal distribution
|
| 128 |
+
std: the standard deviation of the normal distribution
|
| 129 |
+
a: the minimum cutoff value
|
| 130 |
+
b: the maximum cutoff value
|
| 131 |
+
"""
|
| 132 |
+
with torch.no_grad():
|
| 133 |
+
_trunc_normal_(tensor, 0, 1.0, a, b)
|
| 134 |
+
tensor.mul_(std).add_(mean)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
| 138 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
| 139 |
+
if mode == "fan_in":
|
| 140 |
+
denom = fan_in
|
| 141 |
+
elif mode == "fan_out":
|
| 142 |
+
denom = fan_out
|
| 143 |
+
elif mode == "fan_avg":
|
| 144 |
+
denom = (fan_in + fan_out) / 2
|
| 145 |
+
|
| 146 |
+
variance = scale / denom
|
| 147 |
+
|
| 148 |
+
if distribution == "truncated_normal":
|
| 149 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
| 150 |
+
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
| 151 |
+
elif distribution == "normal":
|
| 152 |
+
with torch.no_grad():
|
| 153 |
+
tensor.normal_(std=math.sqrt(variance))
|
| 154 |
+
elif distribution == "uniform":
|
| 155 |
+
bound = math.sqrt(3 * variance)
|
| 156 |
+
with torch.no_grad():
|
| 157 |
+
tensor.uniform_(-bound, bound)
|
| 158 |
+
else:
|
| 159 |
+
raise ValueError(f"invalid distribution {distribution}")
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def lecun_normal_(tensor):
|
| 163 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def default_flax_embed_init(tensor):
|
| 167 |
+
variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
class ConnectorAttention(nn.Module):
|
| 171 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 172 |
+
|
| 173 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
| 174 |
+
def __init__(self, config):
|
| 175 |
+
super().__init__()
|
| 176 |
+
self.config = config
|
| 177 |
+
self.embed_dim = config.hidden_size
|
| 178 |
+
self.num_heads = config.num_attention_heads
|
| 179 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 180 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 181 |
+
raise ValueError(
|
| 182 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 183 |
+
f" {self.num_heads})."
|
| 184 |
+
)
|
| 185 |
+
self.scale = self.head_dim**-0.5
|
| 186 |
+
self.dropout = config.attention_dropout
|
| 187 |
+
|
| 188 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 189 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 190 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 191 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 192 |
+
|
| 193 |
+
def forward(
|
| 194 |
+
self,
|
| 195 |
+
hidden_states: torch.Tensor,
|
| 196 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 197 |
+
output_attentions: Optional[bool] = False,
|
| 198 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 199 |
+
"""Input shape: Batch x Time x Channel"""
|
| 200 |
+
|
| 201 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 202 |
+
|
| 203 |
+
query_states = self.q_proj(hidden_states)
|
| 204 |
+
key_states = self.k_proj(hidden_states)
|
| 205 |
+
value_states = self.v_proj(hidden_states)
|
| 206 |
+
|
| 207 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 208 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 209 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 210 |
+
|
| 211 |
+
k_v_seq_len = key_states.shape[-2]
|
| 212 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
| 213 |
+
|
| 214 |
+
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
| 215 |
+
raise ValueError(
|
| 216 |
+
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
| 217 |
+
f" {attn_weights.size()}"
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
if attention_mask is not None:
|
| 221 |
+
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
| 222 |
+
raise ValueError(
|
| 223 |
+
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
| 224 |
+
)
|
| 225 |
+
attn_weights = attn_weights + attention_mask
|
| 226 |
+
|
| 227 |
+
# upcast attention to fp32
|
| 228 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 229 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
| 230 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 231 |
+
|
| 232 |
+
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
| 233 |
+
raise ValueError(
|
| 234 |
+
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
| 235 |
+
f" {attn_output.size()}"
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 239 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
| 240 |
+
|
| 241 |
+
attn_output = self.out_proj(attn_output)
|
| 242 |
+
|
| 243 |
+
return attn_output, attn_weights
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
class ConnectorFlashAttention2(ConnectorAttention):
|
| 247 |
+
"""
|
| 248 |
+
ConnectorAttention flash attention module. This module inherits from `ConnectorAttention` as the weights of the module stays
|
| 249 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 250 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 251 |
+
"""
|
| 252 |
+
|
| 253 |
+
is_causal = False
|
| 254 |
+
|
| 255 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
| 256 |
+
def __init__(self, *args, **kwargs):
|
| 257 |
+
super().__init__(*args, **kwargs)
|
| 258 |
+
|
| 259 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 260 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 261 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 262 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 263 |
+
|
| 264 |
+
# Adapted from transformers.models.llama.modeling_llama.LlamaFlashAttention2.forward
|
| 265 |
+
def forward(
|
| 266 |
+
self,
|
| 267 |
+
hidden_states: torch.Tensor,
|
| 268 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 269 |
+
output_attentions: bool = False,
|
| 270 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 271 |
+
output_attentions = False
|
| 272 |
+
|
| 273 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 274 |
+
|
| 275 |
+
query_states = self.q_proj(hidden_states)
|
| 276 |
+
key_states = self.k_proj(hidden_states)
|
| 277 |
+
value_states = self.v_proj(hidden_states)
|
| 278 |
+
|
| 279 |
+
# Flash attention requires the input to have the shape
|
| 280 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 281 |
+
# therefore we just need to keep the original shape
|
| 282 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 283 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 284 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 285 |
+
|
| 286 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 287 |
+
# to be able to avoid many of these transpose/reshape/view.
|
| 288 |
+
query_states = query_states.transpose(1, 2)
|
| 289 |
+
key_states = key_states.transpose(1, 2)
|
| 290 |
+
value_states = value_states.transpose(1, 2)
|
| 291 |
+
|
| 292 |
+
dropout_rate = self.dropout if self.training else 0.0
|
| 293 |
+
|
| 294 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 295 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 296 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 297 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 298 |
+
# in fp32.
|
| 299 |
+
|
| 300 |
+
input_dtype = query_states.dtype
|
| 301 |
+
if input_dtype == torch.float32:
|
| 302 |
+
if torch.is_autocast_enabled():
|
| 303 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 304 |
+
# Handle the case where the model is quantized
|
| 305 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 306 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 307 |
+
else:
|
| 308 |
+
target_dtype = self.q_proj.weight.dtype
|
| 309 |
+
|
| 310 |
+
logger.warning_once(
|
| 311 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 312 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 313 |
+
f" {target_dtype}."
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
query_states = query_states.to(target_dtype)
|
| 317 |
+
key_states = key_states.to(target_dtype)
|
| 318 |
+
value_states = value_states.to(target_dtype)
|
| 319 |
+
|
| 320 |
+
attn_output = _flash_attention_forward(
|
| 321 |
+
query_states,
|
| 322 |
+
key_states,
|
| 323 |
+
value_states,
|
| 324 |
+
attention_mask,
|
| 325 |
+
q_len,
|
| 326 |
+
dropout=dropout_rate,
|
| 327 |
+
is_causal=self.is_causal,
|
| 328 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim).contiguous()
|
| 332 |
+
attn_output = self.out_proj(attn_output)
|
| 333 |
+
|
| 334 |
+
if not output_attentions:
|
| 335 |
+
attn_weights = None
|
| 336 |
+
|
| 337 |
+
return attn_output, attn_weights
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
class ConnectorSdpaAttention(ConnectorAttention):
|
| 341 |
+
"""
|
| 342 |
+
Connector attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 343 |
+
`ConnectorAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 344 |
+
SDPA API.
|
| 345 |
+
"""
|
| 346 |
+
|
| 347 |
+
is_causal = False
|
| 348 |
+
|
| 349 |
+
# Adapted from ConnectorAttention.forward and transformers.models.llama.modeling_llama.LlamaSdpaAttention.forward
|
| 350 |
+
def forward(
|
| 351 |
+
self,
|
| 352 |
+
hidden_states: torch.Tensor,
|
| 353 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 354 |
+
output_attentions: Optional[bool] = False,
|
| 355 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
| 356 |
+
if output_attentions:
|
| 357 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
| 358 |
+
logger.warning_once(
|
| 359 |
+
"ConnectorModel is using ConnectorSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 360 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 361 |
+
)
|
| 362 |
+
return super().forward(
|
| 363 |
+
hidden_states=hidden_states,
|
| 364 |
+
attention_mask=attention_mask,
|
| 365 |
+
output_attentions=output_attentions,
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 369 |
+
|
| 370 |
+
query_states = self.q_proj(hidden_states)
|
| 371 |
+
key_states = self.k_proj(hidden_states)
|
| 372 |
+
value_states = self.v_proj(hidden_states)
|
| 373 |
+
|
| 374 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 375 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 376 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 377 |
+
|
| 378 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 379 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 380 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
| 381 |
+
query_states = query_states.contiguous()
|
| 382 |
+
key_states = key_states.contiguous()
|
| 383 |
+
value_states = value_states.contiguous()
|
| 384 |
+
|
| 385 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 386 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 387 |
+
is_causal = True if self.is_causal and q_len > 1 else False
|
| 388 |
+
|
| 389 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 390 |
+
query_states,
|
| 391 |
+
key_states,
|
| 392 |
+
value_states,
|
| 393 |
+
attn_mask=attention_mask,
|
| 394 |
+
dropout_p=self.dropout if self.training else 0.0,
|
| 395 |
+
is_causal=is_causal,
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 399 |
+
attn_output = attn_output.view(batch_size, q_len, self.embed_dim)
|
| 400 |
+
|
| 401 |
+
attn_output = self.out_proj(attn_output)
|
| 402 |
+
|
| 403 |
+
return attn_output, None
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
CONNECTOR_ATTENTION_CLASSES = {
|
| 407 |
+
"eager": ConnectorAttention,
|
| 408 |
+
"flash_attention_2": ConnectorFlashAttention2,
|
| 409 |
+
"sdpa": ConnectorSdpaAttention,
|
| 410 |
+
}
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Connector
|
| 414 |
+
class ConnectorMLP(nn.Module):
|
| 415 |
+
def __init__(self, config):
|
| 416 |
+
super().__init__()
|
| 417 |
+
self.config = config
|
| 418 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 419 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 420 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 421 |
+
|
| 422 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 423 |
+
hidden_states = self.fc1(hidden_states)
|
| 424 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 425 |
+
hidden_states = self.fc2(hidden_states)
|
| 426 |
+
return hidden_states
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
class ConnectorEncoderLayer(nn.Module):
|
| 430 |
+
def __init__(self, config: ConnectorConfig):
|
| 431 |
+
super().__init__()
|
| 432 |
+
self.embed_dim = config.hidden_size
|
| 433 |
+
self.self_attn = CONNECTOR_ATTENTION_CLASSES[config._attn_implementation](config=config)
|
| 434 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 435 |
+
self.mlp = ConnectorMLP(config)
|
| 436 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 437 |
+
|
| 438 |
+
# Ignore copy
|
| 439 |
+
def forward(
|
| 440 |
+
self,
|
| 441 |
+
hidden_states: torch.Tensor,
|
| 442 |
+
attention_mask: torch.Tensor,
|
| 443 |
+
output_attentions: Optional[bool] = False,
|
| 444 |
+
) -> Tuple[torch.FloatTensor]:
|
| 445 |
+
"""
|
| 446 |
+
Args:
|
| 447 |
+
hidden_states (`torch.FloatTensor`):
|
| 448 |
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
| 449 |
+
attention_mask (`torch.FloatTensor`):
|
| 450 |
+
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
| 451 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
| 452 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 453 |
+
returned tensors for more detail.
|
| 454 |
+
"""
|
| 455 |
+
residual = hidden_states
|
| 456 |
+
|
| 457 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 458 |
+
hidden_states, attn_weights = self.self_attn(
|
| 459 |
+
hidden_states=hidden_states,
|
| 460 |
+
attention_mask=attention_mask,
|
| 461 |
+
output_attentions=output_attentions,
|
| 462 |
+
)
|
| 463 |
+
hidden_states = residual + hidden_states
|
| 464 |
+
|
| 465 |
+
residual = hidden_states
|
| 466 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 467 |
+
hidden_states = self.mlp(hidden_states)
|
| 468 |
+
hidden_states = residual + hidden_states
|
| 469 |
+
|
| 470 |
+
outputs = (hidden_states,)
|
| 471 |
+
|
| 472 |
+
if output_attentions:
|
| 473 |
+
outputs += (attn_weights,)
|
| 474 |
+
|
| 475 |
+
return outputs
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->Connector
|
| 479 |
+
class ConnectorEncoder(nn.Module):
|
| 480 |
+
def __init__(self, config: ConnectorConfig):
|
| 481 |
+
super().__init__()
|
| 482 |
+
self.config = config
|
| 483 |
+
self.layers = nn.ModuleList([ConnectorEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 484 |
+
self.gradient_checkpointing = False
|
| 485 |
+
self.apply(init_weights)
|
| 486 |
+
|
| 487 |
+
def forward(self, inputs_embeds):
|
| 488 |
+
hidden_states = inputs_embeds
|
| 489 |
+
for encoder_layer in self.layers:
|
| 490 |
+
if self.gradient_checkpointing and self.training:
|
| 491 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 492 |
+
encoder_layer.__call__,
|
| 493 |
+
hidden_states,
|
| 494 |
+
None,
|
| 495 |
+
False,
|
| 496 |
+
use_reentrant=False
|
| 497 |
+
)
|
| 498 |
+
else:
|
| 499 |
+
layer_outputs = encoder_layer(
|
| 500 |
+
hidden_states,
|
| 501 |
+
None,
|
| 502 |
+
output_attentions=False,
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
hidden_states = layer_outputs[0]
|
| 506 |
+
|
| 507 |
+
return hidden_states
|
src/models/connector/modeling_qwen2.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from transformers import Qwen2PreTrainedModel, Qwen2Config
|
| 4 |
+
from transformers.models.qwen2.modeling_qwen2 import Qwen2RMSNorm, Qwen2DecoderLayer
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class Qwen2Connector(Qwen2PreTrainedModel):
|
| 8 |
+
def __init__(self, config: Qwen2Config):
|
| 9 |
+
super().__init__(config)
|
| 10 |
+
self.layers = nn.ModuleList(
|
| 11 |
+
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
for layer in self.layers:
|
| 15 |
+
layer.self_attn.is_causal = False
|
| 16 |
+
|
| 17 |
+
self._attn_implementation = config._attn_implementation
|
| 18 |
+
assert self._attn_implementation == 'flash_attention_2'
|
| 19 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 20 |
+
|
| 21 |
+
self.gradient_checkpointing = False
|
| 22 |
+
# Initialize weights and apply final processing
|
| 23 |
+
self.post_init()
|
| 24 |
+
|
| 25 |
+
def forward(self, inputs_embeds):
|
| 26 |
+
position_ids = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device)
|
| 27 |
+
position_ids = position_ids.expand(inputs_embeds.shape[0], -1)
|
| 28 |
+
hidden_states = inputs_embeds
|
| 29 |
+
|
| 30 |
+
for encoder_layer in self.layers:
|
| 31 |
+
if self.gradient_checkpointing and self.training:
|
| 32 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 33 |
+
encoder_layer.__call__,
|
| 34 |
+
hidden_states,
|
| 35 |
+
None,
|
| 36 |
+
position_ids,
|
| 37 |
+
use_reentrant=False
|
| 38 |
+
)
|
| 39 |
+
else:
|
| 40 |
+
layer_outputs = encoder_layer(
|
| 41 |
+
hidden_states,
|
| 42 |
+
attention_mask=None,
|
| 43 |
+
position_ids=position_ids,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
hidden_states = layer_outputs[0]
|
| 47 |
+
|
| 48 |
+
hidden_states = self.norm(hidden_states)
|
| 49 |
+
|
| 50 |
+
return hidden_states
|
src/models/puffin/model.py
ADDED
|
@@ -0,0 +1,790 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import torch
|
| 3 |
+
import math
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
from einops import rearrange
|
| 6 |
+
from copy import deepcopy
|
| 7 |
+
from six.moves import zip
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
from torch.autograd.function import Function
|
| 11 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 12 |
+
from mmengine.logging import print_log
|
| 13 |
+
from mmengine.model import BaseModel
|
| 14 |
+
from xtuner.utils import IGNORE_INDEX
|
| 15 |
+
from xtuner.registry import BUILDER
|
| 16 |
+
from xtuner.model.utils import guess_load_checkpoint
|
| 17 |
+
from xtuner.dataset.map_fns.template_map_fn import template_map_fn
|
| 18 |
+
from transformers.cache_utils import DynamicCache
|
| 19 |
+
from diffusers.training_utils import compute_density_for_timestep_sampling, compute_loss_weighting_for_sd3
|
| 20 |
+
|
| 21 |
+
from src.models.connector import ConnectorConfig, ConnectorEncoder
|
| 22 |
+
from src.models.stable_diffusion3.pipeline_stable_diffusion_3_dynamic import StableDiffusion3Pipeline
|
| 23 |
+
from src.datasets.utils import encode_fn, QUERY_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, INPUT_IMAGE_TOKEN_INDEX
|
| 24 |
+
|
| 25 |
+
class _ScaleGradient(Function):
|
| 26 |
+
@staticmethod
|
| 27 |
+
def forward(ctx, input, scale):
|
| 28 |
+
ctx.scale = scale
|
| 29 |
+
return input
|
| 30 |
+
|
| 31 |
+
@staticmethod
|
| 32 |
+
def backward(ctx, grad_output):
|
| 33 |
+
return grad_output * ctx.scale, None
|
| 34 |
+
|
| 35 |
+
def build_mlp(hidden_size, projector_dim, z_dim):
|
| 36 |
+
return nn.Sequential(
|
| 37 |
+
nn.Linear(hidden_size, projector_dim),
|
| 38 |
+
nn.SiLU(),
|
| 39 |
+
nn.Linear(projector_dim, z_dim),)
|
| 40 |
+
|
| 41 |
+
def pad_an_image_tensor(image, pad_value=0):
|
| 42 |
+
h, w = image.shape[-2:]
|
| 43 |
+
if h > w:
|
| 44 |
+
pad_left = (h - w) // 2
|
| 45 |
+
pad_right = h - w - pad_left
|
| 46 |
+
p2d = (pad_left, pad_right, 0, 0)
|
| 47 |
+
else:
|
| 48 |
+
pad_top = (h - w) // 2
|
| 49 |
+
pad_bottom = h - w - pad_top
|
| 50 |
+
p2d = (0, 0, pad_top, pad_bottom)
|
| 51 |
+
|
| 52 |
+
image = F.pad(image, p2d, "constant", pad_value)
|
| 53 |
+
|
| 54 |
+
return image
|
| 55 |
+
|
| 56 |
+
class Qwen2p5RadioStableDiffusion3HFDynamic(BaseModel):
|
| 57 |
+
def __init__(self,
|
| 58 |
+
llm,
|
| 59 |
+
tokenizer,
|
| 60 |
+
prompt_template,
|
| 61 |
+
visual_encoder,
|
| 62 |
+
vae,
|
| 63 |
+
transformer,
|
| 64 |
+
train_scheduler,
|
| 65 |
+
test_scheduler,
|
| 66 |
+
connector_1,
|
| 67 |
+
connector_2,
|
| 68 |
+
num_queries=64,
|
| 69 |
+
freeze_transformer=True,
|
| 70 |
+
max_length=256,
|
| 71 |
+
freeze_visual_encoder=True,
|
| 72 |
+
freeze_llm=True,
|
| 73 |
+
visual_encoder_grad_scale=0.1,
|
| 74 |
+
fold_size=2,
|
| 75 |
+
unconditional=0.1,
|
| 76 |
+
unconditional_cross_view=0.1,
|
| 77 |
+
pretrained_pth=None,
|
| 78 |
+
use_activation_checkpointing=False,
|
| 79 |
+
*args, **kwargs):
|
| 80 |
+
super().__init__()
|
| 81 |
+
|
| 82 |
+
# basic settings
|
| 83 |
+
self.max_length = max_length
|
| 84 |
+
self.fold_size = fold_size
|
| 85 |
+
self.prompt_template = prompt_template
|
| 86 |
+
self.unconditional = unconditional
|
| 87 |
+
self.unconditional_cross_view = unconditional_cross_view
|
| 88 |
+
|
| 89 |
+
# networks building
|
| 90 |
+
# understanding branch
|
| 91 |
+
self.visual_encoder = BUILDER.build(visual_encoder)
|
| 92 |
+
self.llm = BUILDER.build(llm)
|
| 93 |
+
self.tokenizer = BUILDER.build(tokenizer)
|
| 94 |
+
self.projector = build_mlp(hidden_size=self.visual_encoder.model.embed_dim*fold_size**2,
|
| 95 |
+
projector_dim=self.llm.config.hidden_size,
|
| 96 |
+
z_dim=self.llm.config.hidden_size)
|
| 97 |
+
self.image_token_id = self.tokenizer.convert_tokens_to_ids(prompt_template['IMG_CONTEXT_TOKEN'])
|
| 98 |
+
|
| 99 |
+
# generation branch
|
| 100 |
+
self.vae = BUILDER.build(vae)
|
| 101 |
+
self.vae.requires_grad_(False)
|
| 102 |
+
self.transformer = BUILDER.build(transformer)
|
| 103 |
+
self.num_queries = num_queries
|
| 104 |
+
self.connector_1 = ConnectorEncoder(ConnectorConfig(**connector_1))
|
| 105 |
+
self.connector_2 = ConnectorEncoder(ConnectorConfig(**connector_2))
|
| 106 |
+
|
| 107 |
+
self.llm2connector_1 = nn.Linear(self.llm.config.hidden_size, self.connector_1.config.hidden_size)
|
| 108 |
+
self.llm2connector_2 = nn.Linear(self.llm.config.hidden_size, self.connector_2.config.hidden_size)
|
| 109 |
+
self.projector_1 = nn.Linear(self.connector_1.config.hidden_size, self.transformer.config.pooled_projection_dim)
|
| 110 |
+
self.projector_2 = nn.Linear(self.connector_2.config.hidden_size, self.transformer.config.joint_attention_dim)
|
| 111 |
+
nn.init.zeros_(self.projector_1.weight)
|
| 112 |
+
nn.init.zeros_(self.projector_2.weight)
|
| 113 |
+
nn.init.zeros_(self.projector_1.bias)
|
| 114 |
+
nn.init.zeros_(self.projector_2.bias)
|
| 115 |
+
|
| 116 |
+
self.meta_queries = nn.Parameter(
|
| 117 |
+
torch.zeros(num_queries, self.llm.config.hidden_size))
|
| 118 |
+
nn.init.normal_(self.meta_queries, std=1 / math.sqrt(self.llm.config.hidden_size))
|
| 119 |
+
|
| 120 |
+
# networks and training initialization
|
| 121 |
+
if freeze_visual_encoder:
|
| 122 |
+
self.visual_encoder.requires_grad_(False)
|
| 123 |
+
self.freeze_visual_encoder = freeze_visual_encoder
|
| 124 |
+
if freeze_llm:
|
| 125 |
+
self.llm.requires_grad_(False)
|
| 126 |
+
self.freeze_llm = freeze_llm
|
| 127 |
+
if freeze_transformer:
|
| 128 |
+
self.transformer.requires_grad_(False)
|
| 129 |
+
self.freeze_transformer = freeze_transformer
|
| 130 |
+
|
| 131 |
+
self.visual_encoder_grad_scale = visual_encoder_grad_scale
|
| 132 |
+
self.train_scheduler = BUILDER.build(train_scheduler)
|
| 133 |
+
self.test_scheduler = BUILDER.build(test_scheduler)
|
| 134 |
+
|
| 135 |
+
self.use_activation_checkpointing = use_activation_checkpointing
|
| 136 |
+
if use_activation_checkpointing:
|
| 137 |
+
self.llm.enable_input_require_grads()
|
| 138 |
+
self.gradient_checkpointing_enable()
|
| 139 |
+
|
| 140 |
+
if pretrained_pth is not None:
|
| 141 |
+
pretrained_state_dict = guess_load_checkpoint(pretrained_pth)
|
| 142 |
+
info = self.load_state_dict(pretrained_state_dict, strict=False)
|
| 143 |
+
print_log(f'Load pretrained weight from {pretrained_pth}')
|
| 144 |
+
|
| 145 |
+
@property
|
| 146 |
+
def device(self):
|
| 147 |
+
return self.llm.device
|
| 148 |
+
|
| 149 |
+
@property
|
| 150 |
+
def dtype(self):
|
| 151 |
+
return self.llm.dtype
|
| 152 |
+
|
| 153 |
+
def gradient_checkpointing_enable(self):
|
| 154 |
+
self.activation_checkpointing_enable()
|
| 155 |
+
|
| 156 |
+
def activation_checkpointing_enable(self):
|
| 157 |
+
self.llm.gradient_checkpointing_enable()
|
| 158 |
+
self.transformer.enable_gradient_checkpointing()
|
| 159 |
+
self.connector_1.gradient_checkpointing = True
|
| 160 |
+
self.connector_2.gradient_checkpointing = True
|
| 161 |
+
|
| 162 |
+
def gradient_checkpointing_disable(self):
|
| 163 |
+
self.activation_checkpointing_disable()
|
| 164 |
+
|
| 165 |
+
def activation_checkpointing_disable(self):
|
| 166 |
+
self.llm.gradient_checkpointing_disable()
|
| 167 |
+
self.transformer.disable_gradient_checkpointing()
|
| 168 |
+
self.connector_1.gradient_checkpointing = False
|
| 169 |
+
self.connector_2.gradient_checkpointing = False
|
| 170 |
+
|
| 171 |
+
def forward(self, data, data_samples=None, mode='loss'):
|
| 172 |
+
if mode == 'loss':
|
| 173 |
+
return self.compute_loss(data_dict=data)
|
| 174 |
+
else:
|
| 175 |
+
raise NotImplementedError
|
| 176 |
+
|
| 177 |
+
def extract_visual_features(self, pixel_values):
|
| 178 |
+
pixel_values = (pixel_values + 1.0) / 2 # [0, 1]
|
| 179 |
+
height, width = pixel_values.shape[-2:]
|
| 180 |
+
summary, features = self.visual_encoder(pixel_values)
|
| 181 |
+
patch_size = int((height * width // features.shape[1]) ** 0.5)
|
| 182 |
+
height, width = height // (patch_size * self.fold_size), width // (patch_size * self.fold_size)
|
| 183 |
+
features = rearrange(features, 'b (h p w q) d -> b (h w) (p q d)',
|
| 184 |
+
h=height, w=width, p=self.fold_size, q=self.fold_size)
|
| 185 |
+
|
| 186 |
+
return features
|
| 187 |
+
|
| 188 |
+
def llm2dit(self, x):
|
| 189 |
+
x_1 = self.connector_1(self.llm2connector_1(x))
|
| 190 |
+
x_1 = self.projector_1(x_1.mean(1))
|
| 191 |
+
x_2 = self.connector_2(self.llm2connector_2(x))
|
| 192 |
+
x_2 = self.projector_2(x_2)
|
| 193 |
+
|
| 194 |
+
return x_1, x_2
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
@torch.no_grad()
|
| 198 |
+
def prepare_gen_prompts(self, texts, data_type='text2image', num_refs=None, ref_lens=None, gen_type='GENERATION_CROSS'):
|
| 199 |
+
if data_type == 'text2image':
|
| 200 |
+
prompts = [self.prompt_template['GENERATION'].format(input=text) for text in texts]
|
| 201 |
+
prompts = [self.prompt_template['INSTRUCTION'].format(input=text) for text in prompts]
|
| 202 |
+
|
| 203 |
+
elif data_type == 'image2image':
|
| 204 |
+
assert num_refs is not None and ref_lens is not None, "num_refs and ref_lens are required for image2image"
|
| 205 |
+
prompts = []
|
| 206 |
+
cnt = 0
|
| 207 |
+
for text, num_ref in zip(texts, num_refs):
|
| 208 |
+
image_tokens = ''
|
| 209 |
+
for _ in range(num_ref):
|
| 210 |
+
image_tokens += (
|
| 211 |
+
self.prompt_template['IMG_START_TOKEN'] +
|
| 212 |
+
self.prompt_template['IMG_CONTEXT_TOKEN'] * ref_lens[cnt] +
|
| 213 |
+
self.prompt_template['IMG_END_TOKEN']
|
| 214 |
+
)
|
| 215 |
+
cnt += 1
|
| 216 |
+
|
| 217 |
+
text = self.prompt_template[gen_type].format(input=text)
|
| 218 |
+
prompt = self.prompt_template['INSTRUCTION'].format(input=f'{image_tokens}\n{text}')
|
| 219 |
+
prompts.append(prompt)
|
| 220 |
+
else:
|
| 221 |
+
raise ValueError(f"Unsupported data_type: {data_type}")
|
| 222 |
+
|
| 223 |
+
return self.tokenizer(
|
| 224 |
+
prompts, add_special_tokens=True, return_tensors='pt', padding=True, padding_side='left').to(self.device)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
@torch.no_grad()
|
| 228 |
+
def prepare_und_prompts(self, conversations, data_type='image2text', image_lengths=None, input_ids_with_output=True):
|
| 229 |
+
input_ids, labels, input_lengths = [], [], []
|
| 230 |
+
|
| 231 |
+
if data_type == 'image2text':
|
| 232 |
+
assert image_lengths is not None, "`image_lengths` must be provided for image2text"
|
| 233 |
+
if isinstance(image_lengths, int):
|
| 234 |
+
image_lengths = [image_lengths] * len(conversations)
|
| 235 |
+
elif data_type == 'text2text':
|
| 236 |
+
image_lengths = [None] * len(conversations)
|
| 237 |
+
else:
|
| 238 |
+
raise ValueError(f"Unsupported data_type: {data_type}")
|
| 239 |
+
|
| 240 |
+
for conv, image_len in zip(conversations, image_lengths):
|
| 241 |
+
data_dict = template_map_fn(example=dict(conversation=deepcopy(conv)), template=self.prompt_template)
|
| 242 |
+
data_dict.update(encode_fn(data_dict,
|
| 243 |
+
tokenizer=self.tokenizer,
|
| 244 |
+
max_length=None,
|
| 245 |
+
input_ids_with_output=input_ids_with_output,
|
| 246 |
+
with_image_token=(data_type == 'image2text'),
|
| 247 |
+
image_length=image_len,
|
| 248 |
+
prompt_template=self.prompt_template))
|
| 249 |
+
|
| 250 |
+
input_ids.append(torch.tensor(data_dict['input_ids'], dtype=torch.long, device=self.device))
|
| 251 |
+
labels.append(torch.tensor(data_dict['labels'], dtype=torch.long, device=self.device))
|
| 252 |
+
input_lengths.append(len(data_dict['input_ids']))
|
| 253 |
+
|
| 254 |
+
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=0, padding_side='left')
|
| 255 |
+
labels = pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX, padding_side='left')
|
| 256 |
+
|
| 257 |
+
attention_mask = torch.zeros_like(input_ids).bool()
|
| 258 |
+
for i in range(len(input_ids)):
|
| 259 |
+
attention_mask[i, -input_lengths[i]:] = True
|
| 260 |
+
|
| 261 |
+
position_ids = torch.cumsum(attention_mask, dim=1) - 1
|
| 262 |
+
position_ids[position_ids < 0] = 0
|
| 263 |
+
|
| 264 |
+
return dict(input_ids=input_ids, attention_mask=attention_mask, labels=labels, position_ids=position_ids)
|
| 265 |
+
|
| 266 |
+
def train(self, mode=True):
|
| 267 |
+
super().train(mode=mode)
|
| 268 |
+
self.vae.train(mode=False)
|
| 269 |
+
if not mode:
|
| 270 |
+
self.gradient_checkpointing_disable()
|
| 271 |
+
|
| 272 |
+
return self
|
| 273 |
+
|
| 274 |
+
@torch.no_grad()
|
| 275 |
+
def pixels_to_latents(self, x):
|
| 276 |
+
z = self.vae.encode(x).latent_dist.sample()
|
| 277 |
+
z = (z - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 278 |
+
return z
|
| 279 |
+
|
| 280 |
+
@torch.no_grad()
|
| 281 |
+
def latents_to_pixels(self, z):
|
| 282 |
+
z = (z / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 283 |
+
x_rec = self.vae.decode(z).sample
|
| 284 |
+
return x_rec
|
| 285 |
+
|
| 286 |
+
def prepare_forward_input(self,
|
| 287 |
+
query_embeds,
|
| 288 |
+
input_ids=None,
|
| 289 |
+
image_embeds=None,
|
| 290 |
+
attention_mask=None,
|
| 291 |
+
past_key_values=None,
|
| 292 |
+
append_queries=True):
|
| 293 |
+
b, l, _ = query_embeds.shape
|
| 294 |
+
assert l > 0
|
| 295 |
+
attention_mask = attention_mask.to(device=self.device, dtype=torch.bool)
|
| 296 |
+
assert l == self.num_queries
|
| 297 |
+
|
| 298 |
+
if append_queries:
|
| 299 |
+
input_ids = torch.cat([
|
| 300 |
+
input_ids, input_ids.new_full(size=(b, l), fill_value=QUERY_TOKEN_INDEX)], dim=1)
|
| 301 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_ones(b, l)], dim=1)
|
| 302 |
+
|
| 303 |
+
position_ids = torch.cumsum(attention_mask, dim=1) - 1
|
| 304 |
+
position_ids[position_ids < 0] = 0
|
| 305 |
+
|
| 306 |
+
# prepare context
|
| 307 |
+
if past_key_values is not None:
|
| 308 |
+
inputs_embeds = query_embeds
|
| 309 |
+
position_ids = position_ids[..., -l:]
|
| 310 |
+
else:
|
| 311 |
+
inputs_embeds = torch.zeros(*input_ids.shape, self.llm.config.hidden_size,
|
| 312 |
+
device=self.device, dtype=self.dtype)
|
| 313 |
+
if image_embeds is not None:
|
| 314 |
+
inputs_embeds[input_ids == self.image_token_id] = \
|
| 315 |
+
image_embeds.contiguous().view(-1, self.llm.config.hidden_size)
|
| 316 |
+
|
| 317 |
+
inputs_embeds[input_ids == QUERY_TOKEN_INDEX] = \
|
| 318 |
+
query_embeds.contiguous().view(-1, self.llm.config.hidden_size)
|
| 319 |
+
|
| 320 |
+
text_places = torch.logical_and(input_ids != self.image_token_id, input_ids != QUERY_TOKEN_INDEX)
|
| 321 |
+
|
| 322 |
+
inputs_embeds[text_places] = self.llm.get_input_embeddings()(input_ids[text_places])
|
| 323 |
+
|
| 324 |
+
inputs = dict(inputs_embeds=inputs_embeds,
|
| 325 |
+
attention_mask=attention_mask,
|
| 326 |
+
position_ids=position_ids,
|
| 327 |
+
past_key_values=past_key_values)
|
| 328 |
+
|
| 329 |
+
return inputs
|
| 330 |
+
|
| 331 |
+
def get_sigmas(self, timesteps, n_dim=4):
|
| 332 |
+
sigmas = self.train_scheduler.sigmas.to(device=self.device, dtype=self.dtype)
|
| 333 |
+
schedule_timesteps = self.train_scheduler.timesteps.to(self.device)
|
| 334 |
+
timesteps = timesteps.to(self.device)
|
| 335 |
+
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
| 336 |
+
|
| 337 |
+
sigma = sigmas[step_indices].flatten()
|
| 338 |
+
while len(sigma.shape) < n_dim:
|
| 339 |
+
sigma = sigma.unsqueeze(-1)
|
| 340 |
+
return sigma
|
| 341 |
+
|
| 342 |
+
def diff_loss(self, model_input, pooled_prompt_embeds, prompt_embeds, cond_input=None):
|
| 343 |
+
noise = [torch.randn_like(x) for x in model_input]
|
| 344 |
+
bsz = len(model_input)
|
| 345 |
+
|
| 346 |
+
u = compute_density_for_timestep_sampling(
|
| 347 |
+
weighting_scheme='none',
|
| 348 |
+
batch_size=bsz,
|
| 349 |
+
logit_mean=0.0,
|
| 350 |
+
logit_std=1.0,
|
| 351 |
+
)
|
| 352 |
+
indices = (u * self.train_scheduler.config.num_train_timesteps).long()
|
| 353 |
+
timesteps = self.train_scheduler.timesteps[indices].to(device=self.device)
|
| 354 |
+
|
| 355 |
+
# Add noise according to flow matching
|
| 356 |
+
sigmas = self.get_sigmas(timesteps, n_dim=model_input[0].ndim + 1)
|
| 357 |
+
noisy_model_input = [(1.0 - x) * y + x * z for x, y, z in zip(sigmas, model_input, noise)]
|
| 358 |
+
|
| 359 |
+
# Predict the noise residual
|
| 360 |
+
model_pred = self.transformer(
|
| 361 |
+
hidden_states=noisy_model_input,
|
| 362 |
+
cond_hidden_states=cond_input,
|
| 363 |
+
encoder_hidden_states=prompt_embeds,
|
| 364 |
+
pooled_projections=pooled_prompt_embeds,
|
| 365 |
+
timestep=timesteps,
|
| 366 |
+
return_dict=False,
|
| 367 |
+
)[0]
|
| 368 |
+
|
| 369 |
+
weighting = compute_loss_weighting_for_sd3(weighting_scheme='none', sigmas=sigmas)
|
| 370 |
+
|
| 371 |
+
# flow matching loss
|
| 372 |
+
target = [x - y for x, y in zip(noise, model_input)]
|
| 373 |
+
|
| 374 |
+
loss = [(x.float() * (y.float() - z.float()) ** 2).mean() for x, y, z in zip(weighting, model_pred, target)]
|
| 375 |
+
loss = sum(loss) / len(loss)
|
| 376 |
+
|
| 377 |
+
return loss
|
| 378 |
+
|
| 379 |
+
'''text-to-image generation (single-view)'''
|
| 380 |
+
def text2image_loss(self, data_dict):
|
| 381 |
+
pixel_values = [p.to(dtype=self.dtype, device=self.device) for p in data_dict['pixel_values']]
|
| 382 |
+
image_latents = [self.pixels_to_latents(p[None])[0] for p in pixel_values]
|
| 383 |
+
|
| 384 |
+
b = len(image_latents)
|
| 385 |
+
|
| 386 |
+
texts = ['' if random.uniform(0, 1) < self.unconditional else text
|
| 387 |
+
for text in data_dict['texts']]
|
| 388 |
+
|
| 389 |
+
text_inputs = self.prepare_gen_prompts(texts)
|
| 390 |
+
hidden_states = self.meta_queries[None].expand(b, self.num_queries, -1)
|
| 391 |
+
|
| 392 |
+
inputs = self.prepare_forward_input(query_embeds=hidden_states, **text_inputs)
|
| 393 |
+
|
| 394 |
+
max_length = self.max_length + self.num_queries
|
| 395 |
+
inputs_embeds = inputs['inputs_embeds'][:, -max_length:]
|
| 396 |
+
attention_mask = inputs['attention_mask'][:, -max_length:]
|
| 397 |
+
position_ids = inputs['position_ids'][:, -max_length:]
|
| 398 |
+
|
| 399 |
+
output = self.llm.model(
|
| 400 |
+
inputs_embeds=inputs_embeds,
|
| 401 |
+
attention_mask=attention_mask,
|
| 402 |
+
position_ids=position_ids,
|
| 403 |
+
return_dict=True)
|
| 404 |
+
|
| 405 |
+
hidden_states = output.last_hidden_state[:, -self.num_queries:]
|
| 406 |
+
pooled_prompt_embeds, prompt_embeds = self.llm2dit(hidden_states)
|
| 407 |
+
|
| 408 |
+
loss_diff = self.diff_loss(model_input=image_latents,
|
| 409 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 410 |
+
prompt_embeds=prompt_embeds)
|
| 411 |
+
|
| 412 |
+
return loss_diff
|
| 413 |
+
|
| 414 |
+
'''text-to-image generation (single-view) with camera map'''
|
| 415 |
+
def cam2image_loss(self, data_dict):
|
| 416 |
+
pixel_values = [p.to(dtype=self.dtype, device=self.device) for p in data_dict['pixel_values']]
|
| 417 |
+
image_latents = [self.pixels_to_latents(p[None])[0] for p in pixel_values]
|
| 418 |
+
b = len(image_latents)
|
| 419 |
+
# camera map as condition for the diffusion model
|
| 420 |
+
cam_values = [[img.to(dtype=self.dtype, device=self.device) for img in ref_images]
|
| 421 |
+
for ref_images in data_dict['cam_values']]
|
| 422 |
+
cam_latents = [[self.pixels_to_latents(img[None])[0] for img in ref_images]
|
| 423 |
+
for ref_images in cam_values]
|
| 424 |
+
|
| 425 |
+
texts = ['' if random.uniform(0, 1) < self.unconditional else text
|
| 426 |
+
for text in data_dict['texts']]
|
| 427 |
+
|
| 428 |
+
text_inputs = self.prepare_gen_prompts(texts)
|
| 429 |
+
hidden_states = self.meta_queries[None].expand(b, self.num_queries, -1)
|
| 430 |
+
|
| 431 |
+
inputs = self.prepare_forward_input(query_embeds=hidden_states, **text_inputs)
|
| 432 |
+
|
| 433 |
+
max_length = self.max_length + self.num_queries
|
| 434 |
+
inputs_embeds = inputs['inputs_embeds'][:, -max_length:]
|
| 435 |
+
attention_mask = inputs['attention_mask'][:, -max_length:]
|
| 436 |
+
position_ids = inputs['position_ids'][:, -max_length:]
|
| 437 |
+
|
| 438 |
+
output = self.llm.model(
|
| 439 |
+
inputs_embeds=inputs_embeds,
|
| 440 |
+
attention_mask=attention_mask,
|
| 441 |
+
position_ids=position_ids,
|
| 442 |
+
return_dict=True)
|
| 443 |
+
|
| 444 |
+
hidden_states = output.last_hidden_state[:, -self.num_queries:]
|
| 445 |
+
pooled_prompt_embeds, prompt_embeds = self.llm2dit(hidden_states)
|
| 446 |
+
|
| 447 |
+
loss_diff = self.diff_loss(model_input=image_latents,
|
| 448 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 449 |
+
prompt_embeds=prompt_embeds,
|
| 450 |
+
cond_input=cam_latents)
|
| 451 |
+
|
| 452 |
+
return loss_diff
|
| 453 |
+
|
| 454 |
+
'''image-to-image (cross-view) generation'''
|
| 455 |
+
def image2image_loss(self, data_dict):
|
| 456 |
+
# condition for the diffusion model (concat the camera map and the initial view)
|
| 457 |
+
cam_values = [[img.to(dtype=self.dtype, device=self.device) for img in ref_images]
|
| 458 |
+
for ref_images in data_dict['cam_values']]
|
| 459 |
+
cam_latents = [[self.pixels_to_latents(img[None])[0] for img in ref_images]
|
| 460 |
+
for ref_images in cam_values]
|
| 461 |
+
pixel_values_init = [[img.to(dtype=self.dtype, device=self.device) for img in ref_images]
|
| 462 |
+
for ref_images in data_dict['pixel_values_init']]
|
| 463 |
+
image_latents_init = [[self.pixels_to_latents(img[None])[0] for img in ref_images]
|
| 464 |
+
for ref_images in pixel_values_init]
|
| 465 |
+
mix_latents = [cam + img for cam, img in zip(cam_latents, image_latents_init)]
|
| 466 |
+
|
| 467 |
+
# condition embedding for querying the LLM (only initial view)
|
| 468 |
+
num_refs = [len(ref_images) for ref_images in pixel_values_init]
|
| 469 |
+
image_embeds = self.extract_visual_features(
|
| 470 |
+
torch.stack([pad_an_image_tensor(img) for ref_images in pixel_values_init for img in ref_images]))
|
| 471 |
+
|
| 472 |
+
image_embeds = self.projector(image_embeds)
|
| 473 |
+
ref_lens = [len(x) for x in image_embeds]
|
| 474 |
+
text_inputs = self.prepare_gen_prompts(data_dict['texts'], data_type='image2image',
|
| 475 |
+
num_refs=num_refs, ref_lens=ref_lens)
|
| 476 |
+
|
| 477 |
+
# input for the diffusion model
|
| 478 |
+
pixel_values = [p.to(dtype=self.dtype, device=self.device) for p in data_dict['pixel_values']]
|
| 479 |
+
image_latents = [self.pixels_to_latents(p[None])[0] for p in pixel_values]
|
| 480 |
+
|
| 481 |
+
# querying the LLM
|
| 482 |
+
b = len(image_latents)
|
| 483 |
+
hidden_states = self.meta_queries[None].expand(b, self.num_queries, -1)
|
| 484 |
+
inputs = self.prepare_forward_input(query_embeds=hidden_states, image_embeds=image_embeds, **text_inputs)
|
| 485 |
+
|
| 486 |
+
max_length = self.max_length + max(num_refs) * max(ref_lens) + self.num_queries
|
| 487 |
+
inputs_embeds = inputs['inputs_embeds'][:, -max_length:]
|
| 488 |
+
attention_mask = inputs['attention_mask'][:, -max_length:]
|
| 489 |
+
position_ids = inputs['position_ids'][:, -max_length:]
|
| 490 |
+
|
| 491 |
+
output = self.llm.model(inputs_embeds=inputs_embeds,
|
| 492 |
+
attention_mask=attention_mask,
|
| 493 |
+
position_ids=position_ids,
|
| 494 |
+
return_dict=True)
|
| 495 |
+
hidden_states = output.last_hidden_state[:, -self.num_queries:]
|
| 496 |
+
pooled_prompt_embeds, prompt_embeds = self.llm2dit(hidden_states)
|
| 497 |
+
loss_diff = self.diff_loss(model_input=image_latents,
|
| 498 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 499 |
+
prompt_embeds=prompt_embeds,
|
| 500 |
+
cond_input=mix_latents)
|
| 501 |
+
|
| 502 |
+
return loss_diff
|
| 503 |
+
|
| 504 |
+
'''image-to-text(camera) understanding, mixed base, thinking, and instruction tuning'''
|
| 505 |
+
def image2text_loss(self, data_dict):
|
| 506 |
+
pixel_values = [pad_an_image_tensor(img) for img in data_dict['pixel_values']]
|
| 507 |
+
pixel_values = torch.stack(pixel_values).to(dtype=self.dtype, device=self.device)
|
| 508 |
+
image_embeds = self.extract_visual_features(pixel_values)
|
| 509 |
+
|
| 510 |
+
if not self.freeze_visual_encoder:
|
| 511 |
+
image_embeds = _ScaleGradient.apply(image_embeds, self.visual_encoder_grad_scale)
|
| 512 |
+
|
| 513 |
+
image_embeds = self.projector(image_embeds)
|
| 514 |
+
text_inputs = self.prepare_und_prompts(conversations=data_dict['conversations'],
|
| 515 |
+
data_type='image2text',
|
| 516 |
+
image_lengths=image_embeds.shape[1])
|
| 517 |
+
|
| 518 |
+
labels, input_ids, attention_mask, position_ids = \
|
| 519 |
+
text_inputs['labels'], text_inputs['input_ids'], text_inputs['attention_mask'], text_inputs['position_ids']
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
inputs_embeds = torch.zeros(*input_ids.shape, self.llm.config.hidden_size,
|
| 523 |
+
device=self.device, dtype=self.dtype)
|
| 524 |
+
inputs_embeds[input_ids == INPUT_IMAGE_TOKEN_INDEX] = image_embeds.flatten(0, 1)
|
| 525 |
+
inputs_embeds[input_ids != INPUT_IMAGE_TOKEN_INDEX] = \
|
| 526 |
+
self.llm.get_input_embeddings()(input_ids[input_ids != INPUT_IMAGE_TOKEN_INDEX])
|
| 527 |
+
|
| 528 |
+
max_length = self.max_length + image_embeds.shape[1]
|
| 529 |
+
inputs_embeds = inputs_embeds[:, -max_length:]
|
| 530 |
+
attention_mask = attention_mask[:, -max_length:]
|
| 531 |
+
position_ids = position_ids[:, -max_length:]
|
| 532 |
+
labels = labels[:, -max_length:]
|
| 533 |
+
|
| 534 |
+
output = self.llm.model(inputs_embeds=inputs_embeds,
|
| 535 |
+
attention_mask=attention_mask,
|
| 536 |
+
position_ids=position_ids,
|
| 537 |
+
return_dict=True)
|
| 538 |
+
|
| 539 |
+
hidden_states = output.last_hidden_state[:, :-1]
|
| 540 |
+
labels = labels[:, 1:]
|
| 541 |
+
hidden_states = hidden_states[labels >= 0]
|
| 542 |
+
labels = labels[labels >= 0]
|
| 543 |
+
|
| 544 |
+
logits = self.llm.get_output_embeddings()(hidden_states)
|
| 545 |
+
loss = F.cross_entropy(input=logits, target=labels)
|
| 546 |
+
|
| 547 |
+
return loss
|
| 548 |
+
|
| 549 |
+
'''text-to-text understanding, offering the enhanced caption for the generation'''
|
| 550 |
+
def text2text_loss(self, data_dict):
|
| 551 |
+
text_inputs = self.prepare_und_prompts(conversations=data_dict['conversations'], data_type='text2text')
|
| 552 |
+
labels, input_ids, attention_mask, position_ids = \
|
| 553 |
+
text_inputs['labels'], text_inputs['input_ids'], text_inputs['attention_mask'], text_inputs['position_ids']
|
| 554 |
+
|
| 555 |
+
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
| 556 |
+
max_length = self.max_length
|
| 557 |
+
inputs_embeds = inputs_embeds[:, -max_length:]
|
| 558 |
+
attention_mask = attention_mask[:, -max_length:]
|
| 559 |
+
position_ids = position_ids[:, -max_length:]
|
| 560 |
+
labels = labels[:, -max_length:]
|
| 561 |
+
|
| 562 |
+
output = self.llm.model(inputs_embeds=inputs_embeds,
|
| 563 |
+
attention_mask=attention_mask,
|
| 564 |
+
position_ids=position_ids,
|
| 565 |
+
return_dict=True)
|
| 566 |
+
|
| 567 |
+
hidden_states = output.last_hidden_state[:, :-1]
|
| 568 |
+
labels = labels[:, 1:]
|
| 569 |
+
hidden_states = hidden_states[labels >= 0]
|
| 570 |
+
labels = labels[labels >= 0]
|
| 571 |
+
|
| 572 |
+
logits = self.llm.get_output_embeddings()(hidden_states)
|
| 573 |
+
loss = F.cross_entropy(input=logits, target=labels)
|
| 574 |
+
|
| 575 |
+
return loss
|
| 576 |
+
|
| 577 |
+
'''distribute different losses for each task'''
|
| 578 |
+
def compute_loss(self, data_dict):
|
| 579 |
+
loss_fn_map = {
|
| 580 |
+
'text2image': self.text2image_loss,
|
| 581 |
+
'cam2image': self.cam2image_loss,
|
| 582 |
+
'image2text': self.image2text_loss,
|
| 583 |
+
'text2text': self.text2text_loss,
|
| 584 |
+
'image2image': self.image2image_loss,
|
| 585 |
+
'image2text_cross_view': self.image2text_loss,
|
| 586 |
+
}
|
| 587 |
+
|
| 588 |
+
losses = {}
|
| 589 |
+
for data_type, batch_data in data_dict.items():
|
| 590 |
+
if data_type not in loss_fn_map:
|
| 591 |
+
raise ValueError(f"Unsupported data_type: {data_type}")
|
| 592 |
+
loss_fn = loss_fn_map[data_type]
|
| 593 |
+
loss = loss_fn(batch_data)
|
| 594 |
+
losses[f'loss_{data_type}'] = loss
|
| 595 |
+
return losses
|
| 596 |
+
|
| 597 |
+
@torch.no_grad()
|
| 598 |
+
def generate(self,
|
| 599 |
+
prompt,
|
| 600 |
+
cfg_prompt,
|
| 601 |
+
cam_values=None,
|
| 602 |
+
pixel_values_init=None,
|
| 603 |
+
cfg_scale=4.5,
|
| 604 |
+
num_steps=50,
|
| 605 |
+
generator=None,
|
| 606 |
+
height=512,
|
| 607 |
+
width=512,
|
| 608 |
+
max_new_tokens=512,
|
| 609 |
+
reasoning=False,
|
| 610 |
+
prompt_reasoning=None,
|
| 611 |
+
progress_bar=True):
|
| 612 |
+
assert len(prompt) == len(cfg_prompt)
|
| 613 |
+
b = len(prompt)
|
| 614 |
+
output_reasoning = [''] * b
|
| 615 |
+
|
| 616 |
+
if reasoning:
|
| 617 |
+
# enrich the prompt if required reasoning generation
|
| 618 |
+
assert prompt_reasoning is not None, \
|
| 619 |
+
"prompt_reasoning must be provided for reasoning generation"
|
| 620 |
+
if isinstance(prompt_reasoning, str):
|
| 621 |
+
prompt_reasoning = [prompt_reasoning]
|
| 622 |
+
if isinstance(prompt, str):
|
| 623 |
+
prompt = [prompt]
|
| 624 |
+
|
| 625 |
+
conversations = [[{'input': f"{p1} {p2}",}]
|
| 626 |
+
for p1, p2 in zip(prompt_reasoning, prompt)]
|
| 627 |
+
|
| 628 |
+
text_inputs = self.prepare_und_prompts(
|
| 629 |
+
conversations=conversations, data_type="text2text", input_ids_with_output=False)
|
| 630 |
+
input_ids, attention_mask, position_ids = \
|
| 631 |
+
text_inputs['input_ids'], text_inputs['attention_mask'], text_inputs['position_ids']
|
| 632 |
+
|
| 633 |
+
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
| 634 |
+
past_key_values = DynamicCache.from_legacy_cache()
|
| 635 |
+
|
| 636 |
+
output_ids = []
|
| 637 |
+
for _ in tqdm(range(max_new_tokens), disable=not progress_bar):
|
| 638 |
+
output = self.llm.model(
|
| 639 |
+
inputs_embeds=inputs_embeds,
|
| 640 |
+
attention_mask=attention_mask,
|
| 641 |
+
position_ids=position_ids,
|
| 642 |
+
past_key_values=past_key_values,
|
| 643 |
+
use_cache=True,
|
| 644 |
+
return_dict=True)
|
| 645 |
+
logits = self.llm.get_output_embeddings()(output.last_hidden_state[:, -1:])
|
| 646 |
+
input_ids = torch.argmax(logits, dim=-1) # b 1
|
| 647 |
+
if len(output_ids) > 0:
|
| 648 |
+
input_ids = torch.where(output_ids[-1] == self.tokenizer.eos_token_id,
|
| 649 |
+
output_ids[-1], input_ids)
|
| 650 |
+
output_ids.append(input_ids)
|
| 651 |
+
|
| 652 |
+
if (input_ids == self.tokenizer.eos_token_id).all():
|
| 653 |
+
break
|
| 654 |
+
|
| 655 |
+
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
| 656 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_ones(b, 1)], dim=1)
|
| 657 |
+
position_ids = torch.max(position_ids, dim=1, keepdim=True).values + 1
|
| 658 |
+
past_key_values = output.past_key_values
|
| 659 |
+
|
| 660 |
+
output_ids = torch.cat(output_ids, dim=1)
|
| 661 |
+
output_reasoning = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 662 |
+
prompt = [f"{p} {o}" for p, o in zip(prompt, output_reasoning)]
|
| 663 |
+
|
| 664 |
+
if cam_values is not None:
|
| 665 |
+
# for the generation with the camera map
|
| 666 |
+
cam_values = [[img.to(dtype=self.dtype, device=self.device) for img in ref_images]
|
| 667 |
+
for ref_images in cam_values]
|
| 668 |
+
cond_latents = [[self.pixels_to_latents(img[None])[0] for img in ref_images]
|
| 669 |
+
for ref_images in cam_values]
|
| 670 |
+
text_inputs = self.prepare_gen_prompts(prompt + cfg_prompt)
|
| 671 |
+
if pixel_values_init is not None:
|
| 672 |
+
# for the generation with the camera map and initial view (cross-view generation)
|
| 673 |
+
num_refs = [len(ref_images) for ref_images in pixel_values_init]
|
| 674 |
+
pixel_values_init = [[img.to(dtype=self.dtype, device=self.device) for img in ref_images]
|
| 675 |
+
for ref_images in pixel_values_init]
|
| 676 |
+
image_embeds = self.extract_visual_features(
|
| 677 |
+
torch.stack([pad_an_image_tensor(img) for ref_images in pixel_values_init for img in ref_images]))
|
| 678 |
+
image_embeds = self.projector(image_embeds)
|
| 679 |
+
|
| 680 |
+
ref_lens = [len(x) for x in image_embeds]
|
| 681 |
+
text_inputs = self.prepare_gen_prompts(prompt + cfg_prompt, data_type='image2image', num_refs=num_refs*2, ref_lens=ref_lens*2)
|
| 682 |
+
text_inputs.update(image_embeds=torch.cat([image_embeds]*2))
|
| 683 |
+
|
| 684 |
+
cond_latents_init = [[self.pixels_to_latents(img[None])[0] for img in ref_imgs]
|
| 685 |
+
for ref_imgs in pixel_values_init]
|
| 686 |
+
cond_latents = [cam + img for cam, img in zip(cond_latents, cond_latents_init)]
|
| 687 |
+
|
| 688 |
+
cond_latents = cond_latents * 2
|
| 689 |
+
else:
|
| 690 |
+
# for the text2image generation
|
| 691 |
+
text_inputs = self.prepare_gen_prompts(prompt + cfg_prompt)
|
| 692 |
+
cond_latents = None
|
| 693 |
+
|
| 694 |
+
hidden_states = self.meta_queries[None].expand(2*b, self.num_queries, -1)
|
| 695 |
+
inputs = self.prepare_forward_input(query_embeds=hidden_states, **text_inputs)
|
| 696 |
+
|
| 697 |
+
output = self.llm.model(**inputs, return_dict=True)
|
| 698 |
+
hidden_states = output.last_hidden_state[:, -self.num_queries:]
|
| 699 |
+
pooled_prompt_embeds, prompt_embeds = self.llm2dit(hidden_states)
|
| 700 |
+
|
| 701 |
+
pipeline = StableDiffusion3Pipeline(
|
| 702 |
+
transformer=self.transformer,
|
| 703 |
+
scheduler=self.test_scheduler,
|
| 704 |
+
vae=self.vae,
|
| 705 |
+
text_encoder=None,
|
| 706 |
+
tokenizer=None,
|
| 707 |
+
text_encoder_2=None,
|
| 708 |
+
tokenizer_2=None,
|
| 709 |
+
text_encoder_3=None,
|
| 710 |
+
tokenizer_3=None,
|
| 711 |
+
)
|
| 712 |
+
|
| 713 |
+
pipeline.set_progress_bar_config(disable=not progress_bar)
|
| 714 |
+
|
| 715 |
+
samples = pipeline(
|
| 716 |
+
height=height,
|
| 717 |
+
width=width,
|
| 718 |
+
guidance_scale=cfg_scale,
|
| 719 |
+
num_inference_steps=num_steps,
|
| 720 |
+
prompt_embeds=prompt_embeds[:b],
|
| 721 |
+
pooled_prompt_embeds=pooled_prompt_embeds[:b],
|
| 722 |
+
negative_prompt_embeds=prompt_embeds[b:],
|
| 723 |
+
negative_pooled_prompt_embeds=pooled_prompt_embeds[b:],
|
| 724 |
+
generator=generator,
|
| 725 |
+
output_type='latent',
|
| 726 |
+
cond_latents=cond_latents
|
| 727 |
+
).images.to(self.dtype)
|
| 728 |
+
|
| 729 |
+
return self.latents_to_pixels(samples), output_reasoning
|
| 730 |
+
|
| 731 |
+
@torch.no_grad()
|
| 732 |
+
def understand(self, prompt, pixel_values, max_new_tokens=512, progress_bar=True):
|
| 733 |
+
if isinstance(prompt, str):
|
| 734 |
+
prompt = [prompt]
|
| 735 |
+
if isinstance(pixel_values, torch.Tensor):
|
| 736 |
+
pixel_values = [pixel_values]
|
| 737 |
+
|
| 738 |
+
bsz = len(prompt)
|
| 739 |
+
assert len(pixel_values) == bsz
|
| 740 |
+
|
| 741 |
+
pixel_values = [pad_an_image_tensor(img) for img in pixel_values]
|
| 742 |
+
pixel_values = torch.stack(pixel_values).to(dtype=self.dtype, device=self.device)
|
| 743 |
+
image_embeds = self.extract_visual_features(pixel_values)
|
| 744 |
+
image_embeds = self.projector(image_embeds)
|
| 745 |
+
|
| 746 |
+
conversations = [[{'input': f"{DEFAULT_IMAGE_TOKEN}\n{p}",}] for p in prompt]
|
| 747 |
+
|
| 748 |
+
text_inputs = self.prepare_und_prompts(conversations=conversations, image_lengths=image_embeds.shape[1],
|
| 749 |
+
input_ids_with_output=False)
|
| 750 |
+
|
| 751 |
+
input_ids, attention_mask, position_ids = \
|
| 752 |
+
text_inputs['input_ids'], text_inputs['attention_mask'], text_inputs['position_ids']
|
| 753 |
+
|
| 754 |
+
inputs_embeds = torch.zeros(*input_ids.shape, self.llm.config.hidden_size,
|
| 755 |
+
device=self.device, dtype=self.dtype)
|
| 756 |
+
inputs_embeds[input_ids == INPUT_IMAGE_TOKEN_INDEX] = image_embeds.flatten(0, 1)
|
| 757 |
+
inputs_embeds[input_ids != INPUT_IMAGE_TOKEN_INDEX] = \
|
| 758 |
+
self.llm.get_input_embeddings()(input_ids[input_ids != INPUT_IMAGE_TOKEN_INDEX])
|
| 759 |
+
|
| 760 |
+
past_key_values = DynamicCache.from_legacy_cache()
|
| 761 |
+
|
| 762 |
+
output_ids = []
|
| 763 |
+
|
| 764 |
+
for _ in tqdm(range(max_new_tokens), disable=not progress_bar):
|
| 765 |
+
output = self.llm.model(
|
| 766 |
+
inputs_embeds=inputs_embeds,
|
| 767 |
+
attention_mask=attention_mask,
|
| 768 |
+
position_ids=position_ids,
|
| 769 |
+
past_key_values=past_key_values,
|
| 770 |
+
use_cache=True,
|
| 771 |
+
return_dict=True)
|
| 772 |
+
logits = self.llm.get_output_embeddings()(output.last_hidden_state[:, -1:])
|
| 773 |
+
input_ids = torch.argmax(logits, dim=-1) # b 1
|
| 774 |
+
if len(output_ids) > 0:
|
| 775 |
+
input_ids = torch.where(output_ids[-1] == self.tokenizer.eos_token_id,
|
| 776 |
+
output_ids[-1], input_ids)
|
| 777 |
+
output_ids.append(input_ids)
|
| 778 |
+
|
| 779 |
+
if (input_ids == self.tokenizer.eos_token_id).all():
|
| 780 |
+
break
|
| 781 |
+
|
| 782 |
+
inputs_embeds = self.llm.get_input_embeddings()(input_ids)
|
| 783 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_ones(bsz, 1)], dim=1)
|
| 784 |
+
position_ids = torch.max(position_ids, dim=1, keepdim=True).values + 1
|
| 785 |
+
past_key_values = output.past_key_values
|
| 786 |
+
|
| 787 |
+
output_ids = torch.cat(output_ids, dim=1)
|
| 788 |
+
output_text = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 789 |
+
|
| 790 |
+
return output_text
|
src/models/radiov3/adaptor_base.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
from argparse import Namespace
|
| 9 |
+
from typing import NamedTuple, Optional
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from torch import nn
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class AdaptorInput(NamedTuple):
|
| 17 |
+
images: torch.Tensor
|
| 18 |
+
summary: torch.Tensor
|
| 19 |
+
features: torch.Tensor
|
| 20 |
+
feature_fmt: str
|
| 21 |
+
patch_size: int
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class RadioOutput(NamedTuple):
|
| 25 |
+
summary: torch.Tensor
|
| 26 |
+
features: torch.Tensor
|
| 27 |
+
|
| 28 |
+
def to(self, *args, **kwargs):
|
| 29 |
+
return RadioOutput(
|
| 30 |
+
self.summary.to(*args, **kwargs) if self.summary is not None else None,
|
| 31 |
+
self.features.to(*args, **kwargs) if self.features is not None else None,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class AdaptorBase(nn.Module):
|
| 36 |
+
def forward(self, input: AdaptorInput) -> RadioOutput:
|
| 37 |
+
raise NotImplementedError("Subclasses must implement this!")
|
src/models/radiov3/adaptor_generic.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
from argparse import Namespace
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch import nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
|
| 14 |
+
from .adaptor_base import AdaptorBase, AdaptorInput, RadioOutput
|
| 15 |
+
from .adaptor_mlp import create_mlp_from_state, create_mlp_from_config
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class GenericAdaptor(AdaptorBase):
|
| 19 |
+
def __init__(self, main_config: Namespace, adaptor_config, state, mlp_config=None):
|
| 20 |
+
super().__init__()
|
| 21 |
+
|
| 22 |
+
extra_args = dict()
|
| 23 |
+
ups = None
|
| 24 |
+
ups_rank = None
|
| 25 |
+
if adaptor_config is not None:
|
| 26 |
+
ups = adaptor_config.get('fd_upsample_factor', None)
|
| 27 |
+
ups_rank = adaptor_config.get('fd_upsample_rank', None)
|
| 28 |
+
elif mlp_config is not None:
|
| 29 |
+
ups = mlp_config["feature"].get('upsample_factor', None)
|
| 30 |
+
ups_rank = mlp_config["feature"].get('upsample_rank', None)
|
| 31 |
+
if ups is not None:
|
| 32 |
+
extra_args['upsample_factor'] = ups
|
| 33 |
+
extra_args['upsample_rank'] = ups_rank
|
| 34 |
+
|
| 35 |
+
if state is not None:
|
| 36 |
+
spectral_heads = getattr(main_config, 'spectral_heads', False)
|
| 37 |
+
self.head_mlp = create_mlp_from_state(main_config.mlp_version, state, 'summary.', spectral_weights=spectral_heads)
|
| 38 |
+
self.feat_mlp = create_mlp_from_state(main_config.mlp_version, state, 'feature.', spectral_weights=spectral_heads, **extra_args)
|
| 39 |
+
else:
|
| 40 |
+
assert mlp_config is not None, "Config must not be None if state is None"
|
| 41 |
+
|
| 42 |
+
self.head_mlp = create_mlp_from_config(
|
| 43 |
+
main_config.mlp_version,
|
| 44 |
+
mlp_config["summary"]["input_dim"],
|
| 45 |
+
mlp_config["summary"]["hidden_dim"],
|
| 46 |
+
mlp_config["summary"]["output_dim"],
|
| 47 |
+
mlp_config["summary"]["num_inner"],
|
| 48 |
+
)
|
| 49 |
+
self.feat_mlp = create_mlp_from_config(
|
| 50 |
+
main_config.mlp_version,
|
| 51 |
+
mlp_config["feature"]["input_dim"],
|
| 52 |
+
mlp_config["feature"]["hidden_dim"],
|
| 53 |
+
mlp_config["feature"]["output_dim"],
|
| 54 |
+
mlp_config["feature"]["num_inner"],
|
| 55 |
+
**extra_args
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
def forward(self, input: AdaptorInput) -> RadioOutput:
|
| 59 |
+
# Convert input'd type to the type of the first parameter of the adaptor.
|
| 60 |
+
first_param = next(self.parameters())
|
| 61 |
+
summary = self.head_mlp(input.summary.to(dtype=first_param.dtype)).to(dtype=input.summary.dtype)
|
| 62 |
+
feat = self.feat_mlp(input.features.to(dtype=first_param.dtype), images=input.images, patch_size=input.patch_size).to(dtype=input.features.dtype)
|
| 63 |
+
|
| 64 |
+
if input.feature_fmt == 'NCHW':
|
| 65 |
+
feat = (feat.reshape(feat.shape[0], input.images.shape[-2] // input.patch_size * self.feat_mlp.upsample_factor, input.images.shape[-1] // input.patch_size * self.feat_mlp.upsample_factor, feat.shape[2])
|
| 66 |
+
.permute(0, 3, 1, 2)
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
return RadioOutput(summary, feat)
|
src/models/radiov3/adaptor_mlp.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
import math
|
| 9 |
+
from typing import Dict, Optional
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from torch import nn
|
| 13 |
+
|
| 14 |
+
from einops import rearrange
|
| 15 |
+
from timm.models.vision_transformer import Block
|
| 16 |
+
|
| 17 |
+
from .enable_spectral_reparam import disable_spectral_reparam, enable_spectral_reparam
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class MLP(nn.Module):
|
| 21 |
+
def __init__(self, input_size: int, hidden_size: int, output_size: int,
|
| 22 |
+
num_inner: int = 0, device: torch.device = None, **kwargs):
|
| 23 |
+
super(MLP, self).__init__()
|
| 24 |
+
self.fc1 = nn.Linear(input_size, hidden_size, device=device)
|
| 25 |
+
self.norm = nn.LayerNorm(hidden_size, device=device)
|
| 26 |
+
self.relu = nn.ReLU()
|
| 27 |
+
|
| 28 |
+
inner = []
|
| 29 |
+
for _ in range(num_inner):
|
| 30 |
+
inner.extend([
|
| 31 |
+
nn.Linear(hidden_size, hidden_size, device=device),
|
| 32 |
+
nn.LayerNorm(hidden_size, device=device),
|
| 33 |
+
nn.ReLU(),
|
| 34 |
+
])
|
| 35 |
+
if inner:
|
| 36 |
+
self.inner = nn.Sequential(*inner)
|
| 37 |
+
else:
|
| 38 |
+
self.inner = nn.Identity()
|
| 39 |
+
|
| 40 |
+
self.fc2 = nn.Linear(hidden_size, output_size, device=device)
|
| 41 |
+
|
| 42 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 43 |
+
x = self.fc1(x)
|
| 44 |
+
x = self.norm(x)
|
| 45 |
+
x = self.relu(x)
|
| 46 |
+
x = self.inner(x)
|
| 47 |
+
x = self.fc2(x)
|
| 48 |
+
return x
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class MLP2(nn.Module):
|
| 52 |
+
def __init__(self, input_size: int, hidden_size: int, output_size: int,
|
| 53 |
+
num_inner: int = 0,
|
| 54 |
+
pre_norm: bool = False, device: torch.device = None,
|
| 55 |
+
upsample_factor: int = 1,
|
| 56 |
+
upsample_rank: int = None,
|
| 57 |
+
from_config: bool = False,
|
| 58 |
+
**kwargs):
|
| 59 |
+
super().__init__()
|
| 60 |
+
|
| 61 |
+
self.pre_norm = nn.Sequential(
|
| 62 |
+
nn.LayerNorm(input_size),
|
| 63 |
+
nn.GELU(),
|
| 64 |
+
) if pre_norm else nn.Identity()
|
| 65 |
+
|
| 66 |
+
self.upsample_factor = upsample_factor
|
| 67 |
+
sq_ups = upsample_factor ** 2
|
| 68 |
+
|
| 69 |
+
self._real_output_dim = output_size // sq_ups
|
| 70 |
+
|
| 71 |
+
# hidden_size *= upsample_factor
|
| 72 |
+
# output_size *= (upsample_factor ** 2)
|
| 73 |
+
|
| 74 |
+
self.fc1 = nn.Linear(input_size, hidden_size, device=device)
|
| 75 |
+
|
| 76 |
+
blocks = []
|
| 77 |
+
for _ in range(num_inner):
|
| 78 |
+
blocks.append(nn.Sequential(
|
| 79 |
+
nn.LayerNorm(hidden_size, device=device),
|
| 80 |
+
nn.GELU(),
|
| 81 |
+
nn.Linear(hidden_size, hidden_size, device=device),
|
| 82 |
+
))
|
| 83 |
+
self.blocks = nn.ModuleList(blocks)
|
| 84 |
+
|
| 85 |
+
self.final = nn.Sequential(
|
| 86 |
+
nn.LayerNorm(hidden_size, device=device),
|
| 87 |
+
nn.GELU(),
|
| 88 |
+
nn.Linear(hidden_size, output_size, device=device),
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
def forward(self, x: torch.Tensor, images: Optional[torch.Tensor] = None, patch_size: Optional[int] = None) -> torch.Tensor:
|
| 92 |
+
x = self.pre_norm(x)
|
| 93 |
+
x = self.fc1(x)
|
| 94 |
+
for block in self.blocks:
|
| 95 |
+
x = x + block(x)
|
| 96 |
+
x = self.final(x)
|
| 97 |
+
|
| 98 |
+
if self.upsample_factor > 1:
|
| 99 |
+
if images is None:
|
| 100 |
+
raise ValueError(f'`images` cannot be `None` when the head\'s `upsample_factor > 1`!')
|
| 101 |
+
if patch_size is None:
|
| 102 |
+
raise ValueError(f'`patch_size` cannot be `None` when the head\'s `upsample_factor > 1`!')
|
| 103 |
+
h, w = tuple(d // patch_size for d in images.shape[-2:])
|
| 104 |
+
x = rearrange(x, 'b (h w) (u1 u2 c) -> b (h u1 w u2) c',
|
| 105 |
+
h=h, w=w, u1=self.upsample_factor, u2=self.upsample_factor,
|
| 106 |
+
c=self._real_output_dim)
|
| 107 |
+
|
| 108 |
+
return x
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
MLP_FACTORY = {
|
| 112 |
+
'v1': MLP,
|
| 113 |
+
'v2': MLP2,
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def strip_prefix(state: Dict[str, torch.Tensor], prefix: str):
|
| 118 |
+
state = {
|
| 119 |
+
k[len(prefix):]: v
|
| 120 |
+
for k, v in state.items()
|
| 121 |
+
if k.startswith(prefix)
|
| 122 |
+
}
|
| 123 |
+
return state
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def get_mlp_info_from_state(version: str, state: Dict[str, torch.Tensor], prefix: str = '', spectral_weights: bool = False):
|
| 127 |
+
state = strip_prefix(state, prefix)
|
| 128 |
+
|
| 129 |
+
weight_suffix = 'weight' if not spectral_weights else 'parametrizations.weight.original'
|
| 130 |
+
|
| 131 |
+
if version == 'v1':
|
| 132 |
+
hidden_dim, input_dim = state[f'fc1.{weight_suffix}'].shape
|
| 133 |
+
output_dim = state[f'fc2.{weight_suffix}'].shape[0]
|
| 134 |
+
|
| 135 |
+
for num_inner in range(1000):
|
| 136 |
+
k = f'inner.{num_inner}.0.weight'
|
| 137 |
+
if k not in state:
|
| 138 |
+
break
|
| 139 |
+
elif version == 'v2':
|
| 140 |
+
hidden_dim, input_dim = state[f'fc1.{weight_suffix}'].shape
|
| 141 |
+
output_dim = state[f'final.2.{weight_suffix}'].shape[0]
|
| 142 |
+
|
| 143 |
+
for num_inner in range(1000):
|
| 144 |
+
k = f'blocks.{num_inner}.0.weight'
|
| 145 |
+
if k not in state:
|
| 146 |
+
break
|
| 147 |
+
else:
|
| 148 |
+
raise ValueError(f'Unsupported MLP version: {version}')
|
| 149 |
+
|
| 150 |
+
return input_dim, hidden_dim, output_dim, num_inner
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def create_mlp_from_config(version: str, input_dim: int, hidden_dim: int, output_dim: int, num_inner: int, **kwargs):
|
| 154 |
+
ret: nn.Module = MLP_FACTORY[version](input_dim, hidden_dim, output_dim, num_inner, from_config=True, **kwargs)
|
| 155 |
+
|
| 156 |
+
return ret
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def create_mlp_from_state(version: str, state: Dict[str, torch.Tensor], prefix: str = '', spectral_weights: bool = False, **kwargs):
|
| 160 |
+
state = strip_prefix(state, prefix)
|
| 161 |
+
|
| 162 |
+
input_dim, hidden_dim, output_dim, num_inner = get_mlp_info_from_state(version, state, spectral_weights=spectral_weights)
|
| 163 |
+
|
| 164 |
+
ret: nn.Module = create_mlp_from_config(version, input_dim, hidden_dim, output_dim, num_inner, **kwargs)
|
| 165 |
+
|
| 166 |
+
if spectral_weights:
|
| 167 |
+
enable_spectral_reparam(ret, init_norm_to_current=False, state_dict_guidance=state)
|
| 168 |
+
|
| 169 |
+
ret.load_state_dict(state)
|
| 170 |
+
|
| 171 |
+
if spectral_weights:
|
| 172 |
+
disable_spectral_reparam(ret)
|
| 173 |
+
|
| 174 |
+
return ret
|
src/models/radiov3/adaptor_registry.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
from argparse import Namespace
|
| 9 |
+
from typing import Dict, Any
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
from .adaptor_generic import GenericAdaptor, AdaptorBase
|
| 14 |
+
|
| 15 |
+
dict_t = Dict[str, Any]
|
| 16 |
+
state_t = Dict[str, torch.Tensor]
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class AdaptorRegistry:
|
| 20 |
+
def __init__(self):
|
| 21 |
+
self._registry = {}
|
| 22 |
+
|
| 23 |
+
def register_adaptor(self, name):
|
| 24 |
+
def decorator(factory_function):
|
| 25 |
+
if name in self._registry:
|
| 26 |
+
raise ValueError(f"Model '{name}' already registered")
|
| 27 |
+
self._registry[name] = factory_function
|
| 28 |
+
return factory_function
|
| 29 |
+
return decorator
|
| 30 |
+
|
| 31 |
+
def create_adaptor(self, name, main_config: Namespace, adaptor_config: dict_t, state: state_t) -> AdaptorBase:
|
| 32 |
+
if name not in self._registry:
|
| 33 |
+
return GenericAdaptor(main_config, adaptor_config, state)
|
| 34 |
+
return self._registry[name](main_config, adaptor_config, state)
|
| 35 |
+
|
| 36 |
+
# Creating an instance of the registry
|
| 37 |
+
adaptor_registry = AdaptorRegistry()
|
src/models/radiov3/cls_token.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
from typing import Optional
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch import nn
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class ClsToken(nn.Module):
|
| 15 |
+
def __init__(self, ndim: int,
|
| 16 |
+
num_tokens: int = 1,
|
| 17 |
+
enabled: bool = True,
|
| 18 |
+
register_multiple: Optional[int] = None,
|
| 19 |
+
num_registers: Optional[int] = None,
|
| 20 |
+
):
|
| 21 |
+
super().__init__()
|
| 22 |
+
|
| 23 |
+
self.ndim = ndim
|
| 24 |
+
self.enabled = enabled
|
| 25 |
+
self.num_registers = 0
|
| 26 |
+
self.num_tokens = num_tokens
|
| 27 |
+
if enabled:
|
| 28 |
+
if num_registers:
|
| 29 |
+
self.num_registers = num_registers
|
| 30 |
+
elif register_multiple:
|
| 31 |
+
self.num_registers = register_multiple - (num_tokens % register_multiple)
|
| 32 |
+
|
| 33 |
+
scale = ndim ** -0.5
|
| 34 |
+
self.token = nn.Parameter(torch.randn(num_tokens + self.num_registers, ndim) * scale)
|
| 35 |
+
else:
|
| 36 |
+
self.token = None
|
| 37 |
+
|
| 38 |
+
self.num_patches = self.num_tokens + self.num_registers
|
| 39 |
+
|
| 40 |
+
def disable(self):
|
| 41 |
+
self.token = None
|
| 42 |
+
self.enabled = False
|
| 43 |
+
|
| 44 |
+
def forward(self, x: torch.Tensor):
|
| 45 |
+
if self.token is None:
|
| 46 |
+
return x
|
| 47 |
+
|
| 48 |
+
token = self.token.unsqueeze(0).expand(x.shape[0], -1, -1)
|
| 49 |
+
x = torch.cat([
|
| 50 |
+
token,
|
| 51 |
+
x,
|
| 52 |
+
], dim=1)
|
| 53 |
+
|
| 54 |
+
return x
|
| 55 |
+
|
| 56 |
+
def no_weight_decay(self):
|
| 57 |
+
return [
|
| 58 |
+
'token',
|
| 59 |
+
]
|
src/models/radiov3/common.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
from dataclasses import dataclass
|
| 10 |
+
from typing import Optional
|
| 11 |
+
|
| 12 |
+
from .radio_model import Resolution
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@dataclass
|
| 16 |
+
class RadioResource:
|
| 17 |
+
url: str
|
| 18 |
+
patch_size: int
|
| 19 |
+
max_resolution: int
|
| 20 |
+
preferred_resolution: Resolution
|
| 21 |
+
supports_vitdet: bool = True
|
| 22 |
+
vitdet_num_windowed: Optional[int] = None
|
| 23 |
+
vitdet_num_global: Optional[int] = None
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
RESOURCE_MAP = {
|
| 27 |
+
# RADIOv2.5
|
| 28 |
+
"radio_v2.5-b": RadioResource(
|
| 29 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-b_half.pth.tar?download=true",
|
| 30 |
+
patch_size=16,
|
| 31 |
+
max_resolution=2048,
|
| 32 |
+
preferred_resolution=(768, 768),
|
| 33 |
+
vitdet_num_global=4,
|
| 34 |
+
),
|
| 35 |
+
"radio_v2.5-l": RadioResource(
|
| 36 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-l_half.pth.tar?download=true",
|
| 37 |
+
patch_size=16,
|
| 38 |
+
max_resolution=2048,
|
| 39 |
+
preferred_resolution=(768, 768),
|
| 40 |
+
vitdet_num_global=4,
|
| 41 |
+
),
|
| 42 |
+
"radio_v2.5-h": RadioResource(
|
| 43 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-h.pth.tar?download=true",
|
| 44 |
+
patch_size=16,
|
| 45 |
+
max_resolution=2048,
|
| 46 |
+
preferred_resolution=(768, 768),
|
| 47 |
+
vitdet_num_global=4,
|
| 48 |
+
),
|
| 49 |
+
"radio_v2.5-h-norm": RadioResource(
|
| 50 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-h-norm.pth.tar?download=true",
|
| 51 |
+
patch_size=16,
|
| 52 |
+
max_resolution=2048,
|
| 53 |
+
preferred_resolution=(768, 768),
|
| 54 |
+
vitdet_num_global=4,
|
| 55 |
+
),
|
| 56 |
+
"radio_v2.5-g": RadioResource(
|
| 57 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-g.pth.tar?download=true",
|
| 58 |
+
patch_size=14,
|
| 59 |
+
max_resolution=1792,
|
| 60 |
+
preferred_resolution=(896, 896),
|
| 61 |
+
vitdet_num_global=8,
|
| 62 |
+
),
|
| 63 |
+
# RADIO
|
| 64 |
+
"radio_v2.1": RadioResource(
|
| 65 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.1_bf16.pth.tar?download=true",
|
| 66 |
+
patch_size=16,
|
| 67 |
+
max_resolution=2048,
|
| 68 |
+
preferred_resolution=Resolution(432, 432),
|
| 69 |
+
vitdet_num_windowed=5,
|
| 70 |
+
),
|
| 71 |
+
"radio_v2": RadioResource(
|
| 72 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.pth.tar?download=true",
|
| 73 |
+
patch_size=16,
|
| 74 |
+
max_resolution=2048,
|
| 75 |
+
preferred_resolution=Resolution(432, 432),
|
| 76 |
+
vitdet_num_windowed=5,
|
| 77 |
+
),
|
| 78 |
+
"radio_v1": RadioResource(
|
| 79 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio_v1.pth.tar?download=true",
|
| 80 |
+
patch_size=14,
|
| 81 |
+
max_resolution=1050,
|
| 82 |
+
preferred_resolution=Resolution(378, 378),
|
| 83 |
+
),
|
| 84 |
+
# E-RADIO
|
| 85 |
+
"e-radio_v2": RadioResource(
|
| 86 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/eradio_v2.pth.tar?download=true",
|
| 87 |
+
patch_size=16,
|
| 88 |
+
max_resolution=2048,
|
| 89 |
+
preferred_resolution=Resolution(512, 512),
|
| 90 |
+
),
|
| 91 |
+
# C-RADIO
|
| 92 |
+
"c-radio_v2.5-g": RadioResource(
|
| 93 |
+
"https://huggingface.co/nvidia/C-RADIOv2-g/resolve/main/c-radio_v2-g_half.pth.tar",
|
| 94 |
+
patch_size=16,
|
| 95 |
+
max_resolution=2048,
|
| 96 |
+
preferred_resolution=(768, 768),
|
| 97 |
+
vitdet_num_global=8,
|
| 98 |
+
),
|
| 99 |
+
"c-radio_v3-b": RadioResource(
|
| 100 |
+
# NOTE: Currently, this model cannot be loaded via TorchHub. Instead, use the transformers API at https://huggingface.co/nvidia/C-RADIOv3-L
|
| 101 |
+
# and accept the license terms.
|
| 102 |
+
"https://huggingface.co/nvidia/C-RADIOv3-B/resolve/main/c-radio-v3_b_half.pth.tar?download=true",
|
| 103 |
+
patch_size=16,
|
| 104 |
+
max_resolution=2048,
|
| 105 |
+
preferred_resolution=Resolution(512, 512),
|
| 106 |
+
supports_vitdet=False,
|
| 107 |
+
),
|
| 108 |
+
"c-radio_v3-l": RadioResource(
|
| 109 |
+
# NOTE: Currently, this model cannot be loaded via TorchHub. Instead, use the transformers API at https://huggingface.co/nvidia/C-RADIOv3-L
|
| 110 |
+
# and accept the license terms.
|
| 111 |
+
"https://huggingface.co/nvidia/C-RADIOv3-L/resolve/main/c-radio-v3_l_half.pth.tar?download=true",
|
| 112 |
+
patch_size=16,
|
| 113 |
+
max_resolution=2048,
|
| 114 |
+
preferred_resolution=Resolution(512, 512),
|
| 115 |
+
),
|
| 116 |
+
"c-radio_v3-h": RadioResource(
|
| 117 |
+
# NOTE: Currently, this model cannot be loaded via TorchHub. Instead, use the transformers API at https://huggingface.co/nvidia/C-RADIOv3-H
|
| 118 |
+
# and accept the license terms.
|
| 119 |
+
"https://huggingface.co/nvidia/C-RADIOv3-H/resolve/main/c-radio_v3-h_half.pth.tar?download=true",
|
| 120 |
+
patch_size=16,
|
| 121 |
+
max_resolution=2048,
|
| 122 |
+
preferred_resolution=Resolution(512, 512),
|
| 123 |
+
),
|
| 124 |
+
"c-radio_v3-g": RadioResource(
|
| 125 |
+
# NOTE: Currently, this model cannot be loaded via TorchHub. Instead, use the transformers API at https://huggingface.co/nvidia/C-RADIOv3-G
|
| 126 |
+
# and accept the license terms.
|
| 127 |
+
"https://huggingface.co/nvidia/C-RADIOv3-G/resolve/main/c-radio-v3_g_half.pth.tar?download=true",
|
| 128 |
+
patch_size=16,
|
| 129 |
+
max_resolution=2048,
|
| 130 |
+
preferred_resolution=Resolution(512, 512),
|
| 131 |
+
),
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
DEFAULT_VERSION = "c-radio_v3-h"
|
src/models/radiov3/dinov2_arch.py
ADDED
|
@@ -0,0 +1,1016 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
| 4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
# References:
|
| 7 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
| 8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
| 9 |
+
|
| 10 |
+
# Nvidia
|
| 11 |
+
# NOTE: We re-define this model architecture primarily so that we don't have to worry about version compatibility breaking,
|
| 12 |
+
# but also because Huggingface does a string replace of `gamma` to something else when loading the model state,
|
| 13 |
+
# and this breaks loading of this model.
|
| 14 |
+
|
| 15 |
+
from enum import Enum
|
| 16 |
+
from functools import partial
|
| 17 |
+
import logging
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import sys
|
| 21 |
+
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
|
| 22 |
+
import warnings
|
| 23 |
+
|
| 24 |
+
import torch
|
| 25 |
+
from torch import nn
|
| 26 |
+
from torch.nn import functional as F
|
| 27 |
+
from torch.nn.init import trunc_normal_
|
| 28 |
+
|
| 29 |
+
_torch_has_sdpa = hasattr(F, 'scaled_dot_product_attention')
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
| 33 |
+
try:
|
| 34 |
+
if XFORMERS_ENABLED:
|
| 35 |
+
from xformers.ops import fmha, scaled_index_add, index_select_cat, SwiGLU, memory_efficient_attention, unbind
|
| 36 |
+
|
| 37 |
+
XFORMERS_AVAILABLE = True
|
| 38 |
+
else:
|
| 39 |
+
raise ImportError
|
| 40 |
+
except ImportError:
|
| 41 |
+
XFORMERS_AVAILABLE = False
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def make_2tuple(x):
|
| 45 |
+
if isinstance(x, tuple):
|
| 46 |
+
assert len(x) == 2
|
| 47 |
+
return x
|
| 48 |
+
|
| 49 |
+
assert isinstance(x, int)
|
| 50 |
+
return (x, x)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class PatchEmbed(nn.Module):
|
| 54 |
+
"""
|
| 55 |
+
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
img_size: Image size.
|
| 59 |
+
patch_size: Patch token size.
|
| 60 |
+
in_chans: Number of input image channels.
|
| 61 |
+
embed_dim: Number of linear projection output channels.
|
| 62 |
+
norm_layer: Normalization layer.
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
def __init__(
|
| 66 |
+
self,
|
| 67 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
| 68 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
| 69 |
+
in_chans: int = 3,
|
| 70 |
+
embed_dim: int = 768,
|
| 71 |
+
norm_layer: Optional[Callable] = None,
|
| 72 |
+
flatten_embedding: bool = True,
|
| 73 |
+
) -> None:
|
| 74 |
+
super().__init__()
|
| 75 |
+
|
| 76 |
+
image_HW = make_2tuple(img_size)
|
| 77 |
+
patch_HW = make_2tuple(patch_size)
|
| 78 |
+
patch_grid_size = (
|
| 79 |
+
image_HW[0] // patch_HW[0],
|
| 80 |
+
image_HW[1] // patch_HW[1],
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
self.img_size = image_HW
|
| 84 |
+
self.patch_size = patch_HW
|
| 85 |
+
self.patches_resolution = patch_grid_size
|
| 86 |
+
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
|
| 87 |
+
|
| 88 |
+
self.in_chans = in_chans
|
| 89 |
+
self.embed_dim = embed_dim
|
| 90 |
+
|
| 91 |
+
self.flatten_embedding = flatten_embedding
|
| 92 |
+
|
| 93 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
|
| 94 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
| 95 |
+
|
| 96 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 97 |
+
_, _, H, W = x.shape
|
| 98 |
+
patch_H, patch_W = self.patch_size
|
| 99 |
+
|
| 100 |
+
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
|
| 101 |
+
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
|
| 102 |
+
|
| 103 |
+
x = self.proj(x) # B C H W
|
| 104 |
+
H, W = x.size(2), x.size(3)
|
| 105 |
+
x = x.flatten(2).transpose(1, 2) # B HW C
|
| 106 |
+
x = self.norm(x)
|
| 107 |
+
if not self.flatten_embedding:
|
| 108 |
+
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
|
| 109 |
+
return x
|
| 110 |
+
|
| 111 |
+
def flops(self) -> float:
|
| 112 |
+
Ho, Wo = self.patches_resolution
|
| 113 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
| 114 |
+
if self.norm is not None:
|
| 115 |
+
flops += Ho * Wo * self.embed_dim
|
| 116 |
+
return flops
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
class Attention(nn.Module):
|
| 120 |
+
def __init__(
|
| 121 |
+
self,
|
| 122 |
+
dim: int,
|
| 123 |
+
num_heads: int = 8,
|
| 124 |
+
qkv_bias: bool = False,
|
| 125 |
+
proj_bias: bool = True,
|
| 126 |
+
attn_drop: float = 0.0,
|
| 127 |
+
proj_drop: float = 0.0,
|
| 128 |
+
) -> None:
|
| 129 |
+
super().__init__()
|
| 130 |
+
self.num_heads = num_heads
|
| 131 |
+
head_dim = dim // num_heads
|
| 132 |
+
self.scale = head_dim**-0.5
|
| 133 |
+
|
| 134 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 135 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 136 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
| 137 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 138 |
+
|
| 139 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 140 |
+
B, N, C = x.shape
|
| 141 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 142 |
+
|
| 143 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 144 |
+
if _torch_has_sdpa:
|
| 145 |
+
x = F.scaled_dot_product_attention(
|
| 146 |
+
q, k, v,
|
| 147 |
+
is_causal=False,
|
| 148 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
| 149 |
+
scale=self.scale,
|
| 150 |
+
)
|
| 151 |
+
else:
|
| 152 |
+
q = q * self.scale
|
| 153 |
+
attn = q @ k.transpose(-2, -1)
|
| 154 |
+
|
| 155 |
+
attn = attn.softmax(dim=-1)
|
| 156 |
+
attn = self.attn_drop(attn)
|
| 157 |
+
x = attn @ v
|
| 158 |
+
|
| 159 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
| 160 |
+
x = self.proj(x)
|
| 161 |
+
x = self.proj_drop(x)
|
| 162 |
+
return x
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class MemEffAttention(Attention):
|
| 166 |
+
def forward(self, x: torch.Tensor, attn_bias=None) -> torch.Tensor:
|
| 167 |
+
if not XFORMERS_AVAILABLE:
|
| 168 |
+
if attn_bias is not None:
|
| 169 |
+
raise AssertionError("xFormers is required for using nested tensors")
|
| 170 |
+
return super().forward(x)
|
| 171 |
+
|
| 172 |
+
B, N, C = x.shape
|
| 173 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
| 174 |
+
|
| 175 |
+
q, k, v = unbind(qkv, 2)
|
| 176 |
+
|
| 177 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
| 178 |
+
x = x.reshape([B, N, C])
|
| 179 |
+
|
| 180 |
+
x = self.proj(x)
|
| 181 |
+
x = self.proj_drop(x)
|
| 182 |
+
return x
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
class Mlp(nn.Module):
|
| 186 |
+
def __init__(
|
| 187 |
+
self,
|
| 188 |
+
in_features: int,
|
| 189 |
+
hidden_features: Optional[int] = None,
|
| 190 |
+
out_features: Optional[int] = None,
|
| 191 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
| 192 |
+
drop: float = 0.0,
|
| 193 |
+
bias: bool = True,
|
| 194 |
+
) -> None:
|
| 195 |
+
super().__init__()
|
| 196 |
+
out_features = out_features or in_features
|
| 197 |
+
hidden_features = hidden_features or in_features
|
| 198 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
| 199 |
+
self.act = act_layer()
|
| 200 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
|
| 201 |
+
self.drop = nn.Dropout(drop)
|
| 202 |
+
|
| 203 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 204 |
+
x = self.fc1(x)
|
| 205 |
+
x = self.act(x)
|
| 206 |
+
x = self.drop(x)
|
| 207 |
+
x = self.fc2(x)
|
| 208 |
+
x = self.drop(x)
|
| 209 |
+
return x
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
class SwiGLUFFN(nn.Module):
|
| 213 |
+
def __init__(
|
| 214 |
+
self,
|
| 215 |
+
in_features: int,
|
| 216 |
+
hidden_features: Optional[int] = None,
|
| 217 |
+
out_features: Optional[int] = None,
|
| 218 |
+
act_layer: Callable[..., nn.Module] = None,
|
| 219 |
+
drop: float = 0.0,
|
| 220 |
+
bias: bool = True,
|
| 221 |
+
) -> None:
|
| 222 |
+
super().__init__()
|
| 223 |
+
out_features = out_features or in_features
|
| 224 |
+
hidden_features = hidden_features or in_features
|
| 225 |
+
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
|
| 226 |
+
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
|
| 227 |
+
|
| 228 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 229 |
+
x12 = self.w12(x)
|
| 230 |
+
x1, x2 = x12.chunk(2, dim=-1)
|
| 231 |
+
hidden = F.silu(x1) * x2
|
| 232 |
+
return self.w3(hidden)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
if not XFORMERS_AVAILABLE:
|
| 236 |
+
SwiGLU = SwiGLUFFN
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
class SwiGLUFFNFused(SwiGLU):
|
| 240 |
+
def __init__(
|
| 241 |
+
self,
|
| 242 |
+
in_features: int,
|
| 243 |
+
hidden_features: Optional[int] = None,
|
| 244 |
+
out_features: Optional[int] = None,
|
| 245 |
+
act_layer: Callable[..., nn.Module] = None,
|
| 246 |
+
drop: float = 0.0,
|
| 247 |
+
bias: bool = True,
|
| 248 |
+
) -> None:
|
| 249 |
+
out_features = out_features or in_features
|
| 250 |
+
hidden_features = hidden_features or in_features
|
| 251 |
+
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
| 252 |
+
super().__init__(
|
| 253 |
+
in_features=in_features,
|
| 254 |
+
hidden_features=hidden_features,
|
| 255 |
+
out_features=out_features,
|
| 256 |
+
bias=bias,
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
| 261 |
+
if drop_prob == 0.0 or not training:
|
| 262 |
+
return x
|
| 263 |
+
keep_prob = 1 - drop_prob
|
| 264 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
| 265 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
| 266 |
+
if keep_prob > 0.0:
|
| 267 |
+
random_tensor.div_(keep_prob)
|
| 268 |
+
output = x * random_tensor
|
| 269 |
+
return output
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
class DropPath(nn.Module):
|
| 273 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
| 274 |
+
|
| 275 |
+
def __init__(self, drop_prob=None):
|
| 276 |
+
super(DropPath, self).__init__()
|
| 277 |
+
self.drop_prob = drop_prob
|
| 278 |
+
|
| 279 |
+
def forward(self, x):
|
| 280 |
+
return drop_path(x, self.drop_prob, self.training)
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
class LayerScale(nn.Module):
|
| 284 |
+
def __init__(
|
| 285 |
+
self,
|
| 286 |
+
dim: int,
|
| 287 |
+
init_values: Union[float, torch.Tensor] = 1e-5,
|
| 288 |
+
inplace: bool = False,
|
| 289 |
+
) -> None:
|
| 290 |
+
super().__init__()
|
| 291 |
+
self.inplace = inplace
|
| 292 |
+
self.grandma = nn.Parameter(init_values * torch.ones(dim))
|
| 293 |
+
|
| 294 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 295 |
+
return x.mul_(self.grandma) if self.inplace else x * self.grandma
|
| 296 |
+
|
| 297 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
| 298 |
+
# Huggingface is absurd and it will rename strings that contain `gamma`, which means that the normal DINO implementation
|
| 299 |
+
# of LayerScale won't work with HFHub. So we rename the variable to 'grandma', and support loading checkpoints in either
|
| 300 |
+
# format
|
| 301 |
+
key_a = f'{prefix}gamma'
|
| 302 |
+
key_b = f'{prefix}grandma'
|
| 303 |
+
if key_a in state_dict:
|
| 304 |
+
gamma = state_dict[key_a]
|
| 305 |
+
elif key_b in state_dict:
|
| 306 |
+
gamma = state_dict[key_b]
|
| 307 |
+
else:
|
| 308 |
+
if strict:
|
| 309 |
+
raise KeyError(f"Couldn't find the key {key_a} nor {key_b} in the state dict!")
|
| 310 |
+
else:
|
| 311 |
+
missing_keys.append(key_a)
|
| 312 |
+
missing_keys.append(key_b)
|
| 313 |
+
unexpected_keys.extend(state_dict.keys())
|
| 314 |
+
gamma = None
|
| 315 |
+
|
| 316 |
+
if gamma is not None:
|
| 317 |
+
self.grandma.data.copy_(gamma)
|
| 318 |
+
|
| 319 |
+
# return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
class Block(nn.Module):
|
| 323 |
+
def __init__(
|
| 324 |
+
self,
|
| 325 |
+
dim: int,
|
| 326 |
+
num_heads: int,
|
| 327 |
+
mlp_ratio: float = 4.0,
|
| 328 |
+
qkv_bias: bool = False,
|
| 329 |
+
proj_bias: bool = True,
|
| 330 |
+
ffn_bias: bool = True,
|
| 331 |
+
drop: float = 0.0,
|
| 332 |
+
attn_drop: float = 0.0,
|
| 333 |
+
init_values=None,
|
| 334 |
+
drop_path: float = 0.0,
|
| 335 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
| 336 |
+
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
|
| 337 |
+
attn_class: Callable[..., nn.Module] = Attention,
|
| 338 |
+
ffn_layer: Callable[..., nn.Module] = Mlp,
|
| 339 |
+
) -> None:
|
| 340 |
+
super().__init__()
|
| 341 |
+
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
|
| 342 |
+
self.norm1 = norm_layer(dim)
|
| 343 |
+
self.attn = attn_class(
|
| 344 |
+
dim,
|
| 345 |
+
num_heads=num_heads,
|
| 346 |
+
qkv_bias=qkv_bias,
|
| 347 |
+
proj_bias=proj_bias,
|
| 348 |
+
attn_drop=attn_drop,
|
| 349 |
+
proj_drop=drop,
|
| 350 |
+
)
|
| 351 |
+
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
| 352 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 353 |
+
|
| 354 |
+
self.norm2 = norm_layer(dim)
|
| 355 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 356 |
+
self.mlp = ffn_layer(
|
| 357 |
+
in_features=dim,
|
| 358 |
+
hidden_features=mlp_hidden_dim,
|
| 359 |
+
act_layer=act_layer,
|
| 360 |
+
drop=drop,
|
| 361 |
+
bias=ffn_bias,
|
| 362 |
+
)
|
| 363 |
+
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
| 364 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 365 |
+
|
| 366 |
+
self.sample_drop_ratio = drop_path
|
| 367 |
+
|
| 368 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 369 |
+
def attn_residual_func(x: torch.Tensor) -> torch.Tensor:
|
| 370 |
+
return self.ls1(self.attn(self.norm1(x)))
|
| 371 |
+
|
| 372 |
+
def ffn_residual_func(x: torch.Tensor) -> torch.Tensor:
|
| 373 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
| 374 |
+
|
| 375 |
+
if self.training and self.sample_drop_ratio > 0.1:
|
| 376 |
+
# the overhead is compensated only for a drop path rate larger than 0.1
|
| 377 |
+
x = drop_add_residual_stochastic_depth(
|
| 378 |
+
x,
|
| 379 |
+
residual_func=attn_residual_func,
|
| 380 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 381 |
+
)
|
| 382 |
+
x = drop_add_residual_stochastic_depth(
|
| 383 |
+
x,
|
| 384 |
+
residual_func=ffn_residual_func,
|
| 385 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 386 |
+
)
|
| 387 |
+
elif self.training and self.sample_drop_ratio > 0.0:
|
| 388 |
+
x = x + self.drop_path1(attn_residual_func(x))
|
| 389 |
+
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
|
| 390 |
+
else:
|
| 391 |
+
x = x + attn_residual_func(x)
|
| 392 |
+
x = x + ffn_residual_func(x)
|
| 393 |
+
return x
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
class NestedTensorBlock(Block):
|
| 397 |
+
def forward_nested(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]:
|
| 398 |
+
"""
|
| 399 |
+
x_list contains a list of tensors to nest together and run
|
| 400 |
+
"""
|
| 401 |
+
assert isinstance(self.attn, MemEffAttention)
|
| 402 |
+
|
| 403 |
+
if self.training and self.sample_drop_ratio > 0.0:
|
| 404 |
+
|
| 405 |
+
def attn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
|
| 406 |
+
return self.attn(self.norm1(x), attn_bias=attn_bias)
|
| 407 |
+
|
| 408 |
+
def ffn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
|
| 409 |
+
return self.mlp(self.norm2(x))
|
| 410 |
+
|
| 411 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
| 412 |
+
x_list,
|
| 413 |
+
residual_func=attn_residual_func,
|
| 414 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 415 |
+
scaling_vector=self.ls1.grandma if isinstance(self.ls1, LayerScale) else None,
|
| 416 |
+
)
|
| 417 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
| 418 |
+
x_list,
|
| 419 |
+
residual_func=ffn_residual_func,
|
| 420 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
| 421 |
+
scaling_vector=self.ls2.grandma if isinstance(self.ls1, LayerScale) else None,
|
| 422 |
+
)
|
| 423 |
+
return x_list
|
| 424 |
+
else:
|
| 425 |
+
|
| 426 |
+
def attn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
|
| 427 |
+
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
|
| 428 |
+
|
| 429 |
+
def ffn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
|
| 430 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
| 431 |
+
|
| 432 |
+
attn_bias, x = get_attn_bias_and_cat(x_list)
|
| 433 |
+
x = x + attn_residual_func(x, attn_bias=attn_bias)
|
| 434 |
+
x = x + ffn_residual_func(x)
|
| 435 |
+
return attn_bias.split(x)
|
| 436 |
+
|
| 437 |
+
def forward(self, x_or_x_list):
|
| 438 |
+
if isinstance(x_or_x_list, torch.Tensor):
|
| 439 |
+
return super().forward(x_or_x_list)
|
| 440 |
+
elif isinstance(x_or_x_list, list):
|
| 441 |
+
if not XFORMERS_AVAILABLE:
|
| 442 |
+
raise AssertionError("xFormers is required for using nested tensors")
|
| 443 |
+
return self.forward_nested(x_or_x_list)
|
| 444 |
+
else:
|
| 445 |
+
raise AssertionError
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
def drop_add_residual_stochastic_depth(
|
| 449 |
+
x: torch.Tensor,
|
| 450 |
+
residual_func: Callable[[torch.Tensor], torch.Tensor],
|
| 451 |
+
sample_drop_ratio: float = 0.0,
|
| 452 |
+
) -> torch.Tensor:
|
| 453 |
+
# 1) extract subset using permutation
|
| 454 |
+
b, n, d = x.shape
|
| 455 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
| 456 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
| 457 |
+
x_subset = x[brange]
|
| 458 |
+
|
| 459 |
+
# 2) apply residual_func to get residual
|
| 460 |
+
residual = residual_func(x_subset)
|
| 461 |
+
|
| 462 |
+
x_flat = x.flatten(1)
|
| 463 |
+
residual = residual.flatten(1)
|
| 464 |
+
|
| 465 |
+
residual_scale_factor = b / sample_subset_size
|
| 466 |
+
|
| 467 |
+
# 3) add the residual
|
| 468 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
| 469 |
+
return x_plus_residual.view_as(x)
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
def get_branges_scales(x, sample_drop_ratio=0.0):
|
| 473 |
+
b, n, d = x.shape
|
| 474 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
| 475 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
| 476 |
+
residual_scale_factor = b / sample_subset_size
|
| 477 |
+
return brange, residual_scale_factor
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
|
| 481 |
+
if scaling_vector is None:
|
| 482 |
+
x_flat = x.flatten(1)
|
| 483 |
+
residual = residual.flatten(1)
|
| 484 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
| 485 |
+
else:
|
| 486 |
+
x_plus_residual = scaled_index_add(
|
| 487 |
+
x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
|
| 488 |
+
)
|
| 489 |
+
return x_plus_residual
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
attn_bias_cache: Dict[Tuple, Any] = {}
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
def get_attn_bias_and_cat(x_list, branges=None):
|
| 496 |
+
"""
|
| 497 |
+
this will perform the index select, cat the tensors, and provide the attn_bias from cache
|
| 498 |
+
"""
|
| 499 |
+
batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
|
| 500 |
+
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
|
| 501 |
+
if all_shapes not in attn_bias_cache.keys():
|
| 502 |
+
seqlens = []
|
| 503 |
+
for b, x in zip(batch_sizes, x_list):
|
| 504 |
+
for _ in range(b):
|
| 505 |
+
seqlens.append(x.shape[1])
|
| 506 |
+
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
|
| 507 |
+
attn_bias._batch_sizes = batch_sizes
|
| 508 |
+
attn_bias_cache[all_shapes] = attn_bias
|
| 509 |
+
|
| 510 |
+
if branges is not None:
|
| 511 |
+
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
|
| 512 |
+
else:
|
| 513 |
+
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
|
| 514 |
+
cat_tensors = torch.cat(tensors_bs1, dim=1)
|
| 515 |
+
|
| 516 |
+
return attn_bias_cache[all_shapes], cat_tensors
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
def drop_add_residual_stochastic_depth_list(
|
| 520 |
+
x_list: List[torch.Tensor],
|
| 521 |
+
residual_func: Callable[[torch.Tensor, Any], torch.Tensor],
|
| 522 |
+
sample_drop_ratio: float = 0.0,
|
| 523 |
+
scaling_vector=None,
|
| 524 |
+
) -> torch.Tensor:
|
| 525 |
+
# 1) generate random set of indices for dropping samples in the batch
|
| 526 |
+
branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
|
| 527 |
+
branges = [s[0] for s in branges_scales]
|
| 528 |
+
residual_scale_factors = [s[1] for s in branges_scales]
|
| 529 |
+
|
| 530 |
+
# 2) get attention bias and index+concat the tensors
|
| 531 |
+
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
|
| 532 |
+
|
| 533 |
+
# 3) apply residual_func to get residual, and split the result
|
| 534 |
+
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
|
| 535 |
+
|
| 536 |
+
outputs = []
|
| 537 |
+
for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
|
| 538 |
+
outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
|
| 539 |
+
return outputs
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
|
| 543 |
+
if not depth_first and include_root:
|
| 544 |
+
fn(module=module, name=name)
|
| 545 |
+
for child_name, child_module in module.named_children():
|
| 546 |
+
child_name = ".".join((name, child_name)) if name else child_name
|
| 547 |
+
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
|
| 548 |
+
if depth_first and include_root:
|
| 549 |
+
fn(module=module, name=name)
|
| 550 |
+
return module
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
class BlockChunk(nn.ModuleList):
|
| 554 |
+
def forward(self, x):
|
| 555 |
+
for b in self:
|
| 556 |
+
x = b(x)
|
| 557 |
+
return x
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
class DinoVisionTransformer(nn.Module):
|
| 561 |
+
def __init__(
|
| 562 |
+
self,
|
| 563 |
+
img_size=224,
|
| 564 |
+
patch_size=16,
|
| 565 |
+
in_chans=3,
|
| 566 |
+
embed_dim=768,
|
| 567 |
+
depth=12,
|
| 568 |
+
num_heads=12,
|
| 569 |
+
mlp_ratio=4.0,
|
| 570 |
+
qkv_bias=True,
|
| 571 |
+
ffn_bias=True,
|
| 572 |
+
proj_bias=True,
|
| 573 |
+
drop_path_rate=0.0,
|
| 574 |
+
drop_path_uniform=False,
|
| 575 |
+
init_values=None, # for layerscale: None or 0 => no layerscale
|
| 576 |
+
embed_layer=PatchEmbed,
|
| 577 |
+
act_layer=nn.GELU,
|
| 578 |
+
block_fn=Block,
|
| 579 |
+
ffn_layer="mlp",
|
| 580 |
+
block_chunks=1,
|
| 581 |
+
num_register_tokens=0,
|
| 582 |
+
interpolate_antialias=False,
|
| 583 |
+
interpolate_offset=0.1,
|
| 584 |
+
):
|
| 585 |
+
"""
|
| 586 |
+
Args:
|
| 587 |
+
img_size (int, tuple): input image size
|
| 588 |
+
patch_size (int, tuple): patch size
|
| 589 |
+
in_chans (int): number of input channels
|
| 590 |
+
embed_dim (int): embedding dimension
|
| 591 |
+
depth (int): depth of transformer
|
| 592 |
+
num_heads (int): number of attention heads
|
| 593 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
| 594 |
+
qkv_bias (bool): enable bias for qkv if True
|
| 595 |
+
proj_bias (bool): enable bias for proj in attn if True
|
| 596 |
+
ffn_bias (bool): enable bias for ffn if True
|
| 597 |
+
drop_path_rate (float): stochastic depth rate
|
| 598 |
+
drop_path_uniform (bool): apply uniform drop rate across blocks
|
| 599 |
+
weight_init (str): weight init scheme
|
| 600 |
+
init_values (float): layer-scale init values
|
| 601 |
+
embed_layer (nn.Module): patch embedding layer
|
| 602 |
+
act_layer (nn.Module): MLP activation layer
|
| 603 |
+
block_fn (nn.Module): transformer block class
|
| 604 |
+
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
|
| 605 |
+
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
|
| 606 |
+
num_register_tokens: (int) number of extra cls tokens (so-called "registers")
|
| 607 |
+
interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
|
| 608 |
+
interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
|
| 609 |
+
"""
|
| 610 |
+
super().__init__()
|
| 611 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
| 612 |
+
|
| 613 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
| 614 |
+
self.num_tokens = 1
|
| 615 |
+
self.n_blocks = depth
|
| 616 |
+
self.num_heads = num_heads
|
| 617 |
+
self.patch_size = patch_size
|
| 618 |
+
self.num_register_tokens = num_register_tokens
|
| 619 |
+
self.interpolate_antialias = interpolate_antialias
|
| 620 |
+
self.interpolate_offset = interpolate_offset
|
| 621 |
+
|
| 622 |
+
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
| 623 |
+
num_patches = self.patch_embed.num_patches
|
| 624 |
+
|
| 625 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
| 626 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
| 627 |
+
assert num_register_tokens >= 0
|
| 628 |
+
self.register_tokens = (
|
| 629 |
+
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
if drop_path_uniform is True:
|
| 633 |
+
dpr = [drop_path_rate] * depth
|
| 634 |
+
else:
|
| 635 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
| 636 |
+
|
| 637 |
+
if ffn_layer == "mlp":
|
| 638 |
+
ffn_layer = Mlp
|
| 639 |
+
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
|
| 640 |
+
ffn_layer = SwiGLUFFNFused
|
| 641 |
+
elif ffn_layer == "identity":
|
| 642 |
+
def f(*args, **kwargs):
|
| 643 |
+
return nn.Identity()
|
| 644 |
+
|
| 645 |
+
ffn_layer = f
|
| 646 |
+
else:
|
| 647 |
+
raise NotImplementedError
|
| 648 |
+
|
| 649 |
+
blocks_list = [
|
| 650 |
+
block_fn(
|
| 651 |
+
dim=embed_dim,
|
| 652 |
+
num_heads=num_heads,
|
| 653 |
+
mlp_ratio=mlp_ratio,
|
| 654 |
+
qkv_bias=qkv_bias,
|
| 655 |
+
proj_bias=proj_bias,
|
| 656 |
+
ffn_bias=ffn_bias,
|
| 657 |
+
drop_path=dpr[i],
|
| 658 |
+
norm_layer=norm_layer,
|
| 659 |
+
act_layer=act_layer,
|
| 660 |
+
ffn_layer=ffn_layer,
|
| 661 |
+
init_values=init_values,
|
| 662 |
+
)
|
| 663 |
+
for i in range(depth)
|
| 664 |
+
]
|
| 665 |
+
if block_chunks > 0:
|
| 666 |
+
self.chunked_blocks = True
|
| 667 |
+
chunked_blocks = []
|
| 668 |
+
chunksize = depth // block_chunks
|
| 669 |
+
for i in range(0, depth, chunksize):
|
| 670 |
+
# this is to keep the block index consistent if we chunk the block list
|
| 671 |
+
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
|
| 672 |
+
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
|
| 673 |
+
else:
|
| 674 |
+
self.chunked_blocks = False
|
| 675 |
+
self.blocks = nn.ModuleList(blocks_list)
|
| 676 |
+
|
| 677 |
+
self.norm = norm_layer(embed_dim)
|
| 678 |
+
self.head = nn.Identity()
|
| 679 |
+
|
| 680 |
+
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
|
| 681 |
+
|
| 682 |
+
def interpolate_pos_encoding(self, x, w, h):
|
| 683 |
+
previous_dtype = x.dtype
|
| 684 |
+
npatch = x.shape[1] - 1
|
| 685 |
+
N = self.pos_embed.shape[1] - 1
|
| 686 |
+
if npatch == N and w == h:
|
| 687 |
+
return self.pos_embed
|
| 688 |
+
pos_embed = self.pos_embed.float()
|
| 689 |
+
class_pos_embed = pos_embed[:, 0]
|
| 690 |
+
patch_pos_embed = pos_embed[:, 1:]
|
| 691 |
+
dim = x.shape[-1]
|
| 692 |
+
w0 = w // self.patch_size
|
| 693 |
+
h0 = h // self.patch_size
|
| 694 |
+
M = int(math.sqrt(N)) # Recover the number of patches in each dimension
|
| 695 |
+
assert N == M * M
|
| 696 |
+
kwargs = {}
|
| 697 |
+
if self.interpolate_offset:
|
| 698 |
+
# Historical kludge: add a small number to avoid floating point error in the interpolation, see https://github.com/facebookresearch/dino/issues/8
|
| 699 |
+
# Note: still needed for backward-compatibility, the underlying operators are using both output size and scale factors
|
| 700 |
+
sx = float(w0 + self.interpolate_offset) / M
|
| 701 |
+
sy = float(h0 + self.interpolate_offset) / M
|
| 702 |
+
kwargs["scale_factor"] = (sx, sy)
|
| 703 |
+
else:
|
| 704 |
+
# Simply specify an output size instead of a scale factor
|
| 705 |
+
kwargs["size"] = (w0, h0)
|
| 706 |
+
patch_pos_embed = nn.functional.interpolate(
|
| 707 |
+
patch_pos_embed.reshape(1, M, M, dim).permute(0, 3, 1, 2),
|
| 708 |
+
mode="bicubic",
|
| 709 |
+
antialias=self.interpolate_antialias,
|
| 710 |
+
**kwargs,
|
| 711 |
+
)
|
| 712 |
+
assert (w0, h0) == patch_pos_embed.shape[-2:]
|
| 713 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
| 714 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
|
| 715 |
+
|
| 716 |
+
def prepare_tokens_with_masks(self, x, masks=None):
|
| 717 |
+
B, nc, w, h = x.shape
|
| 718 |
+
x = self.patch_embed(x)
|
| 719 |
+
if masks is not None:
|
| 720 |
+
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
|
| 721 |
+
|
| 722 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
| 723 |
+
x = x + self.interpolate_pos_encoding(x, w, h)
|
| 724 |
+
|
| 725 |
+
if self.register_tokens is not None:
|
| 726 |
+
x = torch.cat(
|
| 727 |
+
(
|
| 728 |
+
x[:, :1],
|
| 729 |
+
self.register_tokens.expand(x.shape[0], -1, -1),
|
| 730 |
+
x[:, 1:],
|
| 731 |
+
),
|
| 732 |
+
dim=1,
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
return x
|
| 736 |
+
|
| 737 |
+
def forward_features_list(self, x_list, masks_list):
|
| 738 |
+
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
|
| 739 |
+
for blk in self.blocks:
|
| 740 |
+
x = blk(x)
|
| 741 |
+
|
| 742 |
+
all_x = x
|
| 743 |
+
output = []
|
| 744 |
+
for x, masks in zip(all_x, masks_list):
|
| 745 |
+
x_norm = self.norm(x)
|
| 746 |
+
output.append(
|
| 747 |
+
{
|
| 748 |
+
"x_norm_clstoken": x_norm[:, 0],
|
| 749 |
+
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
| 750 |
+
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
| 751 |
+
"x_prenorm": x,
|
| 752 |
+
"masks": masks,
|
| 753 |
+
}
|
| 754 |
+
)
|
| 755 |
+
return output
|
| 756 |
+
|
| 757 |
+
def forward_features(self, x, masks=None):
|
| 758 |
+
if isinstance(x, list):
|
| 759 |
+
return self.forward_features_list(x, masks)
|
| 760 |
+
|
| 761 |
+
x = self.prepare_tokens_with_masks(x, masks)
|
| 762 |
+
|
| 763 |
+
for blk in self.blocks:
|
| 764 |
+
x = blk(x)
|
| 765 |
+
|
| 766 |
+
x_norm = self.norm(x)
|
| 767 |
+
return {
|
| 768 |
+
"x_norm_clstoken": x_norm[:, 0],
|
| 769 |
+
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
| 770 |
+
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
| 771 |
+
"x_prenorm": x,
|
| 772 |
+
"masks": masks,
|
| 773 |
+
}
|
| 774 |
+
|
| 775 |
+
def _get_intermediate_layers_not_chunked(self, x, n=1):
|
| 776 |
+
x = self.prepare_tokens_with_masks(x)
|
| 777 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
| 778 |
+
output, total_block_len = [], len(self.blocks)
|
| 779 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
| 780 |
+
for i, blk in enumerate(self.blocks):
|
| 781 |
+
x = blk(x)
|
| 782 |
+
if i in blocks_to_take:
|
| 783 |
+
output.append(x)
|
| 784 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
| 785 |
+
return output
|
| 786 |
+
|
| 787 |
+
def _get_intermediate_layers_chunked(self, x, n=1):
|
| 788 |
+
x = self.prepare_tokens_with_masks(x)
|
| 789 |
+
output, i, total_block_len = [], 0, len(self.blocks[-1])
|
| 790 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
| 791 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
| 792 |
+
for block_chunk in self.blocks:
|
| 793 |
+
for blk in block_chunk[i:]: # Passing the nn.Identity()
|
| 794 |
+
x = blk(x)
|
| 795 |
+
if i in blocks_to_take:
|
| 796 |
+
output.append(x)
|
| 797 |
+
i += 1
|
| 798 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
| 799 |
+
return output
|
| 800 |
+
|
| 801 |
+
def get_intermediate_layers(
|
| 802 |
+
self,
|
| 803 |
+
x: torch.Tensor,
|
| 804 |
+
n: Union[int, Sequence] = 1, # Layers or n last layers to take
|
| 805 |
+
reshape: bool = False,
|
| 806 |
+
return_class_token: bool = False,
|
| 807 |
+
norm=True,
|
| 808 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
|
| 809 |
+
if self.chunked_blocks:
|
| 810 |
+
outputs = self._get_intermediate_layers_chunked(x, n)
|
| 811 |
+
else:
|
| 812 |
+
outputs = self._get_intermediate_layers_not_chunked(x, n)
|
| 813 |
+
if norm:
|
| 814 |
+
outputs = [self.norm(out) for out in outputs]
|
| 815 |
+
class_tokens = [out[:, 0] for out in outputs]
|
| 816 |
+
outputs = [out[:, 1 + self.num_register_tokens :] for out in outputs]
|
| 817 |
+
if reshape:
|
| 818 |
+
B, _, w, h = x.shape
|
| 819 |
+
outputs = [
|
| 820 |
+
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
|
| 821 |
+
for out in outputs
|
| 822 |
+
]
|
| 823 |
+
if return_class_token:
|
| 824 |
+
return tuple(zip(outputs, class_tokens))
|
| 825 |
+
return tuple(outputs)
|
| 826 |
+
|
| 827 |
+
def forward(self, *args, is_training=False, **kwargs):
|
| 828 |
+
ret = self.forward_features(*args, **kwargs)
|
| 829 |
+
if is_training:
|
| 830 |
+
return ret
|
| 831 |
+
else:
|
| 832 |
+
return self.head(ret["x_norm_clstoken"])
|
| 833 |
+
|
| 834 |
+
|
| 835 |
+
def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
|
| 836 |
+
model = DinoVisionTransformer(
|
| 837 |
+
patch_size=patch_size,
|
| 838 |
+
embed_dim=384,
|
| 839 |
+
depth=12,
|
| 840 |
+
num_heads=6,
|
| 841 |
+
mlp_ratio=4,
|
| 842 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
| 843 |
+
num_register_tokens=num_register_tokens,
|
| 844 |
+
**kwargs,
|
| 845 |
+
)
|
| 846 |
+
return model
|
| 847 |
+
|
| 848 |
+
|
| 849 |
+
def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
|
| 850 |
+
model = DinoVisionTransformer(
|
| 851 |
+
patch_size=patch_size,
|
| 852 |
+
embed_dim=768,
|
| 853 |
+
depth=12,
|
| 854 |
+
num_heads=12,
|
| 855 |
+
mlp_ratio=4,
|
| 856 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
| 857 |
+
num_register_tokens=num_register_tokens,
|
| 858 |
+
**kwargs,
|
| 859 |
+
)
|
| 860 |
+
return model
|
| 861 |
+
|
| 862 |
+
|
| 863 |
+
def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
|
| 864 |
+
model = DinoVisionTransformer(
|
| 865 |
+
patch_size=patch_size,
|
| 866 |
+
embed_dim=1024,
|
| 867 |
+
depth=24,
|
| 868 |
+
num_heads=16,
|
| 869 |
+
mlp_ratio=4,
|
| 870 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
| 871 |
+
num_register_tokens=num_register_tokens,
|
| 872 |
+
**kwargs,
|
| 873 |
+
)
|
| 874 |
+
return model
|
| 875 |
+
|
| 876 |
+
|
| 877 |
+
def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
|
| 878 |
+
"""
|
| 879 |
+
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
|
| 880 |
+
"""
|
| 881 |
+
model = DinoVisionTransformer(
|
| 882 |
+
patch_size=patch_size,
|
| 883 |
+
embed_dim=1536,
|
| 884 |
+
depth=40,
|
| 885 |
+
num_heads=24,
|
| 886 |
+
mlp_ratio=4,
|
| 887 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
| 888 |
+
num_register_tokens=num_register_tokens,
|
| 889 |
+
**kwargs,
|
| 890 |
+
)
|
| 891 |
+
return model
|
| 892 |
+
|
| 893 |
+
|
| 894 |
+
class Weights(Enum):
|
| 895 |
+
LVD142M = "LVD142M"
|
| 896 |
+
|
| 897 |
+
|
| 898 |
+
def _make_dinov2_model(
|
| 899 |
+
*,
|
| 900 |
+
arch_name: str = "vit_large",
|
| 901 |
+
img_size: int = 518,
|
| 902 |
+
patch_size: int = 14,
|
| 903 |
+
init_values: float = 1.0,
|
| 904 |
+
ffn_layer: str = "mlp",
|
| 905 |
+
block_chunks: int = 0,
|
| 906 |
+
num_register_tokens: int = 0,
|
| 907 |
+
interpolate_antialias: bool = False,
|
| 908 |
+
interpolate_offset: float = 0.1,
|
| 909 |
+
weights: Union[Weights, str] = Weights.LVD142M,
|
| 910 |
+
**kwargs,
|
| 911 |
+
):
|
| 912 |
+
if isinstance(weights, str):
|
| 913 |
+
try:
|
| 914 |
+
weights = Weights[weights]
|
| 915 |
+
except KeyError:
|
| 916 |
+
raise AssertionError(f"Unsupported weights: {weights}")
|
| 917 |
+
|
| 918 |
+
vit_kwargs = dict(
|
| 919 |
+
img_size=img_size,
|
| 920 |
+
patch_size=patch_size,
|
| 921 |
+
init_values=init_values,
|
| 922 |
+
ffn_layer=ffn_layer,
|
| 923 |
+
block_chunks=block_chunks,
|
| 924 |
+
num_register_tokens=num_register_tokens,
|
| 925 |
+
interpolate_antialias=interpolate_antialias,
|
| 926 |
+
interpolate_offset=interpolate_offset,
|
| 927 |
+
)
|
| 928 |
+
vit_kwargs.update(**kwargs)
|
| 929 |
+
model = sys.modules[__name__].__dict__[arch_name](**vit_kwargs)
|
| 930 |
+
|
| 931 |
+
return model
|
| 932 |
+
|
| 933 |
+
|
| 934 |
+
def dinov2_vits14(**kwargs):
|
| 935 |
+
"""
|
| 936 |
+
DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset.
|
| 937 |
+
"""
|
| 938 |
+
return _make_dinov2_model(arch_name="vit_small", **kwargs)
|
| 939 |
+
|
| 940 |
+
|
| 941 |
+
def dinov2_vitb14(**kwargs):
|
| 942 |
+
"""
|
| 943 |
+
DINOv2 ViT-B/14 model (optionally) pretrained on the LVD-142M dataset.
|
| 944 |
+
"""
|
| 945 |
+
return _make_dinov2_model(arch_name="vit_base", **kwargs)
|
| 946 |
+
|
| 947 |
+
|
| 948 |
+
def dinov2_vitl14(**kwargs):
|
| 949 |
+
"""
|
| 950 |
+
DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset.
|
| 951 |
+
"""
|
| 952 |
+
return _make_dinov2_model(arch_name="vit_large", **kwargs)
|
| 953 |
+
|
| 954 |
+
|
| 955 |
+
def dinov2_vitg14(**kwargs):
|
| 956 |
+
"""
|
| 957 |
+
DINOv2 ViT-g/14 model (optionally) pretrained on the LVD-142M dataset.
|
| 958 |
+
"""
|
| 959 |
+
return _make_dinov2_model(
|
| 960 |
+
arch_name="vit_giant2",
|
| 961 |
+
ffn_layer="swiglufused",
|
| 962 |
+
**kwargs,
|
| 963 |
+
)
|
| 964 |
+
|
| 965 |
+
|
| 966 |
+
def dinov2_vits14_reg(**kwargs):
|
| 967 |
+
"""
|
| 968 |
+
DINOv2 ViT-S/14 model with registers (optionally) pretrained on the LVD-142M dataset.
|
| 969 |
+
"""
|
| 970 |
+
return _make_dinov2_model(
|
| 971 |
+
arch_name="vit_small",
|
| 972 |
+
num_register_tokens=4,
|
| 973 |
+
interpolate_antialias=True,
|
| 974 |
+
interpolate_offset=0.0,
|
| 975 |
+
**kwargs,
|
| 976 |
+
)
|
| 977 |
+
|
| 978 |
+
|
| 979 |
+
def dinov2_vitb14_reg(**kwargs):
|
| 980 |
+
"""
|
| 981 |
+
DINOv2 ViT-B/14 model with registers (optionally) pretrained on the LVD-142M dataset.
|
| 982 |
+
"""
|
| 983 |
+
return _make_dinov2_model(
|
| 984 |
+
arch_name="vit_base",
|
| 985 |
+
num_register_tokens=4,
|
| 986 |
+
interpolate_antialias=True,
|
| 987 |
+
interpolate_offset=0.0,
|
| 988 |
+
**kwargs,
|
| 989 |
+
)
|
| 990 |
+
|
| 991 |
+
|
| 992 |
+
def dinov2_vitl14_reg(**kwargs):
|
| 993 |
+
"""
|
| 994 |
+
DINOv2 ViT-L/14 model with registers (optionally) pretrained on the LVD-142M dataset.
|
| 995 |
+
"""
|
| 996 |
+
return _make_dinov2_model(
|
| 997 |
+
arch_name="vit_large",
|
| 998 |
+
num_register_tokens=4,
|
| 999 |
+
interpolate_antialias=True,
|
| 1000 |
+
interpolate_offset=0.0,
|
| 1001 |
+
**kwargs,
|
| 1002 |
+
)
|
| 1003 |
+
|
| 1004 |
+
|
| 1005 |
+
def dinov2_vitg14_reg(**kwargs):
|
| 1006 |
+
"""
|
| 1007 |
+
DINOv2 ViT-g/14 model with registers (optionally) pretrained on the LVD-142M dataset.
|
| 1008 |
+
"""
|
| 1009 |
+
return _make_dinov2_model(
|
| 1010 |
+
arch_name="vit_giant2",
|
| 1011 |
+
ffn_layer="swiglufused",
|
| 1012 |
+
num_register_tokens=4,
|
| 1013 |
+
interpolate_antialias=True,
|
| 1014 |
+
interpolate_offset=0.0,
|
| 1015 |
+
**kwargs,
|
| 1016 |
+
)
|
src/models/radiov3/dual_hybrid_vit.py
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from logging import getLogger
|
| 2 |
+
from typing import Tuple
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
|
| 8 |
+
from timm.models import register_model
|
| 9 |
+
from timm.models import vision_transformer as tvit
|
| 10 |
+
from timm.models import convnext as tconv
|
| 11 |
+
|
| 12 |
+
from einops import rearrange
|
| 13 |
+
|
| 14 |
+
from . import extra_timm_models as et
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Fuser(nn.Module):
|
| 18 |
+
def __init__(self, src_dim: int, tgt_dim: int, gated: bool = True):
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.gated = gated
|
| 21 |
+
|
| 22 |
+
mid_dim = max(src_dim, tgt_dim) * 2
|
| 23 |
+
|
| 24 |
+
self.fwd = nn.Sequential(
|
| 25 |
+
nn.Conv2d(src_dim, mid_dim, kernel_size=3, stride=1, padding=1),
|
| 26 |
+
nn.GELU(),
|
| 27 |
+
nn.Conv2d(mid_dim, tgt_dim * (2 if gated else 1), kernel_size=3, stride=1, padding=1),
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
def forward(self, src: torch.Tensor, tgt: torch.Tensor) -> torch.Tensor:
|
| 31 |
+
if src.ndim == 3:
|
| 32 |
+
shape = tgt.shape[-2:]
|
| 33 |
+
else:
|
| 34 |
+
shape = src.shape[-2:]
|
| 35 |
+
|
| 36 |
+
nd = shape[0] * shape[1]
|
| 37 |
+
|
| 38 |
+
if src.ndim == 3:
|
| 39 |
+
src = src[:, -nd:].reshape(src.shape[0], src.shape[2], *shape)
|
| 40 |
+
|
| 41 |
+
if tgt.ndim == 3:
|
| 42 |
+
tgt_pre = tgt[:, :-nd]
|
| 43 |
+
tgt = tgt[:, -nd:].reshape(tgt.shape[0], tgt.shape[2], *shape)
|
| 44 |
+
else:
|
| 45 |
+
tgt_pre = None
|
| 46 |
+
|
| 47 |
+
pred = self.fwd(src)
|
| 48 |
+
|
| 49 |
+
if self.gated:
|
| 50 |
+
g, pred = torch.chunk(pred, 2, dim=1)
|
| 51 |
+
|
| 52 |
+
g = F.sigmoid(g)
|
| 53 |
+
|
| 54 |
+
pred = g * pred
|
| 55 |
+
|
| 56 |
+
tgt = tgt + pred
|
| 57 |
+
|
| 58 |
+
if tgt_pre is not None:
|
| 59 |
+
tgt = rearrange(tgt, 'b c h w -> b (h w) c')
|
| 60 |
+
tgt = torch.cat([tgt_pre, tgt], dim=1)
|
| 61 |
+
|
| 62 |
+
return tgt
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class AttnDownsample(nn.Module):
|
| 66 |
+
def __init__(self, dim: int, window_size: int, num_heads: int = 16):
|
| 67 |
+
super().__init__()
|
| 68 |
+
self.q = nn.Parameter(torch.randn(1, num_heads, 1, dim // num_heads) * 0.01)
|
| 69 |
+
self.kv = nn.Linear(dim, dim * 2)
|
| 70 |
+
self.proj = nn.Linear(dim, dim)
|
| 71 |
+
self.window_size = window_size
|
| 72 |
+
self.num_heads = num_heads
|
| 73 |
+
self.head_dim = dim // num_heads
|
| 74 |
+
self.scale = self.head_dim ** -0.5
|
| 75 |
+
|
| 76 |
+
def forward(self, x: torch.Tensor, twod_shape: Tuple[int, int]) -> torch.Tensor:
|
| 77 |
+
ntok = twod_shape[0] * twod_shape[1]
|
| 78 |
+
x_pre = x[:, :-ntok]
|
| 79 |
+
|
| 80 |
+
B = x.shape[0]
|
| 81 |
+
ds_hw = tuple(s // self.window_size for s in twod_shape)
|
| 82 |
+
|
| 83 |
+
x_spat = rearrange(
|
| 84 |
+
x[:, -ntok:],
|
| 85 |
+
'b (h d1 w d2) c -> (b h w) (d1 d2) c',
|
| 86 |
+
h=ds_hw[0], w=ds_hw[1],
|
| 87 |
+
d1=self.window_size, d2=self.window_size,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
B, N, C = x_spat.shape
|
| 91 |
+
|
| 92 |
+
k, v = self.kv(x_spat).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
| 93 |
+
|
| 94 |
+
q = (self.q * self.scale).expand(B, -1, -1, -1)
|
| 95 |
+
attn = q @ k.transpose(-2, -1)
|
| 96 |
+
attn = F.softmax(attn, dim=-1)
|
| 97 |
+
x = attn @ v
|
| 98 |
+
|
| 99 |
+
x = x.transpose(1, 2).reshape(B, C)
|
| 100 |
+
x = self.proj(x)
|
| 101 |
+
|
| 102 |
+
x = rearrange(x, '(b h w) c -> b (h w) c', b=x_pre.shape[0], h=ds_hw[0], w=ds_hw[1])
|
| 103 |
+
|
| 104 |
+
x = torch.cat([x_pre, x], dim=1)
|
| 105 |
+
return x
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class HybridModel(nn.Module):
|
| 109 |
+
def __init__(self, vit: tvit.VisionTransformer, conv: tconv.ConvNeXt, pretrained: bool = False,
|
| 110 |
+
concatenate: bool = False, **kwargs):
|
| 111 |
+
super().__init__()
|
| 112 |
+
self.conv = conv
|
| 113 |
+
self.vit = vit
|
| 114 |
+
self.concatenate = concatenate
|
| 115 |
+
|
| 116 |
+
conv.stages = nn.ModuleList(conv.stages)
|
| 117 |
+
vit.blocks = nn.ModuleList(vit.blocks)
|
| 118 |
+
|
| 119 |
+
self._half_vit_idx = len(vit.blocks) // 2 + 1
|
| 120 |
+
|
| 121 |
+
self._half_conv_idx = None
|
| 122 |
+
x = torch.empty(1, 3, 256, 256)
|
| 123 |
+
x = self.conv.stem(x)
|
| 124 |
+
for i in range(len(conv.stages)):
|
| 125 |
+
x = conv.stages[i](x)
|
| 126 |
+
if self._half_conv_idx is None and x.shape[-2:] == (16, 16):
|
| 127 |
+
self._half_conv_idx = i + 1
|
| 128 |
+
half_conv_dim = x.shape[1]
|
| 129 |
+
final_conv_dim = x.shape[1]
|
| 130 |
+
|
| 131 |
+
self.vit_to_conv_fusion = Fuser(vit.embed_dim, half_conv_dim)
|
| 132 |
+
self.conv_to_vit_fusion = Fuser(half_conv_dim, vit.embed_dim)
|
| 133 |
+
self.vit_ds = AttnDownsample(vit.embed_dim, window_size=2)
|
| 134 |
+
|
| 135 |
+
embed_dim = vit.embed_dim + (final_conv_dim if concatenate else 0)
|
| 136 |
+
if not concatenate:
|
| 137 |
+
self.final_fuse = Fuser(final_conv_dim, vit.embed_dim, gated=False)
|
| 138 |
+
self.final_block = tvit.Block(embed_dim, num_heads=16)
|
| 139 |
+
|
| 140 |
+
self.embed_dim = embed_dim
|
| 141 |
+
|
| 142 |
+
@property
|
| 143 |
+
def patch_size(self):
|
| 144 |
+
return 32
|
| 145 |
+
|
| 146 |
+
@property
|
| 147 |
+
def no_fsdp_wrap_types(self):
|
| 148 |
+
return {tvit.VisionTransformer, tconv.ConvNeXt}
|
| 149 |
+
|
| 150 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 151 |
+
return self.forward_features(x)
|
| 152 |
+
|
| 153 |
+
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
| 154 |
+
y_vit = self.vit.patch_generator(x)
|
| 155 |
+
|
| 156 |
+
for i in range(self._half_vit_idx):
|
| 157 |
+
y_vit = self.vit.blocks[i](y_vit)
|
| 158 |
+
|
| 159 |
+
y_conv = self.conv.stem(x)
|
| 160 |
+
for i in range(self._half_conv_idx):
|
| 161 |
+
y_conv = self.conv.stages[i](y_conv)
|
| 162 |
+
|
| 163 |
+
y_vit, y_conv = self.conv_to_vit_fusion(y_conv, y_vit), self.vit_to_conv_fusion(y_vit, y_conv)
|
| 164 |
+
|
| 165 |
+
y_vit = self.vit_ds(y_vit, y_conv.shape[-2:])
|
| 166 |
+
|
| 167 |
+
for i in range(self._half_vit_idx, len(self.vit.blocks)):
|
| 168 |
+
y_vit = self.vit.blocks[i](y_vit)
|
| 169 |
+
|
| 170 |
+
for i in range(self._half_conv_idx, len(self.conv.stages)):
|
| 171 |
+
y_conv = self.conv.stages[i](y_conv)
|
| 172 |
+
|
| 173 |
+
if self.concatenate:
|
| 174 |
+
y_conv = rearrange(y_conv, 'b c h w -> b (h w) c')
|
| 175 |
+
# Average pool across the board, and replicate for each cls/register token
|
| 176 |
+
conv_summary = y_conv.mean(dim=1, keepdim=True).expand(-1, self.vit.patch_generator.num_cls_patches, -1)
|
| 177 |
+
y_conv = torch.cat([conv_summary, y_conv], dim=1)
|
| 178 |
+
y = torch.cat([y_vit, y_conv], dim=2)
|
| 179 |
+
else:
|
| 180 |
+
y = self.final_fuse(y_conv, y_vit)
|
| 181 |
+
y = self.final_block(y)
|
| 182 |
+
|
| 183 |
+
summary = y[:, :self.vit.patch_generator.num_cls_tokens]
|
| 184 |
+
features = y[:, self.vit.patch_generator.num_cls_patches:]
|
| 185 |
+
|
| 186 |
+
return summary, features
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
@register_model
|
| 190 |
+
def hybrid_base(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
|
| 191 |
+
cfg = dict(num_classes=0, **kwargs)
|
| 192 |
+
conv = tconv.convnextv2_base(pretrained=pretrained, **cfg)
|
| 193 |
+
vit = tvit.vit_base_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)
|
| 194 |
+
|
| 195 |
+
return HybridModel(vit, conv, pretrained, concatenate=concatenate)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
@register_model
|
| 199 |
+
def hybrid_large(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
|
| 200 |
+
cfg = dict(num_classes=0, **kwargs)
|
| 201 |
+
conv = tconv.convnextv2_large(pretrained=pretrained, **cfg)
|
| 202 |
+
vit = tvit.vit_large_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)
|
| 203 |
+
|
| 204 |
+
return HybridModel(vit, conv, pretrained, concatenate=concatenate)
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
@register_model
|
| 208 |
+
def hybrid_huge(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
|
| 209 |
+
cfg = dict(num_classes=0, **kwargs)
|
| 210 |
+
conv = tconv.convnextv2_huge(pretrained=pretrained, **cfg)
|
| 211 |
+
vit = et.vit_huge_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)
|
| 212 |
+
|
| 213 |
+
return HybridModel(vit, conv, pretrained, concatenate=concatenate)
|
src/models/radiov3/enable_cpe_support.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
from typing import List, Optional, Set, Tuple, Union
|
| 10 |
+
from types import MethodType
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
from torch import nn
|
| 14 |
+
|
| 15 |
+
from timm.models import VisionTransformer, checkpoint_seq
|
| 16 |
+
|
| 17 |
+
from .feature_normalizer import IntermediateFeatureNormalizerBase, NullIntermediateFeatureNormalizer
|
| 18 |
+
|
| 19 |
+
from .extra_models import DinoWrapper
|
| 20 |
+
from .vit_patch_generator import ViTPatchGenerator
|
| 21 |
+
from .forward_intermediates import forward_intermediates
|
| 22 |
+
from .dual_hybrid_vit import HybridModel
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def _forward_cpe(self: VisionTransformer, x: torch.Tensor) -> torch.Tensor:
|
| 26 |
+
x = self.patch_generator(x)
|
| 27 |
+
if getattr(self, 'grad_checkpointing', False) and not torch.jit.is_scripting():
|
| 28 |
+
x = checkpoint_seq(self.blocks, x)
|
| 29 |
+
else:
|
| 30 |
+
x = self.blocks(x)
|
| 31 |
+
x = self.norm(x)
|
| 32 |
+
return x
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def _take_indices(
|
| 36 |
+
num_blocks: int,
|
| 37 |
+
n: Optional[Union[int, List[int], Tuple[int]]],
|
| 38 |
+
) -> Tuple[Set[int], int]:
|
| 39 |
+
if isinstance(n, int):
|
| 40 |
+
assert n >= 0
|
| 41 |
+
take_indices = {x for x in range(num_blocks - n, num_blocks)}
|
| 42 |
+
else:
|
| 43 |
+
take_indices = {num_blocks + idx if idx < 0 else idx for idx in n}
|
| 44 |
+
return take_indices, max(take_indices)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def _forward_intermediates_cpe(
|
| 48 |
+
self,
|
| 49 |
+
x: torch.Tensor,
|
| 50 |
+
norm: bool = False,
|
| 51 |
+
**kwargs,
|
| 52 |
+
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
| 53 |
+
return forward_intermediates(
|
| 54 |
+
self,
|
| 55 |
+
patch_extractor=self.patch_generator,
|
| 56 |
+
num_summary_tokens=self.patch_generator.num_skip,
|
| 57 |
+
num_cls_tokens=self.patch_generator.num_cls_tokens,
|
| 58 |
+
norm=self.norm if norm else lambda y: y,
|
| 59 |
+
x=x,
|
| 60 |
+
**kwargs,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def _forward_cpe_dinov2(self: DinoWrapper, x: torch.Tensor) -> torch.Tensor:
|
| 65 |
+
y = _forward_cpe(self.inner, x)
|
| 66 |
+
|
| 67 |
+
return y[:, 0], y[:, self.num_summary_tokens:]
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def _forward_intermediates_cpe_dinov2(self: DinoWrapper, *args, **kwargs):
|
| 71 |
+
return _forward_intermediates_cpe(self.inner, *args, **kwargs)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def _enable_cpe_for_timm_vit(model: VisionTransformer,
|
| 75 |
+
max_img_size: Union[int, Tuple[int, int]] = 1024,
|
| 76 |
+
num_cls_tokens: int = 1,
|
| 77 |
+
pos_dropout: float = 0.1,
|
| 78 |
+
register_multiple: int = Optional[None],
|
| 79 |
+
num_registers: int = Optional[None],
|
| 80 |
+
):
|
| 81 |
+
if not isinstance(model, VisionTransformer):
|
| 82 |
+
raise ValueError("CPE only support for VisionTransformer models!")
|
| 83 |
+
|
| 84 |
+
patch_size = model.patch_embed.patch_size[0]
|
| 85 |
+
embed_dim = model.embed_dim
|
| 86 |
+
input_dims = model.patch_embed.img_size
|
| 87 |
+
normalize_patches = not isinstance(model.patch_embed.norm, nn.Identity)
|
| 88 |
+
cls_token = model.cls_token is not None
|
| 89 |
+
|
| 90 |
+
max_img_size = int(round(max_img_size / patch_size) * patch_size)
|
| 91 |
+
|
| 92 |
+
patch_generator = ViTPatchGenerator(
|
| 93 |
+
patch_size=patch_size,
|
| 94 |
+
embed_dim=embed_dim,
|
| 95 |
+
input_dims=input_dims,
|
| 96 |
+
normalize_patches=normalize_patches,
|
| 97 |
+
cls_token=cls_token,
|
| 98 |
+
max_input_dims=max_img_size,
|
| 99 |
+
pos_dropout=pos_dropout,
|
| 100 |
+
num_cls_tokens=num_cls_tokens,
|
| 101 |
+
register_multiple=register_multiple,
|
| 102 |
+
num_registers=num_registers,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
model.patch_generator = patch_generator
|
| 106 |
+
model.patch_embed = None
|
| 107 |
+
model.cls_token = None
|
| 108 |
+
model.pos_embed = None
|
| 109 |
+
model.pos_drop = None
|
| 110 |
+
model.patch_size = patch_size
|
| 111 |
+
model.num_cls_tokens = num_cls_tokens
|
| 112 |
+
model.num_registers = patch_generator.num_registers
|
| 113 |
+
|
| 114 |
+
model.forward_features = MethodType(_forward_cpe, model)
|
| 115 |
+
model.forward_intermediates = MethodType(_forward_intermediates_cpe, model)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def _enable_cpe_for_dv2_reg_vit(model: DinoWrapper,
|
| 119 |
+
max_img_size: Union[int, Tuple[int, int]] = 1024,
|
| 120 |
+
num_cls_tokens: int = 1,
|
| 121 |
+
pos_dropout: float = 0.1,
|
| 122 |
+
register_multiple: int = Optional[None],
|
| 123 |
+
num_registers: int = Optional[None],
|
| 124 |
+
):
|
| 125 |
+
patch_size = model.patch_size
|
| 126 |
+
embed_dim = model.embed_dim
|
| 127 |
+
input_dims = model.inner.patch_embed.patches_resolution
|
| 128 |
+
normalize_patches = not isinstance(model.inner.patch_embed.norm, nn.Identity)
|
| 129 |
+
cls_token = True
|
| 130 |
+
|
| 131 |
+
max_img_size = int(round(max_img_size / patch_size) * patch_size)
|
| 132 |
+
|
| 133 |
+
patch_generator = ViTPatchGenerator(
|
| 134 |
+
patch_size=patch_size,
|
| 135 |
+
embed_dim=embed_dim,
|
| 136 |
+
input_dims=input_dims,
|
| 137 |
+
normalize_patches=normalize_patches,
|
| 138 |
+
cls_token=cls_token,
|
| 139 |
+
max_input_dims=max_img_size,
|
| 140 |
+
pos_dropout=pos_dropout,
|
| 141 |
+
num_cls_tokens=num_cls_tokens,
|
| 142 |
+
register_multiple=register_multiple,
|
| 143 |
+
num_registers=num_registers,
|
| 144 |
+
patch_bias=True,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
inner = model.inner
|
| 148 |
+
inner.patch_generator = patch_generator
|
| 149 |
+
inner.patch_embed = None
|
| 150 |
+
inner.cls_token = None
|
| 151 |
+
inner.pos_embed = None
|
| 152 |
+
inner.register_tokens = None
|
| 153 |
+
inner.patch_size = patch_size
|
| 154 |
+
|
| 155 |
+
model.forward_features = MethodType(_forward_cpe_dinov2, model)
|
| 156 |
+
model.forward_intermediates = MethodType(_forward_intermediates_cpe_dinov2, model)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def enable_cpe(model: nn.Module,
|
| 160 |
+
*args,
|
| 161 |
+
**kwargs,
|
| 162 |
+
):
|
| 163 |
+
if isinstance(model, VisionTransformer):
|
| 164 |
+
_enable_cpe_for_timm_vit(model, *args, **kwargs)
|
| 165 |
+
elif isinstance(model, DinoWrapper):
|
| 166 |
+
_enable_cpe_for_dv2_reg_vit(model, *args, **kwargs)
|
| 167 |
+
elif isinstance(model, HybridModel):
|
| 168 |
+
_enable_cpe_for_timm_vit(model.vit, *args, **kwargs)
|
| 169 |
+
else:
|
| 170 |
+
raise ValueError(f'CPE not supported for this model type: {type(model)}')
|
src/models/radiov3/enable_spectral_reparam.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
from logging import getLogger
|
| 10 |
+
import math
|
| 11 |
+
import os
|
| 12 |
+
from typing import Dict, List, Optional, Union, Tuple
|
| 13 |
+
from types import MethodType
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
from torch import nn
|
| 17 |
+
from torch.nn import functional as F
|
| 18 |
+
from torch.nn.utils import parametrize
|
| 19 |
+
from torch.nn.utils.parametrizations import _SpectralNorm
|
| 20 |
+
|
| 21 |
+
from timm.models.vision_transformer import Attention, Mlp
|
| 22 |
+
|
| 23 |
+
_EPS = 1e-5
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class _SNReweight(_SpectralNorm):
|
| 27 |
+
def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, alpha: float = 0.05, version: int = 2, **kwargs):
|
| 28 |
+
super().__init__(weight, *args, **kwargs)
|
| 29 |
+
|
| 30 |
+
self.alpha = alpha
|
| 31 |
+
self.version = version
|
| 32 |
+
self.register_buffer('_sn_version', torch.tensor(version))
|
| 33 |
+
|
| 34 |
+
if init_norm_to_current:
|
| 35 |
+
# This will set the numerator to match the denominator, which should preserve the original values
|
| 36 |
+
init_scale = self._get_sigma(weight, n_power_iterations=20).item()
|
| 37 |
+
else:
|
| 38 |
+
init_scale = 1.0
|
| 39 |
+
|
| 40 |
+
if version == 1:
|
| 41 |
+
init_value = init_scale
|
| 42 |
+
elif version == 2:
|
| 43 |
+
t = init_scale - alpha
|
| 44 |
+
if t < _EPS:
|
| 45 |
+
getLogger("spectral_reparam").warn(f'The initialized spectral norm {init_scale} is too small to be represented. Setting to {_EPS} instead.')
|
| 46 |
+
t = _EPS
|
| 47 |
+
|
| 48 |
+
init_value = math.log(math.exp(t) - 1)
|
| 49 |
+
else:
|
| 50 |
+
raise ValueError(f'Unsupported version: {version}')
|
| 51 |
+
|
| 52 |
+
# Make 2D so that weight decay gets applied
|
| 53 |
+
self.scale = nn.Parameter(torch.tensor([[init_value]], dtype=torch.float32, device=weight.device))
|
| 54 |
+
|
| 55 |
+
# Re-implementing this because we need to make division by sigma safe
|
| 56 |
+
def _get_sigma(self, weight: torch.Tensor, n_power_iterations: int = None) -> torch.Tensor:
|
| 57 |
+
if not n_power_iterations:
|
| 58 |
+
n_power_iterations = self.n_power_iterations
|
| 59 |
+
if weight.ndim == 1:
|
| 60 |
+
# Faster and more exact path, no need to approximate anything
|
| 61 |
+
sigma = weight.norm()
|
| 62 |
+
else:
|
| 63 |
+
weight_mat = self._reshape_weight_to_matrix(weight)
|
| 64 |
+
if self.training:
|
| 65 |
+
self._power_method(weight_mat, n_power_iterations)
|
| 66 |
+
# See above on why we need to clone
|
| 67 |
+
u = self._u.clone(memory_format=torch.contiguous_format)
|
| 68 |
+
v = self._v.clone(memory_format=torch.contiguous_format)
|
| 69 |
+
# The proper way of computing this should be through F.bilinear, but
|
| 70 |
+
# it seems to have some efficiency issues:
|
| 71 |
+
# https://github.com/pytorch/pytorch/issues/58093
|
| 72 |
+
sigma = torch.dot(u, torch.mv(weight_mat, v))
|
| 73 |
+
|
| 74 |
+
return sigma + self.eps
|
| 75 |
+
|
| 76 |
+
def forward(self, weight: torch.Tensor, *args, **kwargs):
|
| 77 |
+
dtype = weight.dtype
|
| 78 |
+
sigma = self._get_sigma(weight, *args, **kwargs)
|
| 79 |
+
|
| 80 |
+
if self.version == 1:
|
| 81 |
+
scale = self.scale
|
| 82 |
+
elif self.version == 2:
|
| 83 |
+
scale = F.softplus(self.scale) + self.alpha
|
| 84 |
+
else:
|
| 85 |
+
raise ValueError(f'Unsupported version: {self.version}')
|
| 86 |
+
|
| 87 |
+
scale = scale.float() / sigma.float()
|
| 88 |
+
|
| 89 |
+
y = weight * scale
|
| 90 |
+
|
| 91 |
+
if dtype in (torch.float16, torch.bfloat16):
|
| 92 |
+
y = y.to(dtype)
|
| 93 |
+
return y
|
| 94 |
+
|
| 95 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
| 96 |
+
version_key = f'{prefix}_sn_version'
|
| 97 |
+
if version_key not in state_dict:
|
| 98 |
+
self.version = 1
|
| 99 |
+
state_dict[version_key] = torch.tensor(1)
|
| 100 |
+
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class _ChunkedSNReweight(nn.Module):
|
| 104 |
+
def __init__(self, weight: torch.Tensor, num_chunks: int, *args, init_norm_to_current: bool = False, **kwargs):
|
| 105 |
+
super().__init__()
|
| 106 |
+
|
| 107 |
+
self.num_chunks = num_chunks
|
| 108 |
+
parts = weight.split(weight.shape[0] // num_chunks, dim=0)
|
| 109 |
+
|
| 110 |
+
self.parts = nn.ModuleList([
|
| 111 |
+
_SNReweight(p, *args, init_norm_to_current=init_norm_to_current, **kwargs)
|
| 112 |
+
for p in parts
|
| 113 |
+
])
|
| 114 |
+
|
| 115 |
+
def forward(self, weight: torch.Tensor, *args, **kwargs):
|
| 116 |
+
parts = weight.split(weight.shape[0] // self.num_chunks, dim=0)
|
| 117 |
+
|
| 118 |
+
parts = [
|
| 119 |
+
fn(p)
|
| 120 |
+
for fn, p in zip(self.parts, parts)
|
| 121 |
+
]
|
| 122 |
+
|
| 123 |
+
return torch.cat(parts, dim=0)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
class _AttnSNReweight(_ChunkedSNReweight):
|
| 127 |
+
def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, renorm_values: bool = False, **kwargs):
|
| 128 |
+
super().__init__(weight, 3, *args, init_norm_to_current=init_norm_to_current, **kwargs)
|
| 129 |
+
|
| 130 |
+
if not renorm_values:
|
| 131 |
+
self.parts[2] = nn.Identity()
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def enable_spectral_reparam(model: Union[nn.Module, List[nn.Module]],
|
| 135 |
+
n_power_iterations: int = 1,
|
| 136 |
+
eps: float = 1e-6,
|
| 137 |
+
init_norm_to_current: bool = False,
|
| 138 |
+
renorm_values: bool = True,
|
| 139 |
+
renorm_mlp: bool = True,
|
| 140 |
+
state_dict_guidance: Optional[Dict[str, torch.Tensor]] = None):
|
| 141 |
+
if isinstance(model, (list, tuple)):
|
| 142 |
+
for i, sub in enumerate(model):
|
| 143 |
+
sub_sd = state_dict_guidance[i] if isinstance(state_dict_guidance, (list, tuple)) else state_dict_guidance
|
| 144 |
+
enable_spectral_reparam(sub, n_power_iterations=n_power_iterations, eps=eps,
|
| 145 |
+
init_norm_to_current=init_norm_to_current, renorm_values=renorm_values,
|
| 146 |
+
renorm_mlp=renorm_mlp, state_dict_guidance=sub_sd)
|
| 147 |
+
return
|
| 148 |
+
|
| 149 |
+
print('Enabling spectral reparametrization')
|
| 150 |
+
args = dict(n_power_iterations=n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current)
|
| 151 |
+
visited_prefixes = set()
|
| 152 |
+
|
| 153 |
+
def is_guidance_parametrized(name: str):
|
| 154 |
+
if state_dict_guidance is None:
|
| 155 |
+
return True
|
| 156 |
+
|
| 157 |
+
p_name = f'{name}.parametrizations'
|
| 158 |
+
is_prm = any(k for k in state_dict_guidance if k.startswith(p_name) and k.endswith('_sn_version'))
|
| 159 |
+
return is_prm
|
| 160 |
+
|
| 161 |
+
def parametrize_linear(linear: nn.Linear):
|
| 162 |
+
parametrize.register_parametrization(
|
| 163 |
+
linear,
|
| 164 |
+
'weight',
|
| 165 |
+
_SNReweight(linear.weight, **args)
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
for name, mod in model.named_modules():
|
| 169 |
+
pref = '.'.join(name.split('.')[:-1])
|
| 170 |
+
if pref in visited_prefixes:
|
| 171 |
+
continue
|
| 172 |
+
|
| 173 |
+
if isinstance(mod, Attention) or name.endswith('.attn'):
|
| 174 |
+
if is_guidance_parametrized(f'{name}.qkv'):
|
| 175 |
+
parametrize.register_parametrization(
|
| 176 |
+
mod.qkv,
|
| 177 |
+
'weight',
|
| 178 |
+
_AttnSNReweight(mod.qkv.weight, renorm_values=renorm_values, **args),
|
| 179 |
+
)
|
| 180 |
+
if hasattr(mod, 'proj') and is_guidance_parametrized(f'{name}.proj'):
|
| 181 |
+
parametrize_linear(mod.proj)
|
| 182 |
+
visited_prefixes.add(name)
|
| 183 |
+
elif name.endswith('mlp') and renorm_mlp and hasattr(mod, 'w12'):
|
| 184 |
+
if is_guidance_parametrized(f'{name}.w12'):
|
| 185 |
+
parametrize.register_parametrization(
|
| 186 |
+
mod.w12,
|
| 187 |
+
'weight',
|
| 188 |
+
_ChunkedSNReweight(mod.w12.weight, num_chunks=2, **args),
|
| 189 |
+
)
|
| 190 |
+
if is_guidance_parametrized(f'{name}.w3'):
|
| 191 |
+
parametrize_linear(mod.w3)
|
| 192 |
+
visited_prefixes.add(name)
|
| 193 |
+
elif isinstance(mod, nn.Linear) and 'patch_generator' not in name and is_guidance_parametrized(name):
|
| 194 |
+
parametrize_linear(mod)
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def configure_spectral_reparam_from_args(model: nn.Module, args, state_dict_guidance: Optional[Dict[str, torch.Tensor]] = None):
|
| 198 |
+
spectral_reparam = getattr(args, 'spectral_reparam', False)
|
| 199 |
+
if isinstance(spectral_reparam, bool) and spectral_reparam:
|
| 200 |
+
enable_spectral_reparam(model, init_norm_to_current=True, state_dict_guidance=state_dict_guidance)
|
| 201 |
+
elif isinstance(spectral_reparam, dict):
|
| 202 |
+
enable_spectral_reparam(
|
| 203 |
+
model,
|
| 204 |
+
n_power_iterations=spectral_reparam.get('n_power_iterations', 1),
|
| 205 |
+
eps=spectral_reparam.get('eps', 1e-12),
|
| 206 |
+
init_norm_to_current=True,
|
| 207 |
+
state_dict_guidance=state_dict_guidance,
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def disable_spectral_reparam(model: nn.Module):
|
| 212 |
+
print('Disabling spectral reparametrization')
|
| 213 |
+
for name, mod in model.named_modules():
|
| 214 |
+
if parametrize.is_parametrized(mod):
|
| 215 |
+
parametrize.remove_parametrizations(mod, 'weight')
|
| 216 |
+
pass
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
if __name__ == '__main__':
|
| 221 |
+
import argparse
|
| 222 |
+
from . import radio_model as create_model
|
| 223 |
+
|
| 224 |
+
parser = argparse.ArgumentParser(description='Remove parametrization from state dict')
|
| 225 |
+
parser.add_argument('--checkpoint', type=str, required=True, help='The checkpoint to load')
|
| 226 |
+
parser.add_argument('--output', type=str, default='', help='Where to store the checkpoint')
|
| 227 |
+
parser.add_argument('--release', default=False, action='store_true', help='Prune extraneous checkpoint fields')
|
| 228 |
+
parser.add_argument('--strict', default=False, action='store_true', help='Strictly load the state dict')
|
| 229 |
+
|
| 230 |
+
args = parser.parse_args()
|
| 231 |
+
|
| 232 |
+
if not args.output:
|
| 233 |
+
chk_dir, chk_name = os.path.split(args.checkpoint)
|
| 234 |
+
args.output = os.path.join(chk_dir, f'clean_{chk_name}')
|
| 235 |
+
print(f'Set output to "{args.output}"')
|
| 236 |
+
|
| 237 |
+
chk = torch.load(args.checkpoint, map_location='cpu', mmap=True)
|
| 238 |
+
|
| 239 |
+
model = create_model.create_model_from_args(chk['args'])
|
| 240 |
+
|
| 241 |
+
key = 'base_model.'
|
| 242 |
+
mod_state = dict()
|
| 243 |
+
extra_state = dict()
|
| 244 |
+
for k, v in chk['state_dict'].items():
|
| 245 |
+
if k.startswith(key):
|
| 246 |
+
mod_state[k[len(key):]] = v
|
| 247 |
+
else:
|
| 248 |
+
extra_state[k] = v
|
| 249 |
+
|
| 250 |
+
chk_load_info = model.load_state_dict(mod_state, strict=args.strict)
|
| 251 |
+
if chk_load_info.unexpected_keys or chk_load_info.missing_keys:
|
| 252 |
+
print(chk_load_info)
|
| 253 |
+
|
| 254 |
+
if chk['args'].spectral_reparam:
|
| 255 |
+
disable_spectral_reparam(model)
|
| 256 |
+
|
| 257 |
+
if hasattr(chk['args'], 'dtype'):
|
| 258 |
+
model.to(dtype=chk['args'].dtype)
|
| 259 |
+
|
| 260 |
+
mod_state = model.state_dict()
|
| 261 |
+
final_state = dict()
|
| 262 |
+
final_state.update({f'{key}{k}': v for k, v in mod_state.items()})
|
| 263 |
+
final_state.update(extra_state)
|
| 264 |
+
|
| 265 |
+
chk['state_dict'] = final_state
|
| 266 |
+
chk['args'].spectral_reparam = False
|
| 267 |
+
|
| 268 |
+
if args.release:
|
| 269 |
+
chk = {
|
| 270 |
+
'arch': chk['arch'],
|
| 271 |
+
'epoch': chk['epoch'],
|
| 272 |
+
'state_dict': chk['state_dict'],
|
| 273 |
+
'args': chk['args'],
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
torch.save(chk, args.output)
|
| 277 |
+
pass
|
src/models/radiov3/eradio_model.py
ADDED
|
@@ -0,0 +1,1392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
|
| 3 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 6 |
+
# and proprietary rights in and to this software, related documentation
|
| 7 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 8 |
+
# distribution of this software and related documentation without an express
|
| 9 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 10 |
+
|
| 11 |
+
# E-RADIO model from
|
| 12 |
+
# Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. "AM-RADIO: Agglomerative Model--Reduce All Domains Into One." arXiv preprint arXiv:2312.06709 (2023).
|
| 13 |
+
|
| 14 |
+
# based on FasterViT, Swin Transformer, YOLOv8
|
| 15 |
+
|
| 16 |
+
# FasterViT:
|
| 17 |
+
# Ali Hatamizadeh, Greg Heinrich, Hongxu Yin, Andrew Tao, Jose M. Alvarez, Jan Kautz, and Pavlo Molchanov. "FasterViT: Fast Vision Transformers with Hierarchical Attention." arXiv preprint arXiv:2306.06189 (2023).
|
| 18 |
+
|
| 19 |
+
import timm
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
from timm.models.registry import register_model
|
| 23 |
+
|
| 24 |
+
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
|
| 25 |
+
import numpy as np
|
| 26 |
+
import torch.nn.functional as F
|
| 27 |
+
import math
|
| 28 |
+
import warnings
|
| 29 |
+
|
| 30 |
+
#######################
|
| 31 |
+
## Codebase from YOLOv8
|
| 32 |
+
## BEGINNING
|
| 33 |
+
#######################
|
| 34 |
+
|
| 35 |
+
class C2f(nn.Module):
|
| 36 |
+
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
| 37 |
+
"""From YOLOv8 codebase"""
|
| 38 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, drop_path=None): # ch_in, ch_out, number, shortcut, groups, expansion
|
| 39 |
+
super().__init__()
|
| 40 |
+
if drop_path is None:
|
| 41 |
+
drop_path = [0.0] * n
|
| 42 |
+
|
| 43 |
+
self.c = int(c2 * e) # hidden channels
|
| 44 |
+
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
| 45 |
+
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
|
| 46 |
+
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0, drop_path=drop_path[i]) for i in range(n))
|
| 47 |
+
|
| 48 |
+
def forward(self, x):
|
| 49 |
+
"""Forward pass through C2f layer."""
|
| 50 |
+
y = list(self.cv1(x).chunk(2, 1))
|
| 51 |
+
y.extend(m(y[-1]) for m in self.m)
|
| 52 |
+
return self.cv2(torch.cat(y, 1))
|
| 53 |
+
|
| 54 |
+
def forward_split(self, x):
|
| 55 |
+
"""Forward pass using split() instead of chunk()."""
|
| 56 |
+
y = list(self.cv1(x).split((self.c, self.c), 1))
|
| 57 |
+
y.extend(m(y[-1]) for m in self.m)
|
| 58 |
+
return self.cv2(torch.cat(y, 1))
|
| 59 |
+
|
| 60 |
+
class Bottleneck(nn.Module):
|
| 61 |
+
"""Standard bottleneck."""
|
| 62 |
+
|
| 63 |
+
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5, drop_path=0.0): # ch_in, ch_out, shortcut, groups, kernels, expand
|
| 64 |
+
super().__init__()
|
| 65 |
+
c_ = int(c2 * e) # hidden channels
|
| 66 |
+
self.cv1 = Conv(c1, c_, k[0], 1)
|
| 67 |
+
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
| 68 |
+
self.add = shortcut and c1 == c2
|
| 69 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 70 |
+
|
| 71 |
+
def forward(self, x):
|
| 72 |
+
"""'forward()' applies the YOLOv5 FPN to input data."""
|
| 73 |
+
return x + self.drop_path1(self.cv2(self.cv1(x))) if self.add else self.cv2(self.cv1(x))
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class Conv(nn.Module):
|
| 77 |
+
"""Modified to support layer fusion"""
|
| 78 |
+
default_act = nn.SiLU() # default activation
|
| 79 |
+
|
| 80 |
+
def __init__(self, a, b, kernel_size=1, stride=1, padding=None, g=1, dilation=1, bn_weight_init=1, bias=False, act=True):
|
| 81 |
+
super().__init__()
|
| 82 |
+
|
| 83 |
+
self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, autopad(kernel_size, padding, dilation), dilation, g, bias=False)
|
| 84 |
+
if 1:
|
| 85 |
+
self.bn = torch.nn.BatchNorm2d(b)
|
| 86 |
+
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
|
| 87 |
+
torch.nn.init.constant_(self.bn.bias, 0)
|
| 88 |
+
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def forward(self,x):
|
| 92 |
+
x = self.conv(x)
|
| 93 |
+
x = self.bn(x)
|
| 94 |
+
x = self.act(x)
|
| 95 |
+
return x
|
| 96 |
+
|
| 97 |
+
@torch.no_grad()
|
| 98 |
+
def switch_to_deploy(self):
|
| 99 |
+
# return 1
|
| 100 |
+
if not isinstance(self.bn, nn.Identity):
|
| 101 |
+
c, bn = self.conv, self.bn
|
| 102 |
+
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
| 103 |
+
w = c.weight * w[:, None, None, None]
|
| 104 |
+
b = bn.bias - bn.running_mean * bn.weight / \
|
| 105 |
+
(bn.running_var + bn.eps)**0.5
|
| 106 |
+
|
| 107 |
+
self.conv.weight.data.copy_(w)
|
| 108 |
+
self.conv.bias = nn.Parameter(b)
|
| 109 |
+
|
| 110 |
+
self.bn = nn.Identity()
|
| 111 |
+
|
| 112 |
+
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
| 113 |
+
"""Pad to 'same' shape outputs."""
|
| 114 |
+
if d > 1:
|
| 115 |
+
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
|
| 116 |
+
if p is None:
|
| 117 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
| 118 |
+
return p
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
#######################
|
| 122 |
+
## Codebase from YOLOv8
|
| 123 |
+
## END
|
| 124 |
+
#######################
|
| 125 |
+
|
| 126 |
+
def pixel_unshuffle(data, factor=2):
|
| 127 |
+
# performs nn.PixelShuffle(factor) in reverse, torch has some bug for ONNX and TRT, so doing it manually
|
| 128 |
+
B, C, H, W = data.shape
|
| 129 |
+
return data.view(B, C, factor, H//factor, factor, W//factor).permute(0,1,2,4,3,5).reshape(B, -1, H//factor, W//factor)
|
| 130 |
+
|
| 131 |
+
class SwiGLU(nn.Module):
|
| 132 |
+
# should be more advanced, but doesnt improve results so far
|
| 133 |
+
def forward(self, x):
|
| 134 |
+
x, gate = x.chunk(2, dim=-1)
|
| 135 |
+
return F.silu(gate) * x
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def window_partition(x, window_size):
|
| 139 |
+
"""
|
| 140 |
+
Function for partitioning image into windows and later do windowed attention
|
| 141 |
+
Args:
|
| 142 |
+
x: (B, C, H, W)
|
| 143 |
+
window_size: window size
|
| 144 |
+
Returns:
|
| 145 |
+
windows - local window features (num_windows*B, window_size*window_size, C)
|
| 146 |
+
(Hp, Wp) - the size of the padded image
|
| 147 |
+
"""
|
| 148 |
+
B, C, H, W = x.shape
|
| 149 |
+
|
| 150 |
+
if window_size == 0 or (window_size==H and window_size==W):
|
| 151 |
+
windows = x.flatten(2).transpose(1, 2)
|
| 152 |
+
Hp, Wp = H, W
|
| 153 |
+
else:
|
| 154 |
+
pad_h = (window_size - H % window_size) % window_size
|
| 155 |
+
pad_w = (window_size - W % window_size) % window_size
|
| 156 |
+
if pad_h > 0 or pad_w > 0:
|
| 157 |
+
x = F.pad(x, (0, pad_w, 0, pad_h), mode="reflect")
|
| 158 |
+
Hp, Wp = H + pad_h, W + pad_w
|
| 159 |
+
|
| 160 |
+
x = x.view(B, C, Hp // window_size, window_size, Wp // window_size, window_size)
|
| 161 |
+
windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
|
| 162 |
+
|
| 163 |
+
return windows, (Hp, Wp)
|
| 164 |
+
|
| 165 |
+
class Conv2d_BN(nn.Module):
|
| 166 |
+
'''
|
| 167 |
+
Conv2d + BN layer with folding capability to speed up inference
|
| 168 |
+
Can be merged with Conv() function with additional arguments
|
| 169 |
+
'''
|
| 170 |
+
def __init__(self, a, b, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1, bias=False):
|
| 171 |
+
super().__init__()
|
| 172 |
+
self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, padding, dilation, groups, bias=False)
|
| 173 |
+
if 1:
|
| 174 |
+
self.bn = torch.nn.BatchNorm2d(b)
|
| 175 |
+
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
|
| 176 |
+
torch.nn.init.constant_(self.bn.bias, 0)
|
| 177 |
+
|
| 178 |
+
def forward(self,x):
|
| 179 |
+
x = self.conv(x)
|
| 180 |
+
x = self.bn(x)
|
| 181 |
+
return x
|
| 182 |
+
|
| 183 |
+
@torch.no_grad()
|
| 184 |
+
def switch_to_deploy(self):
|
| 185 |
+
if not isinstance(self.bn, nn.Identity):
|
| 186 |
+
c, bn = self.conv, self.bn
|
| 187 |
+
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
| 188 |
+
w = c.weight * w[:, None, None, None]
|
| 189 |
+
b = bn.bias - bn.running_mean * bn.weight / \
|
| 190 |
+
(bn.running_var + bn.eps)**0.5
|
| 191 |
+
self.conv.weight.data.copy_(w)
|
| 192 |
+
self.conv.bias = nn.Parameter(b)
|
| 193 |
+
self.bn = nn.Identity()
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def window_reverse(windows, window_size, H, W, pad_hw):
|
| 198 |
+
"""
|
| 199 |
+
Windows to the full feature map
|
| 200 |
+
Args:
|
| 201 |
+
windows: local window features (num_windows*B, window_size, window_size, C)
|
| 202 |
+
window_size: Window size
|
| 203 |
+
H: Height of image
|
| 204 |
+
W: Width of image
|
| 205 |
+
pad_w - a tuple of image passing used in windowing step
|
| 206 |
+
Returns:
|
| 207 |
+
x: (B, C, H, W)
|
| 208 |
+
|
| 209 |
+
"""
|
| 210 |
+
# print(f"window_reverse, windows.shape {windows.shape}")
|
| 211 |
+
Hp, Wp = pad_hw
|
| 212 |
+
if window_size == 0 or (window_size==H and window_size==W):
|
| 213 |
+
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
|
| 214 |
+
x = windows.transpose(1, 2).view(B, -1, H, W)
|
| 215 |
+
else:
|
| 216 |
+
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
|
| 217 |
+
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
| 218 |
+
x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], Hp, Wp)
|
| 219 |
+
|
| 220 |
+
if Hp > H or Wp > W:
|
| 221 |
+
x = x[:, :, :H, :W, ].contiguous()
|
| 222 |
+
|
| 223 |
+
return x
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
class PosEmbMLPSwinv2D(nn.Module):
|
| 228 |
+
"""
|
| 229 |
+
2D positional embedding from Swin Transformer v2
|
| 230 |
+
Added functionality to store the positional embedding in the model and not recompute it every time
|
| 231 |
+
"""
|
| 232 |
+
def __init__(
|
| 233 |
+
self, window_size, pretrained_window_size, num_heads, seq_length, no_log=False, cpb_mlp_hidden=512,
|
| 234 |
+
):
|
| 235 |
+
super().__init__()
|
| 236 |
+
self.window_size = window_size
|
| 237 |
+
self.num_heads = num_heads
|
| 238 |
+
# mlp to generate continuous relative position bias
|
| 239 |
+
self.cpb_mlp = nn.Sequential(
|
| 240 |
+
nn.Linear(2, cpb_mlp_hidden, bias=True),
|
| 241 |
+
nn.ReLU(inplace=True),
|
| 242 |
+
nn.Linear(cpb_mlp_hidden, num_heads, bias=False),
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
self.grid_exists = False
|
| 246 |
+
self.seq_length = seq_length
|
| 247 |
+
self.deploy = False
|
| 248 |
+
self.num_heads = num_heads
|
| 249 |
+
self.no_log = no_log
|
| 250 |
+
self.pretrained_window_size = pretrained_window_size
|
| 251 |
+
self.relative_bias_window_size = window_size
|
| 252 |
+
|
| 253 |
+
relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(window_size, num_heads,
|
| 254 |
+
pretrained_window_size, seq_length,
|
| 255 |
+
no_log)
|
| 256 |
+
|
| 257 |
+
self.register_buffer("relative_coords_table", relative_coords_table)
|
| 258 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
| 259 |
+
self.register_buffer("relative_bias", relative_bias) # for EMA
|
| 260 |
+
|
| 261 |
+
def relative_bias_initialization(self, window_size, num_heads, pretrained_window_size, seq_length, no_log):
|
| 262 |
+
# as in separate function to support window size chage after model weights loading
|
| 263 |
+
relative_coords_h = torch.arange(
|
| 264 |
+
-(window_size[0] - 1), window_size[0], dtype=torch.float32
|
| 265 |
+
)
|
| 266 |
+
relative_coords_w = torch.arange(
|
| 267 |
+
-(window_size[1] - 1), window_size[1], dtype=torch.float32
|
| 268 |
+
)
|
| 269 |
+
relative_coords_table = (
|
| 270 |
+
torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w]))
|
| 271 |
+
.permute(1, 2, 0)
|
| 272 |
+
.contiguous()
|
| 273 |
+
.unsqueeze(0)
|
| 274 |
+
) # 1, 2*Wh-1, 2*Ww-1, 2
|
| 275 |
+
if pretrained_window_size[0] > 0:
|
| 276 |
+
relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1
|
| 277 |
+
relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1
|
| 278 |
+
else:
|
| 279 |
+
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
|
| 280 |
+
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
|
| 281 |
+
|
| 282 |
+
if not no_log:
|
| 283 |
+
relative_coords_table *= 8 # normalize to -8, 8
|
| 284 |
+
relative_coords_table = (
|
| 285 |
+
torch.sign(relative_coords_table)
|
| 286 |
+
* torch.log2(torch.abs(relative_coords_table) + 1.0)
|
| 287 |
+
/ np.log2(8)
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# get pair-wise relative position index for each token inside the window
|
| 291 |
+
coords_h = torch.arange(self.window_size[0])
|
| 292 |
+
coords_w = torch.arange(self.window_size[1])
|
| 293 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
| 294 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
| 295 |
+
relative_coords = (
|
| 296 |
+
coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
| 297 |
+
) # 2, Wh*Ww, Wh*Ww
|
| 298 |
+
relative_coords = relative_coords.permute(
|
| 299 |
+
1, 2, 0
|
| 300 |
+
).contiguous() # Wh*Ww, Wh*Ww, 2
|
| 301 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
| 302 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
| 303 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
| 304 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
| 305 |
+
|
| 306 |
+
relative_bias = torch.zeros(1, num_heads, seq_length, seq_length)
|
| 307 |
+
|
| 308 |
+
self.relative_bias_window_size = window_size
|
| 309 |
+
|
| 310 |
+
return relative_coords_table, relative_position_index, relative_bias
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
def switch_to_deploy(self):
|
| 314 |
+
self.deploy = True
|
| 315 |
+
self.grid_exists = True
|
| 316 |
+
|
| 317 |
+
def forward(self, input_tensor):
|
| 318 |
+
# for efficiency, we want this forward to be folded into a single operation (sum)
|
| 319 |
+
# if resolution stays the same, then we dont need to recompute MLP layers
|
| 320 |
+
|
| 321 |
+
if not self.deploy or self.training:
|
| 322 |
+
self.grid_exists = False
|
| 323 |
+
|
| 324 |
+
#compare if all elements in self.window_size list match those in self.relative_bias_window_size
|
| 325 |
+
if not all([self.window_size[i] == self.relative_bias_window_size[i] for i in range(len(self.window_size))]):
|
| 326 |
+
relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(self.window_size, self.num_heads,
|
| 327 |
+
self.pretrained_window_size, self.seq_length,
|
| 328 |
+
self.no_log)
|
| 329 |
+
|
| 330 |
+
self.relative_coords_table = relative_coords_table.to(self.relative_coords_table.device)
|
| 331 |
+
self.relative_position_index = relative_position_index.to(self.relative_position_index.device)
|
| 332 |
+
self.relative_bias = relative_bias.to(self.relative_bias.device)
|
| 333 |
+
|
| 334 |
+
if self.deploy and self.grid_exists:
|
| 335 |
+
input_tensor = input_tensor + self.relative_bias
|
| 336 |
+
return input_tensor
|
| 337 |
+
|
| 338 |
+
if 1:
|
| 339 |
+
self.grid_exists = True
|
| 340 |
+
|
| 341 |
+
relative_position_bias_table = self.cpb_mlp(
|
| 342 |
+
self.relative_coords_table
|
| 343 |
+
).view(-1, self.num_heads)
|
| 344 |
+
relative_position_bias = relative_position_bias_table[
|
| 345 |
+
self.relative_position_index.view(-1)
|
| 346 |
+
].view(
|
| 347 |
+
self.window_size[0] * self.window_size[1],
|
| 348 |
+
self.window_size[0] * self.window_size[1],
|
| 349 |
+
-1,
|
| 350 |
+
) # Wh*Ww,Wh*Ww,nH
|
| 351 |
+
|
| 352 |
+
relative_position_bias = relative_position_bias.permute(
|
| 353 |
+
2, 0, 1
|
| 354 |
+
).contiguous() # nH, Wh*Ww, Wh*Ww
|
| 355 |
+
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
| 356 |
+
|
| 357 |
+
self.relative_bias = relative_position_bias.unsqueeze(0)
|
| 358 |
+
|
| 359 |
+
input_tensor = input_tensor + self.relative_bias
|
| 360 |
+
return input_tensor
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
class GRAAttentionBlock(nn.Module):
|
| 364 |
+
def __init__(self, window_size, dim_in, dim_out,
|
| 365 |
+
num_heads, drop_path=0., qk_scale=None, qkv_bias=False,
|
| 366 |
+
norm_layer=nn.LayerNorm, layer_scale=None,
|
| 367 |
+
use_swiglu=True,
|
| 368 |
+
subsample_ratio=1, dim_ratio=1, conv_base=False,
|
| 369 |
+
do_windowing=True, multi_query=False, use_shift=0,
|
| 370 |
+
cpb_mlp_hidden=512, conv_groups_ratio=0):
|
| 371 |
+
'''
|
| 372 |
+
Global Resolution Attention Block , see README for details
|
| 373 |
+
Attention with subsampling to get a bigger receptive field for attention
|
| 374 |
+
conv_base - use conv2d instead of avgpool2d for downsample / upsample
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
'''
|
| 378 |
+
super().__init__()
|
| 379 |
+
|
| 380 |
+
self.shift_size=window_size//2 if use_shift else 0
|
| 381 |
+
|
| 382 |
+
self.do_windowing = do_windowing
|
| 383 |
+
self.subsample_ratio = subsample_ratio
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
if do_windowing:
|
| 388 |
+
if conv_base:
|
| 389 |
+
self.downsample_op = nn.Conv2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
self.downsample_mixer = nn.Identity()
|
| 393 |
+
self.upsample_mixer = nn.Identity()
|
| 394 |
+
self.upsample_op = nn.ConvTranspose2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
| 395 |
+
else:
|
| 396 |
+
self.downsample_op = nn.AvgPool2d(kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
| 397 |
+
self.downsample_mixer = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1) if subsample_ratio > 1 else nn.Identity()
|
| 398 |
+
self.upsample_mixer = nn.Upsample(scale_factor=subsample_ratio, mode='nearest') if subsample_ratio > 1 else nn.Identity()
|
| 399 |
+
self.upsample_op = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False) if subsample_ratio > 1 else nn.Identity()
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
# in case there is no downsampling conv we want to have it separately
|
| 403 |
+
# will help with information propagation between windows
|
| 404 |
+
if subsample_ratio == 1:
|
| 405 |
+
# conv_groups_ratio=0
|
| 406 |
+
self.pre_conv = Conv2d_BN(dim_in, dim_in, kernel_size=3, stride=1, padding=1, groups=max(1,int(conv_groups_ratio*dim_in)), bias=False)
|
| 407 |
+
# self.pre_conv = nn.Conv2d(dim_in, dim_in, kernel_size=3, stride=1, padding=1, groups=max(1,int(conv_groups_ratio*dim_in)), bias=False)
|
| 408 |
+
# self.pre_conv_act = nn.ReLU6()
|
| 409 |
+
#for simplicity:
|
| 410 |
+
self.pre_conv_act = nn.Identity()
|
| 411 |
+
if conv_groups_ratio == -1:
|
| 412 |
+
self.pre_conv = nn.Identity()
|
| 413 |
+
self.pre_conv_act = nn.Identity()
|
| 414 |
+
|
| 415 |
+
self.window_size = window_size
|
| 416 |
+
|
| 417 |
+
self.norm1 = norm_layer(dim_in)
|
| 418 |
+
|
| 419 |
+
self.attn = WindowAttention(
|
| 420 |
+
dim_in,
|
| 421 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 422 |
+
resolution=window_size,
|
| 423 |
+
seq_length=window_size**2, dim_out=dim_in, multi_query=multi_query,
|
| 424 |
+
shift_size=self.shift_size, cpb_mlp_hidden=cpb_mlp_hidden)
|
| 425 |
+
|
| 426 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 427 |
+
|
| 428 |
+
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
|
| 429 |
+
self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim_in)) if use_layer_scale else 1
|
| 430 |
+
|
| 431 |
+
### mlp layer
|
| 432 |
+
mlp_ratio = 4
|
| 433 |
+
self.norm2 = norm_layer(dim_in)
|
| 434 |
+
mlp_hidden_dim = int(dim_in * mlp_ratio)
|
| 435 |
+
|
| 436 |
+
activation = nn.GELU if not use_swiglu else SwiGLU
|
| 437 |
+
mlp_hidden_dim = int((4 * dim_in * 1 / 2) / 64) * 64 if use_swiglu else mlp_hidden_dim
|
| 438 |
+
|
| 439 |
+
self.mlp = Mlp(in_features=dim_in, hidden_features=mlp_hidden_dim, act_layer=activation, use_swiglu=use_swiglu)
|
| 440 |
+
|
| 441 |
+
self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim_in)) if layer_scale else 1
|
| 442 |
+
self.drop_path2=DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def forward(self, x):
|
| 446 |
+
skip_connection = x
|
| 447 |
+
attn_mask = None
|
| 448 |
+
|
| 449 |
+
# in case there is no downsampling conv we want to have it separately
|
| 450 |
+
# will help with information propagation
|
| 451 |
+
if self.subsample_ratio == 1:
|
| 452 |
+
x = self.pre_conv_act(self.pre_conv(x)) + skip_connection
|
| 453 |
+
|
| 454 |
+
if self.do_windowing:
|
| 455 |
+
# performing windowing if required
|
| 456 |
+
x = self.downsample_op(x)
|
| 457 |
+
x = self.downsample_mixer(x)
|
| 458 |
+
|
| 459 |
+
if self.window_size>0:
|
| 460 |
+
H, W = x.shape[2], x.shape[3]
|
| 461 |
+
|
| 462 |
+
if self.shift_size > 0 and H>self.window_size and W>self.window_size:
|
| 463 |
+
# @swin like cyclic shift, doesnt show better performance
|
| 464 |
+
x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(2, 3))
|
| 465 |
+
|
| 466 |
+
x, pad_hw = window_partition(x, self.window_size)
|
| 467 |
+
|
| 468 |
+
if self.shift_size > 0 and H>self.window_size and W>self.window_size:
|
| 469 |
+
# set atten matrix to have -100 and the top right square
|
| 470 |
+
# attn[:, :, :-self.shift_size, -self.shift_size:] = -100.0
|
| 471 |
+
# calculate attention mask for SW-MSA
|
| 472 |
+
# not used in final version, can be useful for some cases especially for high res
|
| 473 |
+
H, W = pad_hw
|
| 474 |
+
img_mask = torch.zeros((1, H, W, 1), device=x.device) # 1 H W 1
|
| 475 |
+
h_slices = (slice(0, -self.window_size),
|
| 476 |
+
slice(-self.window_size, -self.shift_size),
|
| 477 |
+
slice(-self.shift_size, None))
|
| 478 |
+
w_slices = (slice(0, -self.window_size),
|
| 479 |
+
slice(-self.window_size, -self.shift_size),
|
| 480 |
+
slice(-self.shift_size, None))
|
| 481 |
+
cnt = 0
|
| 482 |
+
for h in h_slices:
|
| 483 |
+
for w in w_slices:
|
| 484 |
+
img_mask[:, h, w, :] = cnt
|
| 485 |
+
cnt += 1
|
| 486 |
+
img_mask = img_mask.transpose(1,2).transpose(1,3)
|
| 487 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
| 488 |
+
|
| 489 |
+
mask_windows = mask_windows[0].view(-1, self.window_size * self.window_size)
|
| 490 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
| 491 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
| 492 |
+
|
| 493 |
+
# window attention
|
| 494 |
+
x = x + self.drop_path1(self.gamma1*self.attn(self.norm1(x), attn_mask=attn_mask)) # or pass H,W
|
| 495 |
+
# mlp layer
|
| 496 |
+
x = x + self.drop_path2(self.gamma2*self.mlp(self.norm2(x)))
|
| 497 |
+
|
| 498 |
+
if self.do_windowing:
|
| 499 |
+
if self.window_size > 0:
|
| 500 |
+
x = window_reverse(x, self.window_size, H, W, pad_hw)
|
| 501 |
+
|
| 502 |
+
# reverse cyclic shift
|
| 503 |
+
if self.shift_size > 0 and H>self.window_size and W>self.window_size:
|
| 504 |
+
# @swin like cyclic shift, not tested
|
| 505 |
+
x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(2, 3))
|
| 506 |
+
|
| 507 |
+
x = self.upsample_mixer(x)
|
| 508 |
+
x = self.upsample_op(x)
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
if x.shape[2] != skip_connection.shape[2] or x.shape[3] != skip_connection.shape[3]:
|
| 512 |
+
x = torch.nn.functional.pad(x, ( 0, -x.shape[3] + skip_connection.shape[3], 0, -x.shape[2] + skip_connection.shape[2]), mode="reflect")
|
| 513 |
+
# need to add skip connection because downsampling and upsampling will break residual connection
|
| 514 |
+
# 0.5 is needed to make sure that the skip connection is not too strong
|
| 515 |
+
# in case of no downsample / upsample we can show that 0.5 compensates for the residual connection
|
| 516 |
+
x = 0.5 * x + 0.5 * skip_connection
|
| 517 |
+
return x
|
| 518 |
+
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
class MultiResolutionAttention(nn.Module):
|
| 523 |
+
"""
|
| 524 |
+
MultiResolutionAttention (MRA) module
|
| 525 |
+
The idea is to use multiple attention blocks with different resolution
|
| 526 |
+
Feature maps are downsampled / upsampled for each attention block on different blocks
|
| 527 |
+
Every attention block supports windowing
|
| 528 |
+
"""
|
| 529 |
+
|
| 530 |
+
def __init__(self, window_size, sr_ratio,
|
| 531 |
+
dim, dim_ratio, num_heads,
|
| 532 |
+
do_windowing=True,
|
| 533 |
+
layer_scale=1e-5, norm_layer=nn.LayerNorm,
|
| 534 |
+
drop_path = 0, qkv_bias=False, qk_scale=1.0,
|
| 535 |
+
use_swiglu=True, multi_query=False, conv_base=False,
|
| 536 |
+
use_shift=0, cpb_mlp_hidden=512, conv_groups_ratio=0) -> None:
|
| 537 |
+
"""
|
| 538 |
+
Args:
|
| 539 |
+
input_resolution: input image resolution
|
| 540 |
+
window_size: window size
|
| 541 |
+
compression_ratio: compression ratio
|
| 542 |
+
max_depth: maximum depth of the GRA module
|
| 543 |
+
use_shift: do window shifting
|
| 544 |
+
"""
|
| 545 |
+
super().__init__()
|
| 546 |
+
|
| 547 |
+
depth = len(sr_ratio)
|
| 548 |
+
|
| 549 |
+
self.attention_blocks = nn.ModuleList()
|
| 550 |
+
|
| 551 |
+
|
| 552 |
+
for i in range(depth):
|
| 553 |
+
subsample_ratio = sr_ratio[i]
|
| 554 |
+
if len(window_size) > i:
|
| 555 |
+
window_size_local = window_size[i]
|
| 556 |
+
else:
|
| 557 |
+
window_size_local = window_size[0]
|
| 558 |
+
|
| 559 |
+
self.attention_blocks.append(GRAAttentionBlock(window_size=window_size_local,
|
| 560 |
+
dim_in=dim, dim_out=dim, num_heads=num_heads,
|
| 561 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, norm_layer=norm_layer,
|
| 562 |
+
layer_scale=layer_scale, drop_path=drop_path,
|
| 563 |
+
use_swiglu=use_swiglu, subsample_ratio=subsample_ratio, dim_ratio=dim_ratio,
|
| 564 |
+
do_windowing=do_windowing, multi_query=multi_query, conv_base=conv_base,
|
| 565 |
+
use_shift=use_shift, cpb_mlp_hidden=cpb_mlp_hidden, conv_groups_ratio=conv_groups_ratio),
|
| 566 |
+
)
|
| 567 |
+
|
| 568 |
+
def forward(self, x):
|
| 569 |
+
|
| 570 |
+
for attention_block in self.attention_blocks:
|
| 571 |
+
x = attention_block(x)
|
| 572 |
+
|
| 573 |
+
return x
|
| 574 |
+
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
class Mlp(nn.Module):
|
| 578 |
+
"""
|
| 579 |
+
Multi-Layer Perceptron (MLP) block
|
| 580 |
+
"""
|
| 581 |
+
|
| 582 |
+
def __init__(self,
|
| 583 |
+
in_features,
|
| 584 |
+
hidden_features=None,
|
| 585 |
+
out_features=None,
|
| 586 |
+
act_layer=nn.GELU,
|
| 587 |
+
use_swiglu=True,
|
| 588 |
+
drop=0.):
|
| 589 |
+
"""
|
| 590 |
+
Args:
|
| 591 |
+
in_features: input features dimension.
|
| 592 |
+
hidden_features: hidden features dimension.
|
| 593 |
+
out_features: output features dimension.
|
| 594 |
+
act_layer: activation function.
|
| 595 |
+
drop: dropout rate.
|
| 596 |
+
"""
|
| 597 |
+
|
| 598 |
+
super().__init__()
|
| 599 |
+
out_features = out_features or in_features
|
| 600 |
+
hidden_features = hidden_features or in_features
|
| 601 |
+
self.fc1 = nn.Linear(in_features, hidden_features * (2 if use_swiglu else 1), bias=False)
|
| 602 |
+
self.act = act_layer()
|
| 603 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
|
| 604 |
+
|
| 605 |
+
def forward(self, x):
|
| 606 |
+
x_size = x.size()
|
| 607 |
+
x = x.view(-1, x_size[-1])
|
| 608 |
+
x = self.fc1(x)
|
| 609 |
+
x = self.act(x)
|
| 610 |
+
x = self.fc2(x)
|
| 611 |
+
x = x.view(x_size)
|
| 612 |
+
return x
|
| 613 |
+
|
| 614 |
+
class Downsample(nn.Module):
|
| 615 |
+
"""
|
| 616 |
+
Down-sampling block
|
| 617 |
+
Pixel Unshuffle is used for down-sampling, works great accuracy - wise but takes 10% more TRT time
|
| 618 |
+
"""
|
| 619 |
+
|
| 620 |
+
def __init__(self,
|
| 621 |
+
dim,
|
| 622 |
+
shuffle = False,
|
| 623 |
+
):
|
| 624 |
+
"""
|
| 625 |
+
Args:
|
| 626 |
+
dim: feature size dimension.
|
| 627 |
+
shuffle: idea with
|
| 628 |
+
keep_dim: bool argument for maintaining the resolution.
|
| 629 |
+
"""
|
| 630 |
+
|
| 631 |
+
super().__init__()
|
| 632 |
+
dim_out = 2 * dim
|
| 633 |
+
|
| 634 |
+
if shuffle:
|
| 635 |
+
self.norm = lambda x: pixel_unshuffle(x, factor=2)
|
| 636 |
+
self.reduction = Conv2d_BN(dim*4, dim_out, 1, 1, 0, bias=False)
|
| 637 |
+
# pixel unshuffleging works well but doesnt provide any speedup
|
| 638 |
+
else:
|
| 639 |
+
# removed layer norm for better, in this formulation we are getting 10% better speed
|
| 640 |
+
# LayerNorm for high resolution inputs will be a pain as it pools over the entire spatial dimension
|
| 641 |
+
# therefore we remove it compared to the original implementation in FasterViT
|
| 642 |
+
self.norm = nn.Identity()
|
| 643 |
+
self.reduction = Conv2d_BN(dim, dim_out, 3, 2, 1, bias=False)
|
| 644 |
+
|
| 645 |
+
|
| 646 |
+
def forward(self, x):
|
| 647 |
+
x = self.norm(x)
|
| 648 |
+
x = self.reduction(x)
|
| 649 |
+
return x
|
| 650 |
+
|
| 651 |
+
|
| 652 |
+
class PatchEmbed(nn.Module):
|
| 653 |
+
"""
|
| 654 |
+
Patch embedding block
|
| 655 |
+
Used to convert image into an initial set of feature maps with lower resolution
|
| 656 |
+
"""
|
| 657 |
+
|
| 658 |
+
def __init__(self, in_chans=3, in_dim=64, dim=96, shuffle_down=False):
|
| 659 |
+
"""
|
| 660 |
+
Args:
|
| 661 |
+
in_chans: number of input channels.
|
| 662 |
+
in_dim: intermediate feature size dimension to speed up stem.
|
| 663 |
+
dim: final stem channel number
|
| 664 |
+
shuffle_down: use PixelUnshuffle for down-sampling, effectively increases the receptive field
|
| 665 |
+
"""
|
| 666 |
+
|
| 667 |
+
super().__init__()
|
| 668 |
+
# shuffle_down = False
|
| 669 |
+
if not shuffle_down:
|
| 670 |
+
self.proj = nn.Identity()
|
| 671 |
+
self.conv_down = nn.Sequential(
|
| 672 |
+
Conv2d_BN(in_chans, in_dim, 3, 2, 1, bias=False),
|
| 673 |
+
nn.ReLU(),
|
| 674 |
+
Conv2d_BN(in_dim, dim, 3, 2, 1, bias=False),
|
| 675 |
+
nn.ReLU()
|
| 676 |
+
)
|
| 677 |
+
else:
|
| 678 |
+
self.proj = lambda x: pixel_unshuffle(x, factor=4)
|
| 679 |
+
self.conv_down = nn.Sequential(Conv2d_BN(in_chans*16, dim, 3, 1, 1),
|
| 680 |
+
nn.ReLU(),
|
| 681 |
+
)
|
| 682 |
+
|
| 683 |
+
def forward(self, x):
|
| 684 |
+
x = self.proj(x)
|
| 685 |
+
x = self.conv_down(x)
|
| 686 |
+
return x
|
| 687 |
+
|
| 688 |
+
|
| 689 |
+
|
| 690 |
+
class ConvBlock(nn.Module):
|
| 691 |
+
"""
|
| 692 |
+
Convolutional block, used in first couple of stages
|
| 693 |
+
Experimented with plan resnet-18 like modules, they are the best in terms of throughput
|
| 694 |
+
Finally, YOLOv8 idea seem to work fine (resnet-18 like block with squeezed feature dimension, and feature concatendation at the end)
|
| 695 |
+
"""
|
| 696 |
+
def __init__(self, dim,
|
| 697 |
+
drop_path=0.,
|
| 698 |
+
layer_scale=None,
|
| 699 |
+
kernel_size=3,
|
| 700 |
+
):
|
| 701 |
+
super().__init__()
|
| 702 |
+
|
| 703 |
+
self.conv1 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
| 704 |
+
self.act1 = nn.GELU()
|
| 705 |
+
|
| 706 |
+
self.conv2 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
| 707 |
+
|
| 708 |
+
self.layer_scale = layer_scale
|
| 709 |
+
if layer_scale is not None and type(layer_scale) in [int, float]:
|
| 710 |
+
self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
|
| 711 |
+
self.layer_scale = True
|
| 712 |
+
else:
|
| 713 |
+
self.layer_scale = False
|
| 714 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 715 |
+
|
| 716 |
+
def forward(self, x):
|
| 717 |
+
input = x
|
| 718 |
+
|
| 719 |
+
x = self.conv1(x)
|
| 720 |
+
x = self.act1(x)
|
| 721 |
+
x = self.conv2(x)
|
| 722 |
+
|
| 723 |
+
if self.layer_scale:
|
| 724 |
+
x = x * self.gamma.view(1, -1, 1, 1)
|
| 725 |
+
x = input + self.drop_path(x)
|
| 726 |
+
return x
|
| 727 |
+
|
| 728 |
+
|
| 729 |
+
class WindowAttention(nn.Module):
|
| 730 |
+
# Windowed Attention from SwinV2
|
| 731 |
+
# use a MLP trick to deal with various input image resolutions, then fold it to improve speed
|
| 732 |
+
|
| 733 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, resolution=0,
|
| 734 |
+
seq_length=0, dim_out=None, multi_query=False, shift_size=0, cpb_mlp_hidden=512):
|
| 735 |
+
# taken from EdgeViT and tweaked with attention bias.
|
| 736 |
+
super().__init__()
|
| 737 |
+
if not dim_out: dim_out = dim
|
| 738 |
+
self.shift_size = shift_size
|
| 739 |
+
self.multi_query = multi_query
|
| 740 |
+
self.num_heads = num_heads
|
| 741 |
+
head_dim = dim // num_heads
|
| 742 |
+
self.head_dim = dim // num_heads
|
| 743 |
+
|
| 744 |
+
self.dim_internal = dim
|
| 745 |
+
|
| 746 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 747 |
+
if not multi_query:
|
| 748 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 749 |
+
else:
|
| 750 |
+
self.qkv = nn.Linear(dim, dim + 2*self.head_dim, bias=qkv_bias)
|
| 751 |
+
|
| 752 |
+
self.proj = nn.Linear(dim, dim_out, bias=False)
|
| 753 |
+
# attention positional bias
|
| 754 |
+
self.pos_emb_funct = PosEmbMLPSwinv2D(window_size=[resolution, resolution],
|
| 755 |
+
pretrained_window_size=[resolution, resolution],
|
| 756 |
+
num_heads=num_heads,
|
| 757 |
+
seq_length=seq_length,
|
| 758 |
+
cpb_mlp_hidden=cpb_mlp_hidden)
|
| 759 |
+
|
| 760 |
+
self.resolution = resolution
|
| 761 |
+
|
| 762 |
+
def forward(self, x, attn_mask = None):
|
| 763 |
+
B, N, C = x.shape
|
| 764 |
+
|
| 765 |
+
if not self.multi_query:
|
| 766 |
+
qkv = self.qkv(x).reshape(B, -1, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 767 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 768 |
+
else:
|
| 769 |
+
qkv = self.qkv(x)
|
| 770 |
+
(q, k, v) = qkv.split([self.dim_internal, self.head_dim, self.head_dim], dim=2)
|
| 771 |
+
|
| 772 |
+
q = q.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
| 773 |
+
k = k.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
|
| 774 |
+
v = v.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
|
| 775 |
+
|
| 776 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
| 777 |
+
|
| 778 |
+
attn = self.pos_emb_funct(attn)
|
| 779 |
+
|
| 780 |
+
#add window shift
|
| 781 |
+
if attn_mask is not None:
|
| 782 |
+
nW = attn_mask.shape[0]
|
| 783 |
+
attn = attn.view(B // nW, nW, self.num_heads, N, N) + attn_mask.unsqueeze(1).unsqueeze(0)
|
| 784 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
| 785 |
+
|
| 786 |
+
attn = attn.softmax(dim=-1)
|
| 787 |
+
x = (attn @ v).transpose(1, 2).reshape(B, -1, C)
|
| 788 |
+
x = self.proj(x)
|
| 789 |
+
return x
|
| 790 |
+
|
| 791 |
+
|
| 792 |
+
|
| 793 |
+
class ERADIOLayer(nn.Module):
|
| 794 |
+
"""
|
| 795 |
+
E-RADIO Layer
|
| 796 |
+
"""
|
| 797 |
+
|
| 798 |
+
def __init__(self,
|
| 799 |
+
dim,
|
| 800 |
+
depth,
|
| 801 |
+
num_heads,
|
| 802 |
+
window_size,
|
| 803 |
+
conv=False,
|
| 804 |
+
downsample=True,
|
| 805 |
+
mlp_ratio=4.,
|
| 806 |
+
qkv_bias=False,
|
| 807 |
+
qk_scale=None,
|
| 808 |
+
norm_layer=nn.LayerNorm,
|
| 809 |
+
drop_path=0.,
|
| 810 |
+
layer_scale=None,
|
| 811 |
+
layer_scale_conv=None,
|
| 812 |
+
sr_dim_ratio=1,
|
| 813 |
+
sr_ratio=1,
|
| 814 |
+
multi_query=False,
|
| 815 |
+
use_swiglu=True,
|
| 816 |
+
yolo_arch=False,
|
| 817 |
+
downsample_shuffle=False,
|
| 818 |
+
conv_base=False,
|
| 819 |
+
use_shift=False,
|
| 820 |
+
cpb_mlp_hidden=512,
|
| 821 |
+
conv_groups_ratio=0,
|
| 822 |
+
verbose: bool = True,
|
| 823 |
+
|
| 824 |
+
):
|
| 825 |
+
"""
|
| 826 |
+
Args:
|
| 827 |
+
dim: feature size dimension.
|
| 828 |
+
depth: number of layers in each stage.
|
| 829 |
+
input_resolution: input image resolution.
|
| 830 |
+
window_size: window size in each stage.
|
| 831 |
+
downsample: bool argument for down-sampling.
|
| 832 |
+
mlp_ratio: MLP ratio.
|
| 833 |
+
num_heads: number of heads in each stage.
|
| 834 |
+
qkv_bias: bool argument for query, key, value learnable bias.
|
| 835 |
+
qk_scale: bool argument to scaling query, key.
|
| 836 |
+
drop: dropout rate.
|
| 837 |
+
attn_drop: attention dropout rate.
|
| 838 |
+
drop_path: drop path rate.
|
| 839 |
+
norm_layer: normalization layer.
|
| 840 |
+
layer_scale: layer scaling coefficient.
|
| 841 |
+
use_shift: SWIN like window shifting for half the window size for every alternating layer (considering multi-resolution)
|
| 842 |
+
conv_groups_ratio: group ratio for conv when no subsampling in multi-res attention
|
| 843 |
+
"""
|
| 844 |
+
|
| 845 |
+
super().__init__()
|
| 846 |
+
self.conv = conv
|
| 847 |
+
self.yolo_arch=False
|
| 848 |
+
self.verbose = verbose
|
| 849 |
+
if conv:
|
| 850 |
+
if not yolo_arch:
|
| 851 |
+
self.blocks = nn.ModuleList([
|
| 852 |
+
ConvBlock(dim=dim,
|
| 853 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 854 |
+
layer_scale=layer_scale_conv)
|
| 855 |
+
for i in range(depth)])
|
| 856 |
+
self.blocks = nn.Sequential(*self.blocks)
|
| 857 |
+
else:
|
| 858 |
+
self.blocks = C2f(dim,dim,n=depth,shortcut=True,e=0.5)
|
| 859 |
+
self.yolo_arch=True
|
| 860 |
+
else:
|
| 861 |
+
if not isinstance(window_size, list): window_size = [window_size]
|
| 862 |
+
self.window_size = window_size[0]
|
| 863 |
+
self.do_single_windowing = True
|
| 864 |
+
if not isinstance(sr_ratio, list): sr_ratio = [sr_ratio]
|
| 865 |
+
self.sr_ratio = sr_ratio
|
| 866 |
+
if any([sr!=1 for sr in sr_ratio]) or len(set(window_size))>1:
|
| 867 |
+
self.do_single_windowing = False
|
| 868 |
+
do_windowing = True
|
| 869 |
+
else:
|
| 870 |
+
self.do_single_windowing = True
|
| 871 |
+
do_windowing = False
|
| 872 |
+
|
| 873 |
+
#for v2_2
|
| 874 |
+
if conv_groups_ratio != -1:
|
| 875 |
+
self.do_single_windowing = False
|
| 876 |
+
do_windowing = True
|
| 877 |
+
|
| 878 |
+
self.blocks = nn.ModuleList()
|
| 879 |
+
for i in range(depth):
|
| 880 |
+
self.blocks.append(
|
| 881 |
+
MultiResolutionAttention(window_size=window_size,
|
| 882 |
+
sr_ratio=sr_ratio,
|
| 883 |
+
dim=dim,
|
| 884 |
+
dim_ratio = sr_dim_ratio,
|
| 885 |
+
num_heads=num_heads,
|
| 886 |
+
norm_layer=norm_layer,
|
| 887 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 888 |
+
layer_scale=layer_scale,
|
| 889 |
+
qkv_bias=qkv_bias,
|
| 890 |
+
qk_scale=qk_scale,
|
| 891 |
+
use_swiglu=use_swiglu,
|
| 892 |
+
do_windowing=do_windowing,
|
| 893 |
+
multi_query=multi_query,
|
| 894 |
+
conv_base=conv_base,
|
| 895 |
+
cpb_mlp_hidden=cpb_mlp_hidden,
|
| 896 |
+
use_shift =0 if ((not use_shift) or ((i) % 2 == 0)) else True ,
|
| 897 |
+
conv_groups_ratio=conv_groups_ratio,
|
| 898 |
+
))
|
| 899 |
+
self.blocks = nn.Sequential(*self.blocks)
|
| 900 |
+
|
| 901 |
+
self.transformer = not conv
|
| 902 |
+
self.downsample = None if not downsample else Downsample(dim=dim, shuffle=downsample_shuffle)
|
| 903 |
+
|
| 904 |
+
|
| 905 |
+
def forward(self, x):
|
| 906 |
+
B, C, H, W = x.shape
|
| 907 |
+
|
| 908 |
+
# do padding for transforemr
|
| 909 |
+
interpolate = True
|
| 910 |
+
if self.transformer and interpolate:
|
| 911 |
+
# Windowed Attention will split feature map into windows with the size of window_size x window_size
|
| 912 |
+
# if the resolution is not divisible by window_size, we need to interpolate the feature map
|
| 913 |
+
# can be done via padding, but doing so after training hurts the model performance.
|
| 914 |
+
# interpolation affects the performance as well, but not as much as padding
|
| 915 |
+
if isinstance(self.window_size, list) or isinstance(self.window_size, tuple):
|
| 916 |
+
current_max_window_size = max(self.window_size)
|
| 917 |
+
else:
|
| 918 |
+
current_max_window_size = self.window_size
|
| 919 |
+
|
| 920 |
+
max_window_size = max([res_upsample*current_max_window_size for res_upsample in self.sr_ratio])
|
| 921 |
+
if H % max_window_size != 0 or W % max_window_size != 0:
|
| 922 |
+
new_h = int(np.ceil(H/max_window_size)*max_window_size)
|
| 923 |
+
new_w = int(np.ceil(W/max_window_size)*max_window_size)
|
| 924 |
+
x = F.interpolate(x, size=(new_h, new_w), mode='nearest')
|
| 925 |
+
if self.verbose:
|
| 926 |
+
warnings.warn(f"Choosen window size is not optimal for given resolution. Interpolation of features maps will be done and it can affect the performance. Max window size is {max_window_size}, feature map size is {H}x{W}, interpolated feature map size is {new_h}x{new_w}.")
|
| 927 |
+
|
| 928 |
+
|
| 929 |
+
if self.transformer and self.do_single_windowing:
|
| 930 |
+
H, W = x.shape[2], x.shape[3]
|
| 931 |
+
x, pad_hw = window_partition(x, self.window_size)
|
| 932 |
+
|
| 933 |
+
#run main blocks
|
| 934 |
+
x = self.blocks(x)
|
| 935 |
+
|
| 936 |
+
if self.transformer and self.do_single_windowing:
|
| 937 |
+
x = window_reverse(x, self.window_size, H, W, pad_hw)
|
| 938 |
+
|
| 939 |
+
if self.transformer and interpolate:
|
| 940 |
+
#lets keep original resolution, might be not ideal, but for the upsampling tower we need to keep the expected resolution.
|
| 941 |
+
x = F.interpolate(x, size=(H, W), mode='nearest')
|
| 942 |
+
|
| 943 |
+
if self.downsample is None:
|
| 944 |
+
return x, x
|
| 945 |
+
|
| 946 |
+
return self.downsample(x), x # changing to output pre downsampled features
|
| 947 |
+
|
| 948 |
+
|
| 949 |
+
class InterpolateLayer(nn.Module):
|
| 950 |
+
def __init__(self, size=None, scale_factor=None, mode='nearest'):
|
| 951 |
+
super(InterpolateLayer, self).__init__()
|
| 952 |
+
self.size = size
|
| 953 |
+
self.scale_factor = scale_factor
|
| 954 |
+
self.mode = mode
|
| 955 |
+
|
| 956 |
+
def forward(self, x):
|
| 957 |
+
return F.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode)
|
| 958 |
+
|
| 959 |
+
|
| 960 |
+
class HiResNeck(nn.Module):
|
| 961 |
+
"""
|
| 962 |
+
The block is used to output dense features from all stages
|
| 963 |
+
Otherwise, by default, only the last stage features are returned with E-RADIO
|
| 964 |
+
"""
|
| 965 |
+
def __init__(self, dim, depths, neck_start_stage, full_features_head_dim, downsample_enabled):
|
| 966 |
+
|
| 967 |
+
'''
|
| 968 |
+
Hi Resolution neck to support output of high res features that are useful for dense tasks.
|
| 969 |
+
depths - total number of layers in the base model
|
| 970 |
+
neck_start_stage - when to start the neck, 0 - start from the first stage, 1 - start from the second stage etc.
|
| 971 |
+
earlier layers result in higher resolution features at the cost of compute
|
| 972 |
+
full_features_head_dim - number of channels in the dense features head
|
| 973 |
+
'''
|
| 974 |
+
super().__init__()
|
| 975 |
+
# create feature projection layers for segmentation output
|
| 976 |
+
self.neck_features_proj = nn.ModuleList()
|
| 977 |
+
self.neck_start_stage = neck_start_stage
|
| 978 |
+
upsample_ratio = 1
|
| 979 |
+
for i in range(len(depths)):
|
| 980 |
+
level_n_features_output = int(dim * 2 ** i)
|
| 981 |
+
|
| 982 |
+
if self.neck_start_stage > i: continue
|
| 983 |
+
|
| 984 |
+
if (upsample_ratio > 1) or full_features_head_dim!=level_n_features_output:
|
| 985 |
+
feature_projection = nn.Sequential()
|
| 986 |
+
if False:
|
| 987 |
+
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) #fast, but worse
|
| 988 |
+
feature_projection.add_module("dconv", nn.ConvTranspose2d(level_n_features_output,
|
| 989 |
+
full_features_head_dim, kernel_size=upsample_ratio, stride=upsample_ratio))
|
| 990 |
+
else:
|
| 991 |
+
# B, in_channels, H, W -> B, in_channels, H*upsample_ratio, W*upsample_ratio
|
| 992 |
+
# print("upsample ratio", upsample_ratio, level_n_features_output, level_n_features_output)
|
| 993 |
+
feature_projection.add_module("upsample", InterpolateLayer(scale_factor=upsample_ratio, mode='nearest'))
|
| 994 |
+
feature_projection.add_module("conv1", nn.Conv2d(level_n_features_output, level_n_features_output, kernel_size=3, stride=1, padding=1, groups=level_n_features_output))
|
| 995 |
+
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output))
|
| 996 |
+
# B, in_channels, H*upsample_ratio, W*upsample_ratio -> B, full_features_head_dim, H*upsample_ratio, W*upsample_ratio
|
| 997 |
+
feature_projection.add_module("conv2", nn.Conv2d(level_n_features_output, full_features_head_dim, kernel_size=1, stride=1, padding=0))
|
| 998 |
+
else:
|
| 999 |
+
feature_projection = nn.Sequential()
|
| 1000 |
+
|
| 1001 |
+
self.neck_features_proj.append(feature_projection)
|
| 1002 |
+
|
| 1003 |
+
if i>0 and downsample_enabled[i]:
|
| 1004 |
+
upsample_ratio *= 2
|
| 1005 |
+
|
| 1006 |
+
def forward(self, x, il_level=-1, full_features=None):
|
| 1007 |
+
if self.neck_start_stage > il_level:
|
| 1008 |
+
return full_features
|
| 1009 |
+
|
| 1010 |
+
if full_features is None:
|
| 1011 |
+
full_features = self.neck_features_proj[il_level - self.neck_start_stage](x)
|
| 1012 |
+
else:
|
| 1013 |
+
#upsample torch tensor x to match full_features size, and add to full_features
|
| 1014 |
+
feature_projection = self.neck_features_proj[il_level - self.neck_start_stage](x)
|
| 1015 |
+
if feature_projection.shape[2] != full_features.shape[2] or feature_projection.shape[3] != full_features.shape[3]:
|
| 1016 |
+
feature_projection = torch.nn.functional.pad(feature_projection, ( 0, -feature_projection.shape[3] + full_features.shape[3], 0, -feature_projection.shape[2] + full_features.shape[2]))
|
| 1017 |
+
full_features = full_features + feature_projection
|
| 1018 |
+
return full_features
|
| 1019 |
+
|
| 1020 |
+
class ERADIO(nn.Module):
|
| 1021 |
+
"""
|
| 1022 |
+
Efficient RADIO
|
| 1023 |
+
"""
|
| 1024 |
+
|
| 1025 |
+
def __init__(self,
|
| 1026 |
+
dim,
|
| 1027 |
+
in_dim,
|
| 1028 |
+
depths,
|
| 1029 |
+
window_size,
|
| 1030 |
+
mlp_ratio,
|
| 1031 |
+
num_heads,
|
| 1032 |
+
drop_path_rate=0.2,
|
| 1033 |
+
in_chans=3,
|
| 1034 |
+
num_classes=1000,
|
| 1035 |
+
qkv_bias=False,
|
| 1036 |
+
qk_scale=None,
|
| 1037 |
+
layer_scale=None,
|
| 1038 |
+
layer_scale_conv=None,
|
| 1039 |
+
layer_norm_last=False,
|
| 1040 |
+
sr_ratio = [1, 1, 1, 1],
|
| 1041 |
+
max_depth = -1,
|
| 1042 |
+
conv_base=False,
|
| 1043 |
+
use_swiglu=False,
|
| 1044 |
+
multi_query=False,
|
| 1045 |
+
norm_layer=nn.LayerNorm,
|
| 1046 |
+
drop_uniform=False,
|
| 1047 |
+
yolo_arch=False,
|
| 1048 |
+
shuffle_down=False,
|
| 1049 |
+
downsample_shuffle=False,
|
| 1050 |
+
return_full_features=False,
|
| 1051 |
+
full_features_head_dim=128,
|
| 1052 |
+
neck_start_stage=1,
|
| 1053 |
+
use_neck=False,
|
| 1054 |
+
use_shift=False,
|
| 1055 |
+
cpb_mlp_hidden=512,
|
| 1056 |
+
conv_groups_ratio=0,
|
| 1057 |
+
verbose: bool = False,
|
| 1058 |
+
**kwargs):
|
| 1059 |
+
"""
|
| 1060 |
+
Args:
|
| 1061 |
+
dim: feature size dimension.
|
| 1062 |
+
depths: number of layers in each stage.
|
| 1063 |
+
window_size: window size in each stage.
|
| 1064 |
+
mlp_ratio: MLP ratio.
|
| 1065 |
+
num_heads: number of heads in each stage.
|
| 1066 |
+
drop_path_rate: drop path rate.
|
| 1067 |
+
in_chans: number of input channels.
|
| 1068 |
+
num_classes: number of classes.
|
| 1069 |
+
qkv_bias: bool argument for query, key, value learnable bias.
|
| 1070 |
+
qk_scale: bool argument to scaling query, key.
|
| 1071 |
+
drop_rate: dropout rate.
|
| 1072 |
+
attn_drop_rate: attention dropout rate.
|
| 1073 |
+
norm_layer: normalization layer.
|
| 1074 |
+
layer_scale: layer scaling coefficient.
|
| 1075 |
+
return_full_features: output dense features as well as logits
|
| 1076 |
+
full_features_head_dim: number of channels in the dense features head
|
| 1077 |
+
neck_start_stage: a stage id to start full feature neck. Model has 4 stages, indix starts with 0
|
| 1078 |
+
for 224 resolution, the output of the stage before downsample:
|
| 1079 |
+
stage 0: 56x56, stage 1: 28x28, stage 2: 14x14, stage 3: 7x7
|
| 1080 |
+
use_neck: even for summarization embedding use neck
|
| 1081 |
+
use_shift: SWIN like window shifting but without masking attention
|
| 1082 |
+
conv_groups_ratio: will be used for conv blocks where there is no multires attention,
|
| 1083 |
+
if 0 then normal conv,
|
| 1084 |
+
if 1 then channels are independent,
|
| 1085 |
+
if -1 then no conv at all
|
| 1086 |
+
|
| 1087 |
+
"""
|
| 1088 |
+
super().__init__()
|
| 1089 |
+
|
| 1090 |
+
num_features = int(dim * 2 ** (len(depths) - 1))
|
| 1091 |
+
self.num_classes = num_classes
|
| 1092 |
+
self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim, shuffle_down=shuffle_down)
|
| 1093 |
+
# set return_full_features true if we want to return full features from all stages
|
| 1094 |
+
self.return_full_features = return_full_features
|
| 1095 |
+
self.use_neck = use_neck
|
| 1096 |
+
|
| 1097 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
| 1098 |
+
if drop_uniform:
|
| 1099 |
+
dpr = [drop_path_rate for x in range(sum(depths))]
|
| 1100 |
+
|
| 1101 |
+
if not isinstance(max_depth, list): max_depth = [max_depth] * len(depths)
|
| 1102 |
+
|
| 1103 |
+
self.levels = nn.ModuleList()
|
| 1104 |
+
for i in range(len(depths)):
|
| 1105 |
+
conv = True if (i == 0 or i == 1) else False
|
| 1106 |
+
|
| 1107 |
+
level = ERADIOLayer(dim=int(dim * 2 ** i),
|
| 1108 |
+
depth=depths[i],
|
| 1109 |
+
num_heads=num_heads[i],
|
| 1110 |
+
window_size=window_size[i],
|
| 1111 |
+
mlp_ratio=mlp_ratio,
|
| 1112 |
+
qkv_bias=qkv_bias,
|
| 1113 |
+
qk_scale=qk_scale,
|
| 1114 |
+
conv=conv,
|
| 1115 |
+
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
|
| 1116 |
+
downsample=(i < len(depths) - 1),
|
| 1117 |
+
layer_scale=layer_scale,
|
| 1118 |
+
layer_scale_conv=layer_scale_conv,
|
| 1119 |
+
sr_ratio=sr_ratio[i],
|
| 1120 |
+
use_swiglu=use_swiglu,
|
| 1121 |
+
multi_query=multi_query,
|
| 1122 |
+
norm_layer=norm_layer,
|
| 1123 |
+
yolo_arch=yolo_arch,
|
| 1124 |
+
downsample_shuffle=downsample_shuffle,
|
| 1125 |
+
conv_base=conv_base,
|
| 1126 |
+
cpb_mlp_hidden=cpb_mlp_hidden,
|
| 1127 |
+
use_shift=use_shift,
|
| 1128 |
+
conv_groups_ratio=conv_groups_ratio,
|
| 1129 |
+
verbose=verbose)
|
| 1130 |
+
|
| 1131 |
+
self.levels.append(level)
|
| 1132 |
+
|
| 1133 |
+
if self.return_full_features or self.use_neck:
|
| 1134 |
+
#num_heads
|
| 1135 |
+
downsample_enabled = [self.levels[i-1].downsample is not None for i in range(len(self.levels))]
|
| 1136 |
+
self.high_res_neck = HiResNeck(dim, depths, neck_start_stage, full_features_head_dim, downsample_enabled)
|
| 1137 |
+
|
| 1138 |
+
self.switched_to_deploy = False
|
| 1139 |
+
|
| 1140 |
+
self.norm = LayerNorm2d(num_features) if layer_norm_last else nn.BatchNorm2d(num_features)
|
| 1141 |
+
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
| 1142 |
+
self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
|
| 1143 |
+
self.apply(self._init_weights)
|
| 1144 |
+
|
| 1145 |
+
def _init_weights(self, m):
|
| 1146 |
+
if isinstance(m, nn.Linear):
|
| 1147 |
+
trunc_normal_(m.weight, std=.02)
|
| 1148 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 1149 |
+
nn.init.constant_(m.bias, 0)
|
| 1150 |
+
elif isinstance(m, nn.LayerNorm):
|
| 1151 |
+
nn.init.constant_(m.bias, 0)
|
| 1152 |
+
nn.init.constant_(m.weight, 1.0)
|
| 1153 |
+
elif isinstance(m, LayerNorm2d):
|
| 1154 |
+
nn.init.constant_(m.bias, 0)
|
| 1155 |
+
nn.init.constant_(m.weight, 1.0)
|
| 1156 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 1157 |
+
nn.init.ones_(m.weight)
|
| 1158 |
+
nn.init.zeros_(m.bias)
|
| 1159 |
+
|
| 1160 |
+
@torch.jit.ignore
|
| 1161 |
+
def no_weight_decay_keywords(self):
|
| 1162 |
+
return {'rpb'}
|
| 1163 |
+
|
| 1164 |
+
def forward_features(self, x):
|
| 1165 |
+
_, _, H, W = x.shape
|
| 1166 |
+
if H % 32 != 0 or W % 32 != 0:
|
| 1167 |
+
raise ValueError(f"E-RADIO requires input dimensions to be divisible by 32 but got H x W: {H} x {W}")
|
| 1168 |
+
x = self.patch_embed(x)
|
| 1169 |
+
full_features = None
|
| 1170 |
+
for il, level in enumerate(self.levels):
|
| 1171 |
+
x, pre_downsample_x = level(x)
|
| 1172 |
+
|
| 1173 |
+
if self.return_full_features or self.use_neck:
|
| 1174 |
+
full_features = self.high_res_neck(pre_downsample_x, il, full_features)
|
| 1175 |
+
|
| 1176 |
+
# x = self.norm(full_features if (self.return_full_features or self.use_neck) else x)
|
| 1177 |
+
x = self.norm(x) # new version for
|
| 1178 |
+
|
| 1179 |
+
if not self.return_full_features:
|
| 1180 |
+
return x, None
|
| 1181 |
+
|
| 1182 |
+
return x, full_features
|
| 1183 |
+
|
| 1184 |
+
def forward(self, x):
|
| 1185 |
+
x, full_features = self.forward_features(x)
|
| 1186 |
+
|
| 1187 |
+
x = self.avgpool(x)
|
| 1188 |
+
x = torch.flatten(x, 1)
|
| 1189 |
+
|
| 1190 |
+
x = self.head(x)
|
| 1191 |
+
if full_features is not None:
|
| 1192 |
+
return x, full_features
|
| 1193 |
+
return x
|
| 1194 |
+
|
| 1195 |
+
def switch_to_deploy(self):
|
| 1196 |
+
'''
|
| 1197 |
+
A method to perform model self-compression
|
| 1198 |
+
merges BN into conv layers
|
| 1199 |
+
converts MLP relative positional bias into precomputed buffers
|
| 1200 |
+
'''
|
| 1201 |
+
if not self.switched_to_deploy:
|
| 1202 |
+
for level in [self.patch_embed, self.levels, self.head]:
|
| 1203 |
+
for module in level.modules():
|
| 1204 |
+
if hasattr(module, 'switch_to_deploy'):
|
| 1205 |
+
module.switch_to_deploy()
|
| 1206 |
+
self.switched_to_deploy = True
|
| 1207 |
+
|
| 1208 |
+
|
| 1209 |
+
def change_window_size(self, new_window_size):
|
| 1210 |
+
"""
|
| 1211 |
+
E-RADIO employs windowed attention, which may be sensitive to the choice of this parameter,
|
| 1212 |
+
especially in cases of uneven partitioning of the feature maps.
|
| 1213 |
+
E-RADIO allows for the adjustment of the window size after training,
|
| 1214 |
+
making it adaptable to different input image resolutions.
|
| 1215 |
+
The recommended values for window size based on input resolution are as follows:
|
| 1216 |
+
|
| 1217 |
+
Input Resolution | Window Size
|
| 1218 |
+
224 | 7
|
| 1219 |
+
256 | 8
|
| 1220 |
+
386 | 12
|
| 1221 |
+
512 | 16
|
| 1222 |
+
Ideally, the window size should be a factor of the input resolution. In the third stage, we divide the resolution by 16, so the window size should be
|
| 1223 |
+
img_res/16/2
|
| 1224 |
+
for the third stage and img_res/32 for the last stage. While this can be applied in a brute-force manner, a better way is to do model.change_window_size.
|
| 1225 |
+
Manual way to change resolution -> model.change_window_size(resolution)
|
| 1226 |
+
"""
|
| 1227 |
+
window_size = new_window_size
|
| 1228 |
+
print(f"Setting window size to {window_size}")
|
| 1229 |
+
for module in self.modules():
|
| 1230 |
+
if hasattr(module, "window_size"):
|
| 1231 |
+
# check if tuple or a number
|
| 1232 |
+
if isinstance(module.window_size, tuple):
|
| 1233 |
+
if module.window_size[0] != window_size:
|
| 1234 |
+
module.window_size = (window_size, window_size)
|
| 1235 |
+
elif isinstance(module.window_size, list):
|
| 1236 |
+
if module.window_size[0] != window_size:
|
| 1237 |
+
module.window_size = [window_size, window_size]
|
| 1238 |
+
else:
|
| 1239 |
+
module.window_size = window_size
|
| 1240 |
+
|
| 1241 |
+
|
| 1242 |
+
def set_optimal_window_size(self, image_dim, max_window_size = 16):
|
| 1243 |
+
"""
|
| 1244 |
+
Using hand picked window size for various resolutions.
|
| 1245 |
+
|
| 1246 |
+
E-RADIO employs windowed attention, which may be sensitive to the choice of this parameter,
|
| 1247 |
+
especially in cases of uneven partitioning of the feature maps.
|
| 1248 |
+
E-RADIO allows for the adjustment of the window size after training,
|
| 1249 |
+
making it adaptable to different input image resolutions.
|
| 1250 |
+
The recommended values for window size based on input resolution are as follows:
|
| 1251 |
+
|
| 1252 |
+
Input Resolution | Window Size
|
| 1253 |
+
224 | 7
|
| 1254 |
+
256 | 8
|
| 1255 |
+
386 | 12
|
| 1256 |
+
512 | 16
|
| 1257 |
+
Ideally, the window size should be a factor of the input resolution. In the third stage, we divide the resolution by 16, so the window size should be
|
| 1258 |
+
img_res/16/2
|
| 1259 |
+
for the third stage and img_res/32 for the last stage. While this can be applied in a brute-force manner, a better way is to do model.change_window_size.
|
| 1260 |
+
Manual way to change resolution -> model.change_window_size(resolution)
|
| 1261 |
+
|
| 1262 |
+
"""
|
| 1263 |
+
# import math
|
| 1264 |
+
|
| 1265 |
+
def divisorGenerator(n):
|
| 1266 |
+
large_divisors = []
|
| 1267 |
+
for i in range(1, int(math.sqrt(n) + 1)):
|
| 1268 |
+
if n % i == 0:
|
| 1269 |
+
yield i
|
| 1270 |
+
if i*i != n:
|
| 1271 |
+
large_divisors.append(n / i)
|
| 1272 |
+
for divisor in reversed(large_divisors):
|
| 1273 |
+
yield divisor
|
| 1274 |
+
|
| 1275 |
+
if isinstance(image_dim, list) or isinstance(image_dim, tuple):
|
| 1276 |
+
image_dim = min(image_dim)
|
| 1277 |
+
|
| 1278 |
+
# we do windowed attention in the 3rd stage for the first time, therefore //16,
|
| 1279 |
+
# we do subsampled attention with downsample by 2 so need to get //32 actually
|
| 1280 |
+
# ideally we should rewrite this to be dependent on the structure of the model like what if subsampled is removed etc
|
| 1281 |
+
all_divisors = np.array(list(divisorGenerator(image_dim//32)))
|
| 1282 |
+
new_window_size = int(min(all_divisors[all_divisors <= max_window_size][-1], max_window_size))
|
| 1283 |
+
|
| 1284 |
+
# for image_dim in [128, 224, 256, 384, 512, 768, 1024]:
|
| 1285 |
+
# all_divisors = np.array(list(divisorGenerator(image_dim//32)))
|
| 1286 |
+
# new_window_size = int(min(all_divisors[all_divisors <= max_window_size][-1], max_window_size))
|
| 1287 |
+
# print(f"Setting window size to {new_window_size} for image resolution {image_dim}")
|
| 1288 |
+
|
| 1289 |
+
self.change_window_size(new_window_size = new_window_size)
|
| 1290 |
+
|
| 1291 |
+
|
| 1292 |
+
@register_model
|
| 1293 |
+
def eradio_large_fullres_ws16(pretrained=False, **kwargs):
|
| 1294 |
+
model = ERADIO(
|
| 1295 |
+
depths=[3, 3, 5, 5],
|
| 1296 |
+
num_heads=[2, 4, 8, 16],
|
| 1297 |
+
window_size=[None, None, [16, 16], 16],
|
| 1298 |
+
dim=192,
|
| 1299 |
+
in_dim=64,
|
| 1300 |
+
mlp_ratio=4,
|
| 1301 |
+
drop_path_rate=0.0,
|
| 1302 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1303 |
+
use_swiglu=False,
|
| 1304 |
+
yolo_arch=True,
|
| 1305 |
+
shuffle_down=False,
|
| 1306 |
+
conv_base=True,
|
| 1307 |
+
use_neck=True,
|
| 1308 |
+
full_features_head_dim=1536,
|
| 1309 |
+
neck_start_stage=2,
|
| 1310 |
+
**kwargs,
|
| 1311 |
+
)
|
| 1312 |
+
if pretrained:
|
| 1313 |
+
model.load_state_dict(torch.load(pretrained)["state_dict"])
|
| 1314 |
+
return model
|
| 1315 |
+
|
| 1316 |
+
|
| 1317 |
+
@register_model
|
| 1318 |
+
def eradio_xxxtiny(pretrained=False, **kwargs): # ,
|
| 1319 |
+
model = ERADIO(
|
| 1320 |
+
depths=[1, 3, 4, 5],
|
| 1321 |
+
num_heads=[2, 4, 8, 16],
|
| 1322 |
+
window_size=[None, None, [16, 16], 16],
|
| 1323 |
+
dim=32,
|
| 1324 |
+
in_dim=32,
|
| 1325 |
+
mlp_ratio=4,
|
| 1326 |
+
drop_path_rate=0.0,
|
| 1327 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1328 |
+
use_swiglu=False,
|
| 1329 |
+
yolo_arch=True,
|
| 1330 |
+
shuffle_down=False,
|
| 1331 |
+
conv_base=True,
|
| 1332 |
+
use_neck=True,
|
| 1333 |
+
full_features_head_dim=256,
|
| 1334 |
+
neck_start_stage=2,
|
| 1335 |
+
**kwargs,
|
| 1336 |
+
)
|
| 1337 |
+
if pretrained:
|
| 1338 |
+
model.load_state_dict(torch.load(pretrained))
|
| 1339 |
+
return model
|
| 1340 |
+
|
| 1341 |
+
@register_model
|
| 1342 |
+
def eradio_xxxtiny_8x_ws12(pretrained=False, **kwargs):
|
| 1343 |
+
model = ERADIO(depths=[1, 3, 4, 5],
|
| 1344 |
+
num_heads=[2, 4, 8, 16],
|
| 1345 |
+
window_size=[None, None, [12, 12], 12],
|
| 1346 |
+
dim=32,
|
| 1347 |
+
in_dim=32,
|
| 1348 |
+
mlp_ratio=4,
|
| 1349 |
+
drop_path_rate=0.0,
|
| 1350 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1351 |
+
use_swiglu=False,
|
| 1352 |
+
downsample_shuffle=False,
|
| 1353 |
+
yolo_arch=True,
|
| 1354 |
+
shuffle_down=False,
|
| 1355 |
+
cpb_mlp_hidden=64,
|
| 1356 |
+
use_neck=True,
|
| 1357 |
+
full_features_head_dim=256,
|
| 1358 |
+
neck_start_stage=2,
|
| 1359 |
+
conv_groups_ratio = 1,
|
| 1360 |
+
**kwargs)
|
| 1361 |
+
if pretrained:
|
| 1362 |
+
model.load_state_dict(torch.load(pretrained)["state_dict"])
|
| 1363 |
+
return model
|
| 1364 |
+
|
| 1365 |
+
|
| 1366 |
+
@register_model
|
| 1367 |
+
def eradio_xxxtiny_8x_ws16(pretrained=False, **kwargs):
|
| 1368 |
+
model = ERADIO(depths=[1, 3, 4, 5],
|
| 1369 |
+
num_heads=[2, 4, 8, 16],
|
| 1370 |
+
window_size=[None, None, [16, 16], 16],
|
| 1371 |
+
dim=32,
|
| 1372 |
+
in_dim=32,
|
| 1373 |
+
mlp_ratio=4,
|
| 1374 |
+
drop_path_rate=0.0,
|
| 1375 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
| 1376 |
+
use_swiglu=False,
|
| 1377 |
+
downsample_shuffle=False,
|
| 1378 |
+
yolo_arch=True,
|
| 1379 |
+
shuffle_down=False,
|
| 1380 |
+
cpb_mlp_hidden=64,
|
| 1381 |
+
use_neck=True,
|
| 1382 |
+
full_features_head_dim=256,
|
| 1383 |
+
neck_start_stage=1,
|
| 1384 |
+
conv_groups_ratio = 1,
|
| 1385 |
+
**kwargs)
|
| 1386 |
+
if pretrained:
|
| 1387 |
+
model.load_state_dict(torch.load(pretrained)["state_dict"])
|
| 1388 |
+
return model
|
| 1389 |
+
|
| 1390 |
+
@register_model
|
| 1391 |
+
def eradio(pretrained=False, **kwargs):
|
| 1392 |
+
return eradio_large_fullres_ws16(pretrained=pretrained, **kwargs)
|
src/models/radiov3/extra_models.py
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from distutils.version import LooseVersion
|
| 2 |
+
from types import MethodType
|
| 3 |
+
from typing import List, Optional, Tuple, Union
|
| 4 |
+
import warnings
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from torch import nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
from timm.models.registry import register_model
|
| 11 |
+
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
| 12 |
+
|
| 13 |
+
from .forward_intermediates import forward_intermediates
|
| 14 |
+
from .input_conditioner import InputConditioner
|
| 15 |
+
|
| 16 |
+
_has_torch_sdpa = hasattr(F, 'scaled_dot_product_attention')
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class PaliGemmaWrapper(nn.Module):
|
| 20 |
+
def __init__(self, vis_model: nn.Module, embed_dim: int):
|
| 21 |
+
super().__init__()
|
| 22 |
+
|
| 23 |
+
self.vis_model = vis_model
|
| 24 |
+
self.embed_dim = embed_dim
|
| 25 |
+
|
| 26 |
+
@property
|
| 27 |
+
def patch_size(self):
|
| 28 |
+
return self.vis_model.embeddings.patch_size
|
| 29 |
+
|
| 30 |
+
@property
|
| 31 |
+
def blocks(self):
|
| 32 |
+
return self.vis_model.encoder.layers
|
| 33 |
+
|
| 34 |
+
@property
|
| 35 |
+
def embed_dim(self):
|
| 36 |
+
return self.vis_model.embeddings.embed_dim
|
| 37 |
+
|
| 38 |
+
def forward(self, x: torch.Tensor):
|
| 39 |
+
outputs = self.vis_model(
|
| 40 |
+
x,
|
| 41 |
+
return_dict=False,
|
| 42 |
+
interpolate_pos_encoding=True,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
features = outputs[0].to(torch.float32)
|
| 46 |
+
|
| 47 |
+
summary = features.mean(dim=1)
|
| 48 |
+
|
| 49 |
+
return summary, features
|
| 50 |
+
|
| 51 |
+
def forward_features(self, x: torch.Tensor):
|
| 52 |
+
return self(x)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def _get_paligemma_model(repo: str, embed_dim: int = None, dtype: torch.dtype = torch.bfloat16):
|
| 56 |
+
from transformers import PaliGemmaForConditionalGeneration, __version__ as tx_version
|
| 57 |
+
|
| 58 |
+
if LooseVersion(tx_version) > LooseVersion('4.44.2'):
|
| 59 |
+
warnings.warn(f'Your transformers version "{tx_version}" is higher than 4.44.2, and for whatever reason, PaliGemma might be broken.')
|
| 60 |
+
|
| 61 |
+
extra_args = dict()
|
| 62 |
+
|
| 63 |
+
if dtype is not None:
|
| 64 |
+
extra_args['torch_dtype'] = dtype
|
| 65 |
+
rev = str(dtype).split('.')[-1]
|
| 66 |
+
extra_args['revision'] = rev
|
| 67 |
+
|
| 68 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(repo, **extra_args)
|
| 69 |
+
|
| 70 |
+
vis_model = model.vision_tower.vision_model
|
| 71 |
+
|
| 72 |
+
vis_model = PaliGemmaWrapper(vis_model, embed_dim)
|
| 73 |
+
|
| 74 |
+
return vis_model
|
| 75 |
+
|
| 76 |
+
@register_model
|
| 77 |
+
def paligemma_896_student(**kwargs):
|
| 78 |
+
model = _get_paligemma_model('google/paligemma-3b-pt-896', embed_dim=1152, dtype=None)
|
| 79 |
+
|
| 80 |
+
return model
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def dv2_sdpa(self, x: torch.Tensor) -> torch.Tensor:
|
| 84 |
+
B, N, C = x.shape
|
| 85 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 86 |
+
|
| 87 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 88 |
+
x = F.scaled_dot_product_attention(
|
| 89 |
+
q, k, v,
|
| 90 |
+
is_causal=False,
|
| 91 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
| 92 |
+
scale=self.scale,
|
| 93 |
+
)
|
| 94 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
| 95 |
+
x = self.proj(x)
|
| 96 |
+
x = self.proj_drop(x)
|
| 97 |
+
return x
|
| 98 |
+
|
| 99 |
+
def _load_dino_v2(dino_v2_model, cache_dir: Optional[str] = None, pretrained=True, **kwargs):
|
| 100 |
+
if cache_dir:
|
| 101 |
+
torch.hub.set_dir(cache_dir)
|
| 102 |
+
model: nn.Module = torch.hub.load(
|
| 103 |
+
'facebookresearch/dinov2',
|
| 104 |
+
dino_v2_model,
|
| 105 |
+
pretrained=pretrained,
|
| 106 |
+
# **kwargs,
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
if _has_torch_sdpa:
|
| 110 |
+
for n, m in model.named_modules():
|
| 111 |
+
if n.endswith('.attn'):
|
| 112 |
+
m.forward = MethodType(dv2_sdpa, m)
|
| 113 |
+
|
| 114 |
+
return model
|
| 115 |
+
|
| 116 |
+
class DinoWrapper(nn.Module):
|
| 117 |
+
def __init__(self, dino_model: nn.Module):
|
| 118 |
+
super().__init__()
|
| 119 |
+
|
| 120 |
+
self.inner = dino_model
|
| 121 |
+
dino_model.blocks = nn.Sequential(*dino_model.blocks)
|
| 122 |
+
|
| 123 |
+
@property
|
| 124 |
+
def embed_dim(self):
|
| 125 |
+
return self.inner.embed_dim
|
| 126 |
+
|
| 127 |
+
@property
|
| 128 |
+
def patch_size(self):
|
| 129 |
+
return self.inner.patch_size
|
| 130 |
+
|
| 131 |
+
@property
|
| 132 |
+
def num_cls_tokens(self):
|
| 133 |
+
return getattr(self.inner, 'num_tokens', 1)
|
| 134 |
+
|
| 135 |
+
@property
|
| 136 |
+
def num_registers(self):
|
| 137 |
+
return getattr(self.inner, 'num_register_tokens', 0)
|
| 138 |
+
|
| 139 |
+
@property
|
| 140 |
+
def num_summary_tokens(self):
|
| 141 |
+
return self.num_cls_tokens + self.num_registers
|
| 142 |
+
|
| 143 |
+
@property
|
| 144 |
+
def blocks(self):
|
| 145 |
+
return self.inner.blocks
|
| 146 |
+
|
| 147 |
+
def forward(self, *args, **kwargs) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 148 |
+
parts = self.inner.forward_features(*args, **kwargs)
|
| 149 |
+
|
| 150 |
+
cls_token = parts['x_norm_clstoken']
|
| 151 |
+
features = parts['x_norm_patchtokens']
|
| 152 |
+
|
| 153 |
+
return cls_token, features
|
| 154 |
+
|
| 155 |
+
def forward_features(self, x: torch.Tensor):
|
| 156 |
+
x = self.inner.prepare_tokens_with_masks(x)
|
| 157 |
+
x = self.inner.blocks(x)
|
| 158 |
+
x_norm = self.inner.norm(x)
|
| 159 |
+
|
| 160 |
+
return x_norm[:, 0], x_norm[:, self.num_summary_tokens:]
|
| 161 |
+
|
| 162 |
+
def patchify(self, x: torch.Tensor) -> torch.Tensor:
|
| 163 |
+
return self.inner.prepare_tokens_with_masks(x)
|
| 164 |
+
|
| 165 |
+
def forward_intermediates(self,
|
| 166 |
+
x: torch.Tensor,
|
| 167 |
+
norm: bool = False,
|
| 168 |
+
**kwargs,
|
| 169 |
+
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
| 170 |
+
return forward_intermediates(
|
| 171 |
+
self,
|
| 172 |
+
patch_extractor=self.inner.prepare_tokens_with_masks,
|
| 173 |
+
num_summary_tokens=self.num_summary_tokens,
|
| 174 |
+
num_cls_tokens=self.num_cls_tokens,
|
| 175 |
+
norm=self.inner.norm if norm else lambda y: y,
|
| 176 |
+
x=x,
|
| 177 |
+
**kwargs,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def _dino_student(arch: str, **kwargs):
|
| 182 |
+
from . import dinov2_arch
|
| 183 |
+
|
| 184 |
+
factory = getattr(dinov2_arch, arch)
|
| 185 |
+
model = factory()
|
| 186 |
+
|
| 187 |
+
model = DinoWrapper(model)
|
| 188 |
+
|
| 189 |
+
conditioner = InputConditioner(
|
| 190 |
+
input_scale=1.0,
|
| 191 |
+
norm_mean=IMAGENET_DEFAULT_MEAN,
|
| 192 |
+
norm_std=IMAGENET_DEFAULT_STD,
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
model.input_conditioner = conditioner
|
| 196 |
+
|
| 197 |
+
return model
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
@register_model
|
| 201 |
+
def dino_v2_l_student(**kwargs):
|
| 202 |
+
return _dino_student('dinov2_vitl14_reg', **kwargs)
|
| 203 |
+
|
| 204 |
+
@register_model
|
| 205 |
+
def dino_v2_g_student(**kwargs):
|
| 206 |
+
return _dino_student('dinov2_vitg14_reg', **kwargs)
|
src/models/radiov3/extra_timm_models.py
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
import math
|
| 10 |
+
import warnings
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
from torch import nn
|
| 14 |
+
from torch.nn import functional as F
|
| 15 |
+
|
| 16 |
+
from timm.models import register_model
|
| 17 |
+
from timm.models.vision_transformer import (
|
| 18 |
+
VisionTransformer,
|
| 19 |
+
_create_vision_transformer as _timm_create_vision_transformer,
|
| 20 |
+
Mlp,
|
| 21 |
+
Block,
|
| 22 |
+
LayerScale as TIMMLayerScale,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Import these to also register them
|
| 26 |
+
from . import dinov2_arch
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@register_model
|
| 30 |
+
def vit_tiny_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
|
| 31 |
+
""" ViT-Tiny (Vit-Ti/16)
|
| 32 |
+
"""
|
| 33 |
+
model_args = dict(patch_size=14, embed_dim=192, depth=12, num_heads=3)
|
| 34 |
+
model = _create_vision_transformer('vit_tiny_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
| 35 |
+
return model
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
@register_model
|
| 39 |
+
def vit_small_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
|
| 40 |
+
""" ViT-Small (ViT-S/16)
|
| 41 |
+
"""
|
| 42 |
+
model_args = dict(patch_size=14, embed_dim=384, depth=12, num_heads=6)
|
| 43 |
+
model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
| 44 |
+
return model
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
@register_model
|
| 48 |
+
def vit_base_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
|
| 49 |
+
""" ViT-Base (ViT-B/14) from original paper (https://arxiv.org/abs/2010.11929).
|
| 50 |
+
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
|
| 51 |
+
"""
|
| 52 |
+
model_args = dict(patch_size=14, embed_dim=768, depth=12, num_heads=12)
|
| 53 |
+
model = _create_vision_transformer('vit_base_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
| 54 |
+
return model
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
@register_model
|
| 58 |
+
def vit_base_patch16_v2_224(pretrained=False, **kwargs) -> VisionTransformer:
|
| 59 |
+
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
|
| 60 |
+
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
|
| 61 |
+
"""
|
| 62 |
+
model_args = dict(
|
| 63 |
+
patch_size=16, embed_dim=768, depth=12, num_heads=12, init_values=1e-5,
|
| 64 |
+
reg_tokens=4, no_embed_class=True, img_size=518 * 16 // 14
|
| 65 |
+
)
|
| 66 |
+
model = _create_vision_transformer(
|
| 67 |
+
'vit_base_patch14_reg4_dinov2', pretrained=pretrained, **dict(model_args, **kwargs))
|
| 68 |
+
return model
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
@register_model
|
| 72 |
+
def vit_large_patch16_v2_224(pretrained: bool = False, **kwargs) -> VisionTransformer:
|
| 73 |
+
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
|
| 74 |
+
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
|
| 75 |
+
"""
|
| 76 |
+
name = 'vit_large_patch14_reg4_dinov2'
|
| 77 |
+
model_args = dict(
|
| 78 |
+
patch_size=16, embed_dim=1024, depth=24, num_heads=16, init_values=1e-5,
|
| 79 |
+
reg_tokens=4, no_embed_class=True, img_size=518 * 16 // 14
|
| 80 |
+
)
|
| 81 |
+
model = _create_vision_transformer(name, pretrained=pretrained, **dict(model_args, **kwargs))
|
| 82 |
+
|
| 83 |
+
return model
|
| 84 |
+
|
| 85 |
+
@register_model
|
| 86 |
+
def vit_huge_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
|
| 87 |
+
""" ViT-Huge model (ViT-H/16) from original paper (https://arxiv.org/abs/2010.11929).
|
| 88 |
+
"""
|
| 89 |
+
model_args = dict(patch_size=16, embed_dim=1280, depth=32, num_heads=16)
|
| 90 |
+
if pretrained:
|
| 91 |
+
# There is no pretrained version of ViT-H/16, but we can adapt a ViT-H/14 for this purpose
|
| 92 |
+
model = _create_vision_transformer('vit_huge_patch14_224', pretrained=True, **dict(model_args, **kwargs))
|
| 93 |
+
else:
|
| 94 |
+
model = _create_vision_transformer('vit_huge_patch16_224', pretrained=False, **dict(model_args, **kwargs))
|
| 95 |
+
return model
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
@register_model
|
| 99 |
+
def vit_huge_patch16_224_mlpnorm(pretrained=False, **kwargs) -> VisionTransformer:
|
| 100 |
+
""" ViT-Huge model (ViT-H/16) from original paper (https://arxiv.org/abs/2010.11929).
|
| 101 |
+
"""
|
| 102 |
+
model = vit_huge_patch16_224(pretrained=pretrained, **kwargs)
|
| 103 |
+
|
| 104 |
+
for m in model.modules():
|
| 105 |
+
if isinstance(m, Mlp) and not isinstance(m.norm, nn.LayerNorm):
|
| 106 |
+
m.norm = nn.LayerNorm(m.fc1.out_features)
|
| 107 |
+
|
| 108 |
+
return model
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
@register_model
|
| 112 |
+
def vit_giant_patch16_224(pretrained=False, scaled_ln: bool = False, **kwargs) -> VisionTransformer:
|
| 113 |
+
""" ViT-giant model (ViT-g/16) from original paper (https://arxiv.org/abs/2010.11929).
|
| 114 |
+
"""
|
| 115 |
+
model_args = dict(patch_size=16, embed_dim=1536, depth=40, num_heads=24)
|
| 116 |
+
model = _create_vision_transformer('vit_giant_patch16_224', pretrained=False, **dict(model_args, **kwargs))
|
| 117 |
+
if scaled_ln:
|
| 118 |
+
_apply_scaled_ln(model)
|
| 119 |
+
return model
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
@register_model
|
| 123 |
+
def vit_bigG_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
|
| 124 |
+
model_args = dict(patch_size=14, embed_dim=1664, depth=48, num_heads=16, init_values=1e-6)
|
| 125 |
+
model = _create_vision_transformer('vit_bigG_patch14', pretrained=False, **dict(model_args, **kwargs))
|
| 126 |
+
return model
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def _create_vision_transformer(*args, **kwargs):
|
| 130 |
+
model = _timm_create_vision_transformer(*args, **kwargs)
|
| 131 |
+
_patch_layer_scale(model)
|
| 132 |
+
return model
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def _patch_layer_scale(model: VisionTransformer):
|
| 136 |
+
def replace_ls(old_ls: TIMMLayerScale):
|
| 137 |
+
new_ls = dinov2_arch.LayerScale(old_ls.gamma.shape[0], inplace=old_ls.inplace)
|
| 138 |
+
new_ls.load_state_dict(old_ls.state_dict())
|
| 139 |
+
return new_ls
|
| 140 |
+
|
| 141 |
+
# Monkey patch: Replace TIMM's LayerScale with our modified DINOv2 one, that uses a param name
|
| 142 |
+
# other than gamma, so that HFHub doesn't mess with it!
|
| 143 |
+
for mod in model.modules():
|
| 144 |
+
if isinstance(mod, Block):
|
| 145 |
+
if isinstance(mod.ls1, TIMMLayerScale):
|
| 146 |
+
mod.ls1 = replace_ls(mod.ls1)
|
| 147 |
+
if isinstance(mod.ls2, TIMMLayerScale):
|
| 148 |
+
mod.ls2 = replace_ls(mod.ls2)
|
| 149 |
+
pass
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class ScaledLayerNorm(nn.LayerNorm):
|
| 153 |
+
'''
|
| 154 |
+
https://arxiv.org/pdf/2502.05795v1
|
| 155 |
+
'''
|
| 156 |
+
def __init__(self, ln_base: nn.LayerNorm, depth: int = 0):
|
| 157 |
+
super().__init__(ln_base.normalized_shape, eps=ln_base.eps, elementwise_affine=ln_base.elementwise_affine)
|
| 158 |
+
self.load_state_dict(ln_base.state_dict())
|
| 159 |
+
self.register_buffer('ln_scale', torch.tensor(1.0 / math.sqrt(depth)), persistent=False)
|
| 160 |
+
|
| 161 |
+
def forward(self, x):
|
| 162 |
+
y = super().forward(x)
|
| 163 |
+
y = y * self.ln_scale
|
| 164 |
+
return y
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class DyT(nn.Module):
|
| 168 |
+
def __init__(self, C: int, init_alpha: float):
|
| 169 |
+
super().__init__()
|
| 170 |
+
self.alpha = nn.Parameter(torch.full((1,), init_alpha))
|
| 171 |
+
self.gamma = nn.Parameter(torch.ones(C))
|
| 172 |
+
self.beta = nn.Parameter(torch.zeros(C))
|
| 173 |
+
|
| 174 |
+
def forward(self, x: torch.Tensor):
|
| 175 |
+
x = F.tanh(self.alpha * x)
|
| 176 |
+
return self.gamma * x + self.beta
|
| 177 |
+
|
| 178 |
+
@register_model
|
| 179 |
+
def vit_large_dyt_patch16_224(pretrained: bool = False, **kwargs) -> VisionTransformer:
|
| 180 |
+
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
|
| 181 |
+
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
|
| 182 |
+
"""
|
| 183 |
+
model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16)
|
| 184 |
+
model = _create_vision_transformer('vit_large_dyt_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
| 185 |
+
|
| 186 |
+
def _replace_ln_with_dyt(ln: nn.LayerNorm, depth: int):
|
| 187 |
+
return DyT(ln.normalized_shape[0], init_alpha=0.9)
|
| 188 |
+
_replace_ln(model, _replace_ln_with_dyt)
|
| 189 |
+
|
| 190 |
+
return model
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def _apply_scaled_ln(model: VisionTransformer):
|
| 194 |
+
warnings.warn('Post-LayerNorm scaling activated!')
|
| 195 |
+
|
| 196 |
+
_replace_ln(model, lambda ln, depth: ScaledLayerNorm(ln, depth=depth))
|
| 197 |
+
|
| 198 |
+
def _replace_ln(model: VisionTransformer, fn):
|
| 199 |
+
def _inner_replace_ln(block: Block, depth: int, key: str):
|
| 200 |
+
prev = getattr(block, key)
|
| 201 |
+
if isinstance(prev, nn.LayerNorm):
|
| 202 |
+
setattr(block, key, fn(prev, depth=depth))
|
| 203 |
+
|
| 204 |
+
for i, block in enumerate(model.blocks):
|
| 205 |
+
_inner_replace_ln(block, i + 1, 'norm1')
|
| 206 |
+
_inner_replace_ln(block, i + 1, 'norm2')
|
src/models/radiov3/feature_normalizer.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
from collections import namedtuple
|
| 9 |
+
from typing import NamedTuple, Optional, Tuple
|
| 10 |
+
import torch
|
| 11 |
+
from torch import nn
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def _run_kernel(x: torch.Tensor, mean: torch.Tensor, tx: torch.Tensor):
|
| 15 |
+
if x.ndim <= 3:
|
| 16 |
+
x = x - mean
|
| 17 |
+
x = x @ tx.T
|
| 18 |
+
elif x.ndim == 4:
|
| 19 |
+
x = x - mean.reshape(1, -1, 1, 1)
|
| 20 |
+
kernel = tx.reshape(*tx.shape, 1, 1)
|
| 21 |
+
x = torch.nn.functional.conv2d(x, weight=kernel, bias=None, stride=1, padding=0)
|
| 22 |
+
else:
|
| 23 |
+
raise ValueError(f'Unsupported input dimension: {x.ndim}, shape: {x.shape}')
|
| 24 |
+
return x
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class FeatureNormalizer(nn.Module):
|
| 28 |
+
def __init__(self, embed_dim: int, dtype: torch.dtype = torch.float32):
|
| 29 |
+
super().__init__()
|
| 30 |
+
|
| 31 |
+
self.register_buffer('mean', torch.zeros(embed_dim, dtype=dtype))
|
| 32 |
+
self.register_buffer('tx', torch.eye(embed_dim, dtype=dtype))
|
| 33 |
+
|
| 34 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 35 |
+
x = _run_kernel(x, self.mean, self.tx)
|
| 36 |
+
return x
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class InterFeatState(NamedTuple):
|
| 40 |
+
y: torch.Tensor
|
| 41 |
+
alpha: torch.Tensor
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class IntermediateFeatureNormalizerBase(nn.Module):
|
| 45 |
+
def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
|
| 46 |
+
raise NotImplementedError()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class IntermediateFeatureNormalizer(IntermediateFeatureNormalizerBase):
|
| 50 |
+
def __init__(self, num_intermediates: int, embed_dim: int, rot_per_layer: bool = False, dtype: torch.dtype = torch.float32):
|
| 51 |
+
super().__init__()
|
| 52 |
+
self.register_buffer('alphas', torch.ones(num_intermediates, dtype=dtype))
|
| 53 |
+
|
| 54 |
+
rot = torch.eye(embed_dim, dtype=dtype)
|
| 55 |
+
if rot_per_layer:
|
| 56 |
+
rot = rot.unsqueeze(0).repeat(num_intermediates, 1, 1)
|
| 57 |
+
|
| 58 |
+
self.register_buffer('rotation', rot.contiguous())
|
| 59 |
+
self.register_buffer('means', torch.zeros(num_intermediates, embed_dim, dtype=dtype))
|
| 60 |
+
|
| 61 |
+
def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
|
| 62 |
+
if rot_index is None:
|
| 63 |
+
rot_index = index
|
| 64 |
+
|
| 65 |
+
if skip:
|
| 66 |
+
assert x.ndim == 3, f'Cannot use the `skip` parameter when the `x` tensor isn\'t 3-dimensional.'
|
| 67 |
+
prefix, x = x[:, :skip], x[:, skip:]
|
| 68 |
+
|
| 69 |
+
rotation = self._get_rotation(rot_index)
|
| 70 |
+
y = _run_kernel(x, self.means[index], rotation)
|
| 71 |
+
|
| 72 |
+
alpha = self.alphas[index]
|
| 73 |
+
if skip:
|
| 74 |
+
alpha = torch.cat([
|
| 75 |
+
torch.ones(skip, dtype=alpha.dtype, device=alpha.device),
|
| 76 |
+
alpha[None].expand(y.shape[1]),
|
| 77 |
+
]).reshape(1, -1, 1)
|
| 78 |
+
y = torch.cat([prefix, y], dim=1)
|
| 79 |
+
else:
|
| 80 |
+
if x.ndim == 3:
|
| 81 |
+
alpha = alpha.reshape(1, 1, 1).expand(1, y.shape[1], 1)
|
| 82 |
+
elif x.ndim == 4:
|
| 83 |
+
alpha = alpha.reshape(1, 1, 1, 1).expand(1, 1, *y.shape[2:])
|
| 84 |
+
else:
|
| 85 |
+
raise ValueError(f'Unsupported input dimension: {x.ndim}')
|
| 86 |
+
|
| 87 |
+
return InterFeatState(y, alpha)
|
| 88 |
+
|
| 89 |
+
def _get_rotation(self, rot_index: int) -> torch.Tensor:
|
| 90 |
+
if self.rotation.ndim == 2:
|
| 91 |
+
return self.rotation
|
| 92 |
+
return self.rotation[rot_index]
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class NullIntermediateFeatureNormalizer(IntermediateFeatureNormalizerBase):
|
| 96 |
+
instances = dict()
|
| 97 |
+
|
| 98 |
+
def __init__(self, dtype: torch.dtype, device: torch.device):
|
| 99 |
+
super().__init__()
|
| 100 |
+
self.register_buffer('alpha', torch.tensor(1, dtype=dtype, device=device))
|
| 101 |
+
|
| 102 |
+
@staticmethod
|
| 103 |
+
def get_instance(dtype: torch.dtype, device: torch.device):
|
| 104 |
+
instance = NullIntermediateFeatureNormalizer.instances.get((dtype, device), None)
|
| 105 |
+
if instance is None:
|
| 106 |
+
instance = NullIntermediateFeatureNormalizer(dtype, device)
|
| 107 |
+
NullIntermediateFeatureNormalizer.instances[(dtype, device)] = instance
|
| 108 |
+
return instance
|
| 109 |
+
|
| 110 |
+
def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
|
| 111 |
+
return InterFeatState(x, self.alpha)
|
src/models/radiov3/forward_intermediates.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
from typing import Callable, Dict, List, Optional, Set, Tuple, Union, Any, Iterable
|
| 10 |
+
from types import MethodType
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
from torch import nn
|
| 14 |
+
|
| 15 |
+
from .feature_normalizer import IntermediateFeatureNormalizerBase, NullIntermediateFeatureNormalizer
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def _take_indices(
|
| 19 |
+
num_blocks: int,
|
| 20 |
+
n: Optional[Union[int, List[int], Tuple[int]]],
|
| 21 |
+
) -> Tuple[Set[int], int]:
|
| 22 |
+
if isinstance(n, int):
|
| 23 |
+
assert n >= 0
|
| 24 |
+
take_indices = {x for x in range(num_blocks - n, num_blocks)}
|
| 25 |
+
else:
|
| 26 |
+
take_indices = {num_blocks + idx if idx < 0 else idx for idx in n}
|
| 27 |
+
return take_indices, max(take_indices)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def forward_intermediates(
|
| 31 |
+
model: nn.Module,
|
| 32 |
+
patch_extractor: Callable[[torch.Tensor], torch.Tensor],
|
| 33 |
+
norm: nn.Module,
|
| 34 |
+
num_summary_tokens: int,
|
| 35 |
+
num_cls_tokens: int,
|
| 36 |
+
x: torch.Tensor,
|
| 37 |
+
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
|
| 38 |
+
return_prefix_tokens: bool = False,
|
| 39 |
+
stop_early: bool = False,
|
| 40 |
+
output_fmt: str = 'NCHW',
|
| 41 |
+
intermediates_only: bool = False,
|
| 42 |
+
aggregation: Optional[str] = "sparse",
|
| 43 |
+
inter_feature_normalizer: Optional[IntermediateFeatureNormalizerBase] = None,
|
| 44 |
+
norm_alpha_scheme = "post-alpha",
|
| 45 |
+
block_kwargs: Dict = None,
|
| 46 |
+
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
| 47 |
+
""" Forward features that returns intermediates.
|
| 48 |
+
|
| 49 |
+
The Dense layer aggregation method is inspired from the paper: "Dense Connector for MLLMs"
|
| 50 |
+
by Yao, Huanjin et al. (2024). arXiv preprint arXiv:2405.13800}
|
| 51 |
+
|
| 52 |
+
Args:
|
| 53 |
+
x: Input image tensor
|
| 54 |
+
indices: Take last n blocks if int, select matching indices if sequence
|
| 55 |
+
return_prefix_tokens: Return both prefix and spatial intermediate tokens
|
| 56 |
+
norm: Apply norm layer to all intermediates
|
| 57 |
+
stop_early: Stop iterating over blocks when last desired intermediate hit
|
| 58 |
+
output_fmt: Shape of intermediate feature outputs
|
| 59 |
+
intermediates_only: Only return intermediate features
|
| 60 |
+
aggregation: intermediate layer aggregation method (sparse or dense)
|
| 61 |
+
norm_alpha_scheme: apply alpha before ("pre-alpha") or after accumulation ("post-alpha")
|
| 62 |
+
Returns:
|
| 63 |
+
"""
|
| 64 |
+
assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.'
|
| 65 |
+
assert aggregation in ('sparse', 'dense'), 'Aggregation must be one of sparse or dense.'
|
| 66 |
+
reshape = output_fmt == 'NCHW'
|
| 67 |
+
intermediates = []
|
| 68 |
+
|
| 69 |
+
block_kwargs = block_kwargs or dict()
|
| 70 |
+
|
| 71 |
+
blocks = model.blocks
|
| 72 |
+
|
| 73 |
+
take_indices, max_index = _take_indices(len(blocks), indices)
|
| 74 |
+
take_indices = sorted(take_indices)
|
| 75 |
+
# forward pass
|
| 76 |
+
B, _, height, width = x.shape
|
| 77 |
+
|
| 78 |
+
x = patch_extractor(x)
|
| 79 |
+
|
| 80 |
+
if stop_early:
|
| 81 |
+
blocks = blocks[:max_index + 1]
|
| 82 |
+
|
| 83 |
+
if inter_feature_normalizer is None or norm_alpha_scheme == 'none':
|
| 84 |
+
inter_feature_normalizer = NullIntermediateFeatureNormalizer.get_instance(x.dtype, x.device)
|
| 85 |
+
|
| 86 |
+
assert norm_alpha_scheme in ('none', 'pre-alpha', 'post-alpha'), f'Unsupported alpha scheme: {norm_alpha_scheme}'
|
| 87 |
+
post_alpha_scheme = norm_alpha_scheme == 'post-alpha'
|
| 88 |
+
|
| 89 |
+
accumulator = 0
|
| 90 |
+
alpha_sum = 0
|
| 91 |
+
num_accumulated = 0
|
| 92 |
+
|
| 93 |
+
take_off = 0
|
| 94 |
+
|
| 95 |
+
for i, blk in enumerate(blocks):
|
| 96 |
+
x = blk(x, **block_kwargs)
|
| 97 |
+
if aggregation == "dense":
|
| 98 |
+
# Arbitrarily use the rotation matrix from the final layer in the dense group
|
| 99 |
+
y, alpha = inter_feature_normalizer(x, i, rot_index=take_indices[take_off], skip=num_summary_tokens)
|
| 100 |
+
if post_alpha_scheme:
|
| 101 |
+
accumulator = accumulator + y
|
| 102 |
+
alpha_sum = alpha_sum + alpha
|
| 103 |
+
else:
|
| 104 |
+
accumulator = accumulator + (alpha * y)
|
| 105 |
+
alpha_sum += 1
|
| 106 |
+
num_accumulated += 1
|
| 107 |
+
if i == take_indices[take_off]:
|
| 108 |
+
if aggregation == "dense":
|
| 109 |
+
alpha = alpha_sum / num_accumulated
|
| 110 |
+
x_ = alpha * accumulator / num_accumulated
|
| 111 |
+
num_accumulated = 0
|
| 112 |
+
accumulator = 0
|
| 113 |
+
alpha_sum = 0
|
| 114 |
+
else:
|
| 115 |
+
y, alpha = inter_feature_normalizer(x, i, skip=num_summary_tokens)
|
| 116 |
+
x_ = alpha * y
|
| 117 |
+
# normalize intermediates with final norm layer if enabled
|
| 118 |
+
intermediates.append(norm(x_))
|
| 119 |
+
take_off = min(take_off + 1, len(take_indices) - 1)
|
| 120 |
+
|
| 121 |
+
# process intermediates
|
| 122 |
+
|
| 123 |
+
# split prefix (e.g. class, distill) and spatial feature tokens
|
| 124 |
+
prefix_tokens = [y[:, :num_cls_tokens] for y in intermediates]
|
| 125 |
+
intermediates = [y[:, num_summary_tokens:] for y in intermediates]
|
| 126 |
+
|
| 127 |
+
if reshape:
|
| 128 |
+
# reshape to BCHW output format
|
| 129 |
+
H = height // model.patch_size
|
| 130 |
+
W = width // model.patch_size
|
| 131 |
+
intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
|
| 132 |
+
if not torch.jit.is_scripting() and return_prefix_tokens:
|
| 133 |
+
# return_prefix not support in torchscript due to poor type handling
|
| 134 |
+
intermediates = list(zip(prefix_tokens, intermediates))
|
| 135 |
+
if intermediates_only:
|
| 136 |
+
return intermediates
|
| 137 |
+
x = norm(x)
|
| 138 |
+
return x, intermediates
|
src/models/radiov3/hf_model.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from collections import namedtuple
|
| 15 |
+
from typing import Callable, Dict, Optional, List, Union
|
| 16 |
+
|
| 17 |
+
from timm.models import VisionTransformer
|
| 18 |
+
import torch
|
| 19 |
+
from torch import nn
|
| 20 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
from .common import RESOURCE_MAP, DEFAULT_VERSION
|
| 24 |
+
|
| 25 |
+
# Import all required modules.
|
| 26 |
+
from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput
|
| 27 |
+
from .adaptor_generic import GenericAdaptor, AdaptorBase
|
| 28 |
+
from .adaptor_mlp import create_mlp_from_config
|
| 29 |
+
from .adaptor_registry import adaptor_registry
|
| 30 |
+
from .cls_token import ClsToken
|
| 31 |
+
from .dinov2_arch import dinov2_vitg14_reg
|
| 32 |
+
from .enable_cpe_support import enable_cpe
|
| 33 |
+
from .enable_spectral_reparam import configure_spectral_reparam_from_args
|
| 34 |
+
from .eradio_model import eradio
|
| 35 |
+
from .feature_normalizer import FeatureNormalizer, IntermediateFeatureNormalizer
|
| 36 |
+
from .forward_intermediates import forward_intermediates
|
| 37 |
+
from .radio_model import create_model_from_args
|
| 38 |
+
from .radio_model import RADIOModel as RADIOModelBase, Resolution
|
| 39 |
+
from .input_conditioner import get_default_conditioner, InputConditioner
|
| 40 |
+
from .open_clip_adaptor import OpenCLIP_RADIO
|
| 41 |
+
from .vit_patch_generator import ViTPatchGenerator
|
| 42 |
+
from .vitdet import apply_vitdet_arch, VitDetArgs
|
| 43 |
+
|
| 44 |
+
# Register extra models
|
| 45 |
+
from .extra_timm_models import *
|
| 46 |
+
from .extra_models import *
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class RADIOConfig(PretrainedConfig):
|
| 50 |
+
"""Pretrained Hugging Face configuration for RADIO models."""
|
| 51 |
+
|
| 52 |
+
def __init__(
|
| 53 |
+
self,
|
| 54 |
+
args: Optional[dict] = None,
|
| 55 |
+
version: Optional[str] = DEFAULT_VERSION,
|
| 56 |
+
patch_size: Optional[int] = None,
|
| 57 |
+
max_resolution: Optional[int] = None,
|
| 58 |
+
preferred_resolution: Optional[Resolution] = None,
|
| 59 |
+
adaptor_names: Union[str, List[str]] = None,
|
| 60 |
+
adaptor_configs: Dict[str, Dict[str, int]] = None,
|
| 61 |
+
vitdet_window_size: Optional[int] = None,
|
| 62 |
+
feature_normalizer_config: Optional[dict] = None,
|
| 63 |
+
inter_feature_normalizer_config: Optional[dict] = None,
|
| 64 |
+
**kwargs,
|
| 65 |
+
):
|
| 66 |
+
self.args = args
|
| 67 |
+
for field in ["dtype", "amp_dtype"]:
|
| 68 |
+
if self.args is not None and field in self.args:
|
| 69 |
+
# Convert to a string in order to make it serializable.
|
| 70 |
+
# For example for torch.float32 we will store "float32",
|
| 71 |
+
# for "bfloat16" we will store "bfloat16".
|
| 72 |
+
self.args[field] = str(args[field]).split(".")[-1]
|
| 73 |
+
self.version = version
|
| 74 |
+
resource = RESOURCE_MAP[version]
|
| 75 |
+
self.patch_size = patch_size or resource.patch_size
|
| 76 |
+
self.max_resolution = max_resolution or resource.max_resolution
|
| 77 |
+
self.preferred_resolution = (
|
| 78 |
+
preferred_resolution or resource.preferred_resolution
|
| 79 |
+
)
|
| 80 |
+
self.adaptor_names = adaptor_names
|
| 81 |
+
self.adaptor_configs = adaptor_configs
|
| 82 |
+
self.vitdet_window_size = vitdet_window_size
|
| 83 |
+
self.feature_normalizer_config = feature_normalizer_config
|
| 84 |
+
self.inter_feature_normalizer_config = inter_feature_normalizer_config
|
| 85 |
+
super().__init__(**kwargs)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class RADIOModel(PreTrainedModel):
|
| 90 |
+
"""Pretrained Hugging Face model for RADIO.
|
| 91 |
+
|
| 92 |
+
This class inherits from PreTrainedModel, which provides
|
| 93 |
+
HuggingFace's functionality for loading and saving models.
|
| 94 |
+
"""
|
| 95 |
+
|
| 96 |
+
config_class = RADIOConfig
|
| 97 |
+
|
| 98 |
+
def __init__(self, config: RADIOConfig):
|
| 99 |
+
super().__init__(config)
|
| 100 |
+
|
| 101 |
+
RADIOArgs = namedtuple("RADIOArgs", config.args.keys())
|
| 102 |
+
args = RADIOArgs(**config.args)
|
| 103 |
+
self.config = config
|
| 104 |
+
|
| 105 |
+
model = create_model_from_args(args)
|
| 106 |
+
input_conditioner: InputConditioner = get_default_conditioner()
|
| 107 |
+
|
| 108 |
+
dtype = getattr(args, "dtype", torch.float32)
|
| 109 |
+
if isinstance(dtype, str):
|
| 110 |
+
# Convert the dtype's string representation back to a dtype.
|
| 111 |
+
dtype = getattr(torch, dtype)
|
| 112 |
+
model.to(dtype=dtype)
|
| 113 |
+
input_conditioner.dtype = dtype
|
| 114 |
+
|
| 115 |
+
summary_idxs = torch.tensor(
|
| 116 |
+
[i for i, t in enumerate(args.teachers) if t.get("use_summary", True)],
|
| 117 |
+
dtype=torch.int64,
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
adaptor_configs = config.adaptor_configs
|
| 121 |
+
adaptor_names = config.adaptor_names or []
|
| 122 |
+
|
| 123 |
+
adaptors = dict()
|
| 124 |
+
for adaptor_name in adaptor_names:
|
| 125 |
+
mlp_config = adaptor_configs[adaptor_name]
|
| 126 |
+
adaptor = GenericAdaptor(args, None, None, mlp_config)
|
| 127 |
+
adaptor.head_idx = mlp_config["head_idx"]
|
| 128 |
+
adaptors[adaptor_name] = adaptor
|
| 129 |
+
|
| 130 |
+
feature_normalizer = None
|
| 131 |
+
if config.feature_normalizer_config is not None:
|
| 132 |
+
# Actual normalization values will be restored when loading checkpoint weights.
|
| 133 |
+
feature_normalizer = FeatureNormalizer(config.feature_normalizer_config["embed_dim"])
|
| 134 |
+
|
| 135 |
+
inter_feature_normalizer = None
|
| 136 |
+
if config.inter_feature_normalizer_config is not None:
|
| 137 |
+
inter_feature_normalizer = IntermediateFeatureNormalizer(
|
| 138 |
+
config.inter_feature_normalizer_config["num_intermediates"],
|
| 139 |
+
config.inter_feature_normalizer_config["embed_dim"],
|
| 140 |
+
rot_per_layer=config.inter_feature_normalizer_config["rot_per_layer"],
|
| 141 |
+
dtype=dtype)
|
| 142 |
+
|
| 143 |
+
self.radio_model = RADIOModelBase(
|
| 144 |
+
model,
|
| 145 |
+
input_conditioner,
|
| 146 |
+
summary_idxs=summary_idxs,
|
| 147 |
+
patch_size=config.patch_size,
|
| 148 |
+
max_resolution=config.max_resolution,
|
| 149 |
+
window_size=config.vitdet_window_size,
|
| 150 |
+
preferred_resolution=config.preferred_resolution,
|
| 151 |
+
adaptors=adaptors,
|
| 152 |
+
feature_normalizer=feature_normalizer,
|
| 153 |
+
inter_feature_normalizer=inter_feature_normalizer,
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
@property
|
| 157 |
+
def adaptors(self) -> nn.ModuleDict:
|
| 158 |
+
return self.radio_model.adaptors
|
| 159 |
+
|
| 160 |
+
@property
|
| 161 |
+
def model(self) -> VisionTransformer:
|
| 162 |
+
return self.radio_model.model
|
| 163 |
+
|
| 164 |
+
@property
|
| 165 |
+
def input_conditioner(self) -> InputConditioner:
|
| 166 |
+
return self.radio_model.input_conditioner
|
| 167 |
+
|
| 168 |
+
@property
|
| 169 |
+
def num_summary_tokens(self) -> int:
|
| 170 |
+
return self.radio_model.num_summary_tokens
|
| 171 |
+
|
| 172 |
+
@property
|
| 173 |
+
def patch_size(self) -> int:
|
| 174 |
+
return self.radio_model.patch_size
|
| 175 |
+
|
| 176 |
+
@property
|
| 177 |
+
def max_resolution(self) -> int:
|
| 178 |
+
return self.radio_model.max_resolution
|
| 179 |
+
|
| 180 |
+
@property
|
| 181 |
+
def preferred_resolution(self) -> Resolution:
|
| 182 |
+
return self.radio_model.preferred_resolution
|
| 183 |
+
|
| 184 |
+
@property
|
| 185 |
+
def window_size(self) -> int:
|
| 186 |
+
return self.radio_model.window_size
|
| 187 |
+
|
| 188 |
+
@property
|
| 189 |
+
def min_resolution_step(self) -> int:
|
| 190 |
+
return self.radio_model.min_resolution_step
|
| 191 |
+
|
| 192 |
+
def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]:
|
| 193 |
+
return self.radio_model.make_preprocessor_external()
|
| 194 |
+
|
| 195 |
+
def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution:
|
| 196 |
+
return self.radio_model.get_nearest_supported_resolution(height, width)
|
| 197 |
+
|
| 198 |
+
def switch_to_deploy(self):
|
| 199 |
+
return self.radio_model.switch_to_deploy()
|
| 200 |
+
|
| 201 |
+
def forward(self, x: torch.Tensor):
|
| 202 |
+
return self.radio_model.forward(x)
|
src/models/radiov3/input_conditioner.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
from typing import Union, Tuple
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from torch import nn
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
norm_t = Union[Tuple[float, float, float], torch.Tensor]
|
| 16 |
+
|
| 17 |
+
class InputConditioner(nn.Module):
|
| 18 |
+
def __init__(self,
|
| 19 |
+
input_scale: float,
|
| 20 |
+
norm_mean: norm_t,
|
| 21 |
+
norm_std: norm_t,
|
| 22 |
+
dtype: torch.dtype = None,
|
| 23 |
+
):
|
| 24 |
+
super().__init__()
|
| 25 |
+
|
| 26 |
+
self.dtype = dtype
|
| 27 |
+
|
| 28 |
+
self.register_buffer("norm_mean", _to_tensor(norm_mean) / input_scale)
|
| 29 |
+
self.register_buffer("norm_std", _to_tensor(norm_std) / input_scale)
|
| 30 |
+
|
| 31 |
+
def forward(self, x: torch.Tensor):
|
| 32 |
+
y = (x - self.norm_mean) / self.norm_std
|
| 33 |
+
# if self.dtype is not None:
|
| 34 |
+
# y = y.to(self.dtype)
|
| 35 |
+
return y
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_default_conditioner():
|
| 39 |
+
from timm.data.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
|
| 40 |
+
|
| 41 |
+
return InputConditioner(
|
| 42 |
+
input_scale=1.0,
|
| 43 |
+
norm_mean=OPENAI_CLIP_MEAN,
|
| 44 |
+
norm_std=OPENAI_CLIP_STD,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def _to_tensor(v: norm_t):
|
| 49 |
+
return torch.as_tensor(v, dtype=torch.float32).view(-1, 1, 1)
|
src/models/radiov3/open_clip_adaptor.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
from argparse import Namespace
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch import nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
|
| 14 |
+
from .adaptor_registry import adaptor_registry, dict_t, state_t
|
| 15 |
+
|
| 16 |
+
from .adaptor_generic import GenericAdaptor
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class OpenCLIP_RADIO(GenericAdaptor):
|
| 20 |
+
def __init__(self, main_config: Namespace, adaptor_config: dict_t, state: state_t):
|
| 21 |
+
super().__init__(main_config, adaptor_config, state)
|
| 22 |
+
|
| 23 |
+
import open_clip
|
| 24 |
+
|
| 25 |
+
self.oc_model = open_clip.create_model_from_pretrained(
|
| 26 |
+
model_name=adaptor_config['model'],
|
| 27 |
+
pretrained=adaptor_config['pretrained'],
|
| 28 |
+
return_transform=False,
|
| 29 |
+
)
|
| 30 |
+
# Unload these parameters
|
| 31 |
+
self.oc_model.visual = None
|
| 32 |
+
|
| 33 |
+
self.tokenizer = open_clip.get_tokenizer(model_name=adaptor_config['model'])
|
| 34 |
+
|
| 35 |
+
def encode_text(self, text, normalize: bool = False):
|
| 36 |
+
return self.oc_model.encode_text(text, normalize=normalize)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@adaptor_registry.register_adaptor("open_clip")
|
| 40 |
+
def create_open_clip_adaptor(main_config: Namespace, adaptor_config: dict_t, state: state_t):
|
| 41 |
+
return OpenCLIP_RADIO(main_config, adaptor_config, state)
|
src/models/radiov3/radio_model.py
ADDED
|
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
from typing import Callable, Dict, Iterable, List, NamedTuple, Optional, Tuple, Union
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
from torch import nn
|
| 12 |
+
|
| 13 |
+
from timm.models import create_model, VisionTransformer
|
| 14 |
+
|
| 15 |
+
from .enable_cpe_support import enable_cpe
|
| 16 |
+
from .input_conditioner import InputConditioner
|
| 17 |
+
from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput
|
| 18 |
+
from . import eradio_model
|
| 19 |
+
from .enable_spectral_reparam import configure_spectral_reparam_from_args
|
| 20 |
+
from .feature_normalizer import FeatureNormalizer, IntermediateFeatureNormalizer
|
| 21 |
+
from . import dual_hybrid_vit
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class Resolution(NamedTuple):
|
| 25 |
+
height: int
|
| 26 |
+
width: int
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class RADIOModel(nn.Module):
|
| 30 |
+
def __init__(
|
| 31 |
+
self,
|
| 32 |
+
model: nn.Module,
|
| 33 |
+
input_conditioner: InputConditioner,
|
| 34 |
+
patch_size: int,
|
| 35 |
+
max_resolution: int,
|
| 36 |
+
preferred_resolution: Resolution,
|
| 37 |
+
summary_idxs: Optional[torch.Tensor] = None,
|
| 38 |
+
window_size: int = None,
|
| 39 |
+
adaptors: Dict[str, AdaptorBase] = None,
|
| 40 |
+
feature_normalizer: Optional[FeatureNormalizer] = None,
|
| 41 |
+
inter_feature_normalizer: Optional[IntermediateFeatureNormalizer] = None,
|
| 42 |
+
):
|
| 43 |
+
super().__init__()
|
| 44 |
+
|
| 45 |
+
self.model = model
|
| 46 |
+
self.input_conditioner = input_conditioner
|
| 47 |
+
if summary_idxs is not None:
|
| 48 |
+
self.register_buffer('summary_idxs', summary_idxs)
|
| 49 |
+
else:
|
| 50 |
+
self.summary_idxs = None
|
| 51 |
+
|
| 52 |
+
self._preferred_resolution = preferred_resolution
|
| 53 |
+
self._patch_size = patch_size
|
| 54 |
+
self._max_resolution = max_resolution
|
| 55 |
+
self._window_size = window_size
|
| 56 |
+
|
| 57 |
+
adaptors = adaptors or dict()
|
| 58 |
+
self.adaptors = nn.ModuleDict(adaptors)
|
| 59 |
+
|
| 60 |
+
if feature_normalizer is None:
|
| 61 |
+
feature_normalizer = nn.Identity()
|
| 62 |
+
self.feature_normalizer = feature_normalizer
|
| 63 |
+
self.inter_feature_normalizer = inter_feature_normalizer
|
| 64 |
+
|
| 65 |
+
@property
|
| 66 |
+
def num_summary_tokens(self) -> int:
|
| 67 |
+
if hasattr(self.model, 'num_summary_tokens'):
|
| 68 |
+
return self.model.num_summary_tokens
|
| 69 |
+
|
| 70 |
+
patch_gen = getattr(self.model, "patch_generator", None)
|
| 71 |
+
if patch_gen is not None:
|
| 72 |
+
return patch_gen.num_skip
|
| 73 |
+
elif getattr(self.model, 'global_pool', None) == 'avg':
|
| 74 |
+
return 0
|
| 75 |
+
return 1
|
| 76 |
+
|
| 77 |
+
@property
|
| 78 |
+
def num_cls_tokens(self) -> int:
|
| 79 |
+
if hasattr(self.model, 'num_cls_tokens'):
|
| 80 |
+
return self.model.num_cls_tokens
|
| 81 |
+
|
| 82 |
+
patch_gen = getattr(self.model, 'patch_generator', None)
|
| 83 |
+
if patch_gen is not None:
|
| 84 |
+
return patch_gen.num_cls_tokens
|
| 85 |
+
elif getattr(self.model, 'global_pool', None) == 'avg':
|
| 86 |
+
return 0
|
| 87 |
+
return 1
|
| 88 |
+
|
| 89 |
+
@property
|
| 90 |
+
def patch_size(self) -> int:
|
| 91 |
+
if self._patch_size is not None:
|
| 92 |
+
return self._patch_size
|
| 93 |
+
if hasattr(self.model, "patch_size"):
|
| 94 |
+
return self.model.patch_size
|
| 95 |
+
patch_gen = getattr(self.model, "patch_generator", None)
|
| 96 |
+
if patch_gen is not None:
|
| 97 |
+
return patch_gen.patch_size
|
| 98 |
+
return None
|
| 99 |
+
|
| 100 |
+
@property
|
| 101 |
+
def max_resolution(self) -> int:
|
| 102 |
+
return self._max_resolution
|
| 103 |
+
|
| 104 |
+
@property
|
| 105 |
+
def preferred_resolution(self) -> Resolution:
|
| 106 |
+
return self._preferred_resolution
|
| 107 |
+
|
| 108 |
+
@property
|
| 109 |
+
def window_size(self) -> int:
|
| 110 |
+
return self._window_size
|
| 111 |
+
|
| 112 |
+
@property
|
| 113 |
+
def min_resolution_step(self) -> int:
|
| 114 |
+
res = self.patch_size
|
| 115 |
+
if self.window_size is not None:
|
| 116 |
+
res *= self.window_size
|
| 117 |
+
return res
|
| 118 |
+
|
| 119 |
+
@property
|
| 120 |
+
def blocks(self) -> Iterable[nn.Module]:
|
| 121 |
+
blocks = getattr(self.model, 'blocks', None)
|
| 122 |
+
if blocks is not None:
|
| 123 |
+
return blocks
|
| 124 |
+
return None
|
| 125 |
+
|
| 126 |
+
@property
|
| 127 |
+
def embed_dim(self) -> int:
|
| 128 |
+
return self.model.embed_dim
|
| 129 |
+
|
| 130 |
+
def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]:
|
| 131 |
+
ret = self.input_conditioner
|
| 132 |
+
self.input_conditioner = nn.Identity()
|
| 133 |
+
return ret
|
| 134 |
+
|
| 135 |
+
def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution:
|
| 136 |
+
height = int(round(height / self.min_resolution_step) * self.min_resolution_step)
|
| 137 |
+
width = int(round(width / self.min_resolution_step) * self.min_resolution_step)
|
| 138 |
+
|
| 139 |
+
height = max(height, self.min_resolution_step)
|
| 140 |
+
width = max(width, self.min_resolution_step)
|
| 141 |
+
|
| 142 |
+
return Resolution(height=height, width=width)
|
| 143 |
+
|
| 144 |
+
def switch_to_deploy(self):
|
| 145 |
+
fn = getattr(self.model, 'switch_to_deploy', None)
|
| 146 |
+
if fn is not None:
|
| 147 |
+
fn()
|
| 148 |
+
|
| 149 |
+
def forward(self, x: torch.Tensor, feature_fmt: str = 'NLC') -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
| 150 |
+
'''
|
| 151 |
+
Forward process for model.
|
| 152 |
+
Args:
|
| 153 |
+
x: Input tensor. Unless `make_preprocessor_external` has been called, then the dynamic range of `x` is expected to be `[0, 1]`,
|
| 154 |
+
otherwise `x` is expected to be mean centered with unit standard deviation.
|
| 155 |
+
feature_format: ['NLC', 'NCHW'] - The output format for the features.
|
| 156 |
+
'''
|
| 157 |
+
res_step = self.min_resolution_step
|
| 158 |
+
if res_step is not None and (x.shape[-2] % res_step != 0 or x.shape[-1] % res_step != 0):
|
| 159 |
+
raise ValueError('The input resolution must be a multiple of `self.min_resolution_step`. '
|
| 160 |
+
'`self.get_nearest_supported_resolution(<height>, <width>) is provided as a convenience API. '
|
| 161 |
+
f'Input: {x.shape[-2:]}, Nearest: {self.get_nearest_supported_resolution(*x.shape[-2:])}')
|
| 162 |
+
|
| 163 |
+
# import pdb; pdb.set_trace()
|
| 164 |
+
x = self.input_conditioner(x)
|
| 165 |
+
y = self.model.forward_features(x)
|
| 166 |
+
ret = self._extract_final(x, y, feature_fmt=feature_fmt)
|
| 167 |
+
return ret
|
| 168 |
+
|
| 169 |
+
def _extract_final(self, x: torch.Tensor, y: torch.Tensor, feature_fmt: str = 'NLC'):
|
| 170 |
+
if isinstance(self.model, VisionTransformer):
|
| 171 |
+
patch_gen = getattr(self.model, "patch_generator", None)
|
| 172 |
+
if patch_gen is not None:
|
| 173 |
+
all_summary = y[:, : patch_gen.num_cls_tokens]
|
| 174 |
+
if self.summary_idxs is not None:
|
| 175 |
+
bb_summary = all_summary[:, self.summary_idxs]
|
| 176 |
+
else:
|
| 177 |
+
bb_summary = all_summary
|
| 178 |
+
all_feat = y[:, patch_gen.num_skip :]
|
| 179 |
+
elif self.model.global_pool == "avg":
|
| 180 |
+
all_summary = y[:, self.model.num_prefix_tokens :].mean(dim=1)
|
| 181 |
+
bb_summary = all_summary
|
| 182 |
+
all_feat = y
|
| 183 |
+
else:
|
| 184 |
+
all_summary = y[:, 0]
|
| 185 |
+
bb_summary = all_summary
|
| 186 |
+
all_feat = y[:, 1:]
|
| 187 |
+
elif isinstance(self.model, eradio_model.ERADIO):
|
| 188 |
+
_, f = y
|
| 189 |
+
all_feat = f.flatten(2).transpose(1, 2)
|
| 190 |
+
all_summary = all_feat.mean(dim=1)
|
| 191 |
+
bb_summary = all_summary
|
| 192 |
+
elif isinstance(y, (list, tuple)):
|
| 193 |
+
all_summary, all_feat = y
|
| 194 |
+
bb_summary = all_summary
|
| 195 |
+
else:
|
| 196 |
+
all_summary = y[:, :self.num_cls_tokens]
|
| 197 |
+
if self.summary_idxs is not None and all_summary.shape[1] > 1:
|
| 198 |
+
if all_summary.shape[1] == 1:
|
| 199 |
+
# Create dummy duplicates
|
| 200 |
+
all_summary = all_summary.expand(-1, 128, -1)
|
| 201 |
+
bb_summary = all_summary[:, self.summary_idxs]
|
| 202 |
+
else:
|
| 203 |
+
bb_summary = all_summary
|
| 204 |
+
all_feat = y[:, self.num_summary_tokens:]
|
| 205 |
+
|
| 206 |
+
all_feat = self.feature_normalizer(all_feat)
|
| 207 |
+
|
| 208 |
+
if feature_fmt == 'NCHW':
|
| 209 |
+
fmt_feat = (all_feat.reshape(all_feat.shape[0], x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size, all_feat.shape[2])
|
| 210 |
+
.permute(0, 3, 1, 2)
|
| 211 |
+
)
|
| 212 |
+
elif feature_fmt == 'NLC':
|
| 213 |
+
fmt_feat = all_feat
|
| 214 |
+
else:
|
| 215 |
+
raise ValueError(f'Unsupported feature_fmt: {feature_fmt}. Must be one of ["NLC", "NCHW"]')
|
| 216 |
+
|
| 217 |
+
ret = RadioOutput(bb_summary.flatten(1), fmt_feat)
|
| 218 |
+
|
| 219 |
+
if self.adaptors:
|
| 220 |
+
ret = dict(backbone=ret)
|
| 221 |
+
for name, adaptor in self.adaptors.items():
|
| 222 |
+
if all_summary.ndim == 3:
|
| 223 |
+
if all_summary.shape[1] == 1:
|
| 224 |
+
summary = all_summary[:, 0]
|
| 225 |
+
else:
|
| 226 |
+
summary = all_summary[:, adaptor.head_idx]
|
| 227 |
+
else:
|
| 228 |
+
summary = all_summary
|
| 229 |
+
ada_input = AdaptorInput(images=x, summary=summary.float(), features=all_feat, feature_fmt=feature_fmt, patch_size=self.patch_size)
|
| 230 |
+
v = adaptor(ada_input).to(torch.float32)
|
| 231 |
+
ret[name] = v
|
| 232 |
+
|
| 233 |
+
return ret
|
| 234 |
+
|
| 235 |
+
def forward_intermediates(
|
| 236 |
+
self,
|
| 237 |
+
x: torch.Tensor,
|
| 238 |
+
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
|
| 239 |
+
return_prefix_tokens: bool = False,
|
| 240 |
+
norm: bool = False,
|
| 241 |
+
stop_early: bool = False,
|
| 242 |
+
output_fmt: str = 'NCHW',
|
| 243 |
+
intermediates_only: bool = False,
|
| 244 |
+
aggregation: Optional[str] = "sparse",
|
| 245 |
+
norm_alpha_scheme: Optional[str] = "post-alpha",
|
| 246 |
+
) -> List[RadioOutput]:
|
| 247 |
+
""" Forward features that returns intermediates.
|
| 248 |
+
Args:
|
| 249 |
+
x: Input image tensor
|
| 250 |
+
indices: Take last n blocks if int, select matching indices if sequence
|
| 251 |
+
return_prefix_tokens: Return both prefix and spatial intermediate tokens
|
| 252 |
+
norm: Apply norm layer to all intermediates
|
| 253 |
+
stop_early: Stop iterating over blocks when last desired intermediate hit
|
| 254 |
+
output_fmt: Shape of intermediate feature outputs. Options: NCHW, NLC
|
| 255 |
+
intermediates_only: Only return intermediate features
|
| 256 |
+
aggregation: intermediate layer aggregation method (sparse or dense).
|
| 257 |
+
Dense accumulation is done by averaging the features in each group.
|
| 258 |
+
norm_alpha_scheme: apply alpha before ("pre-alpha") or after accumulation ("post-alpha"), or don't normalize ("none")
|
| 259 |
+
Only affects dense aggregation
|
| 260 |
+
Returns:
|
| 261 |
+
List of RadioOutput objects.
|
| 262 |
+
"""
|
| 263 |
+
x = self.input_conditioner(x)
|
| 264 |
+
intermediates = self.model.forward_intermediates(
|
| 265 |
+
x,
|
| 266 |
+
indices=indices,
|
| 267 |
+
return_prefix_tokens=return_prefix_tokens,
|
| 268 |
+
norm=norm,
|
| 269 |
+
stop_early=stop_early,
|
| 270 |
+
output_fmt=output_fmt,
|
| 271 |
+
intermediates_only=intermediates_only,
|
| 272 |
+
aggregation=aggregation,
|
| 273 |
+
inter_feature_normalizer=self.inter_feature_normalizer,
|
| 274 |
+
norm_alpha_scheme=norm_alpha_scheme,
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
if not intermediates_only:
|
| 278 |
+
final, intermediates = intermediates
|
| 279 |
+
|
| 280 |
+
def prepare_summary(summ: Optional[torch.Tensor]):
|
| 281 |
+
if summ is None:
|
| 282 |
+
return summ
|
| 283 |
+
if self.summary_idxs is not None and summ.shape[1] > 1:
|
| 284 |
+
summ = summ[:, self.summary_idxs]
|
| 285 |
+
return summ.flatten(1)
|
| 286 |
+
|
| 287 |
+
if return_prefix_tokens:
|
| 288 |
+
radio_outputs = [
|
| 289 |
+
RadioOutput(prepare_summary(summary), features)
|
| 290 |
+
for summary, features in intermediates
|
| 291 |
+
]
|
| 292 |
+
else:
|
| 293 |
+
radio_outputs = intermediates
|
| 294 |
+
|
| 295 |
+
if intermediates_only:
|
| 296 |
+
return radio_outputs
|
| 297 |
+
else:
|
| 298 |
+
final = self._extract_final(x, final, feature_fmt=output_fmt)
|
| 299 |
+
return final, radio_outputs
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
def create_model_from_args(args) -> nn.Module:
|
| 303 |
+
in_chans = 3
|
| 304 |
+
if args.in_chans is not None:
|
| 305 |
+
in_chans = args.in_chans
|
| 306 |
+
elif args.input_size is not None:
|
| 307 |
+
in_chans = args.input_size[0]
|
| 308 |
+
|
| 309 |
+
# Skip weight initialization unless it's explicitly requested.
|
| 310 |
+
weight_init = args.model_kwargs.pop("weight_init", "skip")
|
| 311 |
+
|
| 312 |
+
model = create_model(
|
| 313 |
+
args.model,
|
| 314 |
+
pretrained=args.pretrained,
|
| 315 |
+
in_chans=in_chans,
|
| 316 |
+
num_classes=args.num_classes,
|
| 317 |
+
drop_rate=args.drop,
|
| 318 |
+
drop_path_rate=args.drop_path,
|
| 319 |
+
drop_block_rate=args.drop_block,
|
| 320 |
+
global_pool=args.gp,
|
| 321 |
+
bn_momentum=args.bn_momentum,
|
| 322 |
+
bn_eps=args.bn_eps,
|
| 323 |
+
scriptable=args.torchscript,
|
| 324 |
+
checkpoint_path=args.initial_checkpoint,
|
| 325 |
+
weight_init=weight_init,
|
| 326 |
+
**args.model_kwargs,
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
if hasattr(model, 'norm') and not getattr(args, 'model_norm', False):
|
| 330 |
+
model.norm = nn.Identity()
|
| 331 |
+
|
| 332 |
+
model.head = nn.Identity()
|
| 333 |
+
|
| 334 |
+
if args.cpe_max_size is not None:
|
| 335 |
+
uq_teachers = set(t['name'] for t in args.teachers)
|
| 336 |
+
enable_cpe(
|
| 337 |
+
model,
|
| 338 |
+
args.cpe_max_size,
|
| 339 |
+
num_cls_tokens=len(uq_teachers) if args.cls_token_per_teacher else 1,
|
| 340 |
+
register_multiple=getattr(args, 'register_multiple', None),
|
| 341 |
+
num_registers=getattr(args, 'cpe_num_registers', None),
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
return model
|
src/models/radiov3/vit_patch_generator.py
ADDED
|
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
+
# and proprietary rights in and to this software, related documentation
|
| 5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
+
# distribution of this software and related documentation without an express
|
| 7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
|
| 9 |
+
import math
|
| 10 |
+
from typing import Union, Tuple, Optional
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
from torch import nn
|
| 15 |
+
from einops import rearrange
|
| 16 |
+
|
| 17 |
+
from .cls_token import ClsToken
|
| 18 |
+
|
| 19 |
+
input_dim_t = Union[int, Tuple[int, int]]
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
# raise ImportError()
|
| 23 |
+
from indirect_grid_sample import indirect_grid_sample
|
| 24 |
+
except ImportError:
|
| 25 |
+
indirect_grid_sample = None
|
| 26 |
+
|
| 27 |
+
class ViTPatchGenerator(nn.Module):
|
| 28 |
+
def __init__(self,
|
| 29 |
+
patch_size: int,
|
| 30 |
+
embed_dim: int,
|
| 31 |
+
input_dims: input_dim_t,
|
| 32 |
+
abs_pos: bool = True,
|
| 33 |
+
normalize_patches: bool = False,
|
| 34 |
+
cls_token: bool = False,
|
| 35 |
+
max_input_dims: Optional[input_dim_t] = None,
|
| 36 |
+
pos_dropout: float = 0.0,
|
| 37 |
+
return_pos_enc: bool = False,
|
| 38 |
+
num_cls_tokens: int = 1,
|
| 39 |
+
register_multiple: Optional[int] = None,
|
| 40 |
+
num_registers: Optional[int] = None,
|
| 41 |
+
patch_bias: bool = False,
|
| 42 |
+
device=None, dtype=None,
|
| 43 |
+
):
|
| 44 |
+
super().__init__()
|
| 45 |
+
|
| 46 |
+
if isinstance(input_dims, int):
|
| 47 |
+
input_dims = (input_dims, input_dims)
|
| 48 |
+
|
| 49 |
+
if max_input_dims is None:
|
| 50 |
+
max_input_dims = input_dims
|
| 51 |
+
if isinstance(max_input_dims, int):
|
| 52 |
+
max_input_dims = (max_input_dims, max_input_dims)
|
| 53 |
+
|
| 54 |
+
max_input_dims = tuple(
|
| 55 |
+
int(math.ceil(d / patch_size) * patch_size)
|
| 56 |
+
for d in max_input_dims
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
self.cpe_mode = max_input_dims != input_dims
|
| 60 |
+
self.pos_dropout = pos_dropout
|
| 61 |
+
self.return_pos_enc = return_pos_enc
|
| 62 |
+
|
| 63 |
+
factory = dict(device=device, dtype=dtype)
|
| 64 |
+
|
| 65 |
+
self.patch_size = patch_size
|
| 66 |
+
self.abs_pos = abs_pos
|
| 67 |
+
self.embed_dim = embed_dim
|
| 68 |
+
|
| 69 |
+
self.num_rows = max_input_dims[0] // patch_size
|
| 70 |
+
self.num_cols = max_input_dims[1] // patch_size
|
| 71 |
+
self.input_dims = tuple(d // patch_size for d in input_dims)
|
| 72 |
+
self.num_patches = self.num_rows * self.num_cols
|
| 73 |
+
self.max_input_dims = max_input_dims
|
| 74 |
+
|
| 75 |
+
self.im_to_patches = Im2Patches(patch_size)
|
| 76 |
+
self.embedder = ViTPatchLinear(patch_size, embed_dim, bias=patch_bias, **factory)
|
| 77 |
+
|
| 78 |
+
if abs_pos:
|
| 79 |
+
scale = embed_dim ** -0.5
|
| 80 |
+
self.pos_embed = nn.Parameter(torch.randn(1, self.num_patches, embed_dim, **factory) * scale)
|
| 81 |
+
|
| 82 |
+
self.cls_token = ClsToken(
|
| 83 |
+
embed_dim,
|
| 84 |
+
num_tokens=num_cls_tokens,
|
| 85 |
+
enabled=cls_token,
|
| 86 |
+
register_multiple=register_multiple,
|
| 87 |
+
num_registers=num_registers,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
self.patch_normalizer = nn.LayerNorm(embed_dim) if normalize_patches else nn.Identity()
|
| 91 |
+
|
| 92 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 93 |
+
patches = self.embed_patches(x)
|
| 94 |
+
patches, pos_enc = self.apply_pos_enc(patches, input_size=x.shape[2:])
|
| 95 |
+
patches = self.cls_token(patches)
|
| 96 |
+
patches = self.patch_normalizer(patches)
|
| 97 |
+
if self.return_pos_enc:
|
| 98 |
+
return patches, pos_enc
|
| 99 |
+
return patches
|
| 100 |
+
|
| 101 |
+
@property
|
| 102 |
+
def apply_cls_token(self):
|
| 103 |
+
return self.cls_token.enabled
|
| 104 |
+
|
| 105 |
+
@property
|
| 106 |
+
def num_cls_tokens(self):
|
| 107 |
+
return self.cls_token.num_tokens
|
| 108 |
+
|
| 109 |
+
@property
|
| 110 |
+
def num_cls_patches(self):
|
| 111 |
+
return self.cls_token.num_patches
|
| 112 |
+
|
| 113 |
+
@property
|
| 114 |
+
def num_registers(self):
|
| 115 |
+
return self.cls_token.num_registers
|
| 116 |
+
|
| 117 |
+
@property
|
| 118 |
+
def num_skip(self):
|
| 119 |
+
return self.num_cls_tokens + self.num_registers
|
| 120 |
+
|
| 121 |
+
def no_weight_decay(self):
|
| 122 |
+
return [
|
| 123 |
+
'pos_embed',
|
| 124 |
+
]
|
| 125 |
+
|
| 126 |
+
def _load_embed(self, src_embed: torch.Tensor, targ_embed: nn.Parameter):
|
| 127 |
+
if src_embed.shape != targ_embed.shape:
|
| 128 |
+
src_size = int(math.sqrt(src_embed.shape[1]))
|
| 129 |
+
|
| 130 |
+
assert src_size ** 2 == src_embed.shape[1], 'Unable to interpolate non-square embedding'
|
| 131 |
+
|
| 132 |
+
src_embed = rearrange(src_embed, 'b (h w) c -> b c h w', h=src_size, w=src_size)
|
| 133 |
+
src_embed = F.interpolate(src_embed, size=(self.num_rows, self.num_cols), mode='bicubic', align_corners=True, antialias=False)
|
| 134 |
+
src_embed = rearrange(src_embed, 'b c h w -> b (h w) c')
|
| 135 |
+
targ_embed.data.copy_(src_embed)
|
| 136 |
+
|
| 137 |
+
def _load_projection(self, src_proj_weight: torch.Tensor, targ_proj_weight: torch.Tensor):
|
| 138 |
+
if src_proj_weight.shape != targ_proj_weight.shape:
|
| 139 |
+
src_patch_size = int(math.sqrt(src_proj_weight.shape[1] // 3))
|
| 140 |
+
|
| 141 |
+
assert (src_patch_size ** 2) * 3 == src_proj_weight.shape[1], 'Unable to interpolate non-square patch size'
|
| 142 |
+
|
| 143 |
+
src_proj_weight = rearrange(src_proj_weight, 'b (c h w) -> b c h w', c=3, h=src_patch_size, w=src_patch_size)
|
| 144 |
+
src_proj_weight = F.interpolate(src_proj_weight, size=(self.patch_size, self.patch_size), mode='bicubic', align_corners=True, antialias=False)
|
| 145 |
+
src_proj_weight = rearrange(src_proj_weight, 'b c h w -> b (c h w)')
|
| 146 |
+
targ_proj_weight.data.copy_(src_proj_weight)
|
| 147 |
+
|
| 148 |
+
def embed_patches(self, x: torch.Tensor) -> torch.Tensor:
|
| 149 |
+
# import pdb; pdb.set_trace()
|
| 150 |
+
patches = self.im_to_patches(x)
|
| 151 |
+
patches = self.embedder(patches)
|
| 152 |
+
return patches
|
| 153 |
+
|
| 154 |
+
def apply_pos_enc(self,
|
| 155 |
+
patches: torch.Tensor,
|
| 156 |
+
patch_idxs: Optional[torch.Tensor] = None,
|
| 157 |
+
input_size: Optional[Tuple[int, int]] = None,
|
| 158 |
+
) -> torch.Tensor:
|
| 159 |
+
if not self.abs_pos:
|
| 160 |
+
return patches
|
| 161 |
+
|
| 162 |
+
pos_enc = self.get_pos_enc(patches.shape[0], patch_idxs, input_size)
|
| 163 |
+
|
| 164 |
+
if self.training and self.pos_dropout > 0:
|
| 165 |
+
keeps = torch.rand(patches.shape[0], 1, 1, dtype=pos_enc.dtype, device=pos_enc.device) > self.pos_dropout
|
| 166 |
+
pos_enc_drop = torch.where(keeps, pos_enc, 0)
|
| 167 |
+
else:
|
| 168 |
+
pos_enc_drop = pos_enc
|
| 169 |
+
|
| 170 |
+
return patches + pos_enc_drop, pos_enc
|
| 171 |
+
|
| 172 |
+
def get_pos_enc(self,
|
| 173 |
+
batch_size: int,
|
| 174 |
+
patch_idxs: Optional[torch.Tensor] = None,
|
| 175 |
+
input_size: Optional[Tuple[int, int]] = None,
|
| 176 |
+
) -> torch.Tensor:
|
| 177 |
+
if input_size is None:
|
| 178 |
+
input_dims = self.input_dims
|
| 179 |
+
else:
|
| 180 |
+
input_dims = tuple(d // self.patch_size for d in input_size)
|
| 181 |
+
|
| 182 |
+
pos_embed = self._get_pos_embeddings(batch_size, input_dims)
|
| 183 |
+
|
| 184 |
+
if patch_idxs is None:
|
| 185 |
+
return pos_embed
|
| 186 |
+
|
| 187 |
+
exp_patch_idxs = patch_idxs.unsqueeze(-1).expand(-1, -1, pos_embed.shape[-1])
|
| 188 |
+
|
| 189 |
+
pos_embed = torch.gather(pos_embed.expand(patch_idxs.shape[0], -1, -1), dim=1, index=exp_patch_idxs)
|
| 190 |
+
return pos_embed
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def _get_pos_embeddings(self, batch_size: int, input_dims: Tuple[int, int]):
|
| 194 |
+
if (self.num_rows, self.num_cols) == input_dims:
|
| 195 |
+
return self.pos_embed
|
| 196 |
+
|
| 197 |
+
pos_embed = self.pos_embed.reshape(1, self.num_rows, self.num_cols, -1).permute(0, 3, 1, 2)
|
| 198 |
+
|
| 199 |
+
def window_select(pos_embed):
|
| 200 |
+
if input_dims[0] < pos_embed.shape[-2]:
|
| 201 |
+
pos_embed = pos_embed[..., :input_dims[0], :]
|
| 202 |
+
if input_dims[1] < pos_embed.shape[-1]:
|
| 203 |
+
pos_embed = pos_embed[..., :, :input_dims[1]]
|
| 204 |
+
return pos_embed
|
| 205 |
+
|
| 206 |
+
if self.cpe_mode:
|
| 207 |
+
if self.training:
|
| 208 |
+
min_scale = math.sqrt(0.1)
|
| 209 |
+
scale = torch.rand(batch_size, 1, 1, device=pos_embed.device) * (1 - min_scale) + min_scale
|
| 210 |
+
aspect_min = math.log(3 / 4)
|
| 211 |
+
aspect_max = -aspect_min
|
| 212 |
+
aspect = torch.exp(torch.rand(batch_size, 1, 1, device=pos_embed.device) * (aspect_max - aspect_min) + aspect_min)
|
| 213 |
+
|
| 214 |
+
scale_x = scale * aspect
|
| 215 |
+
scale_y = scale * (1 / aspect)
|
| 216 |
+
scale_xy = torch.stack([scale_x, scale_y], dim=-1).clamp_(0, 1)
|
| 217 |
+
|
| 218 |
+
pos_xy = torch.rand(batch_size, 1, 1, 2, device=pos_embed.device) * (1 - scale_xy)
|
| 219 |
+
|
| 220 |
+
lin_x = torch.linspace(0, 1, steps=input_dims[1], device=pos_embed.device)[None, None].expand(batch_size, input_dims[0], -1)
|
| 221 |
+
lin_y = torch.linspace(0, 1, steps=input_dims[0], device=pos_embed.device)[None, :, None].expand(batch_size, -1, input_dims[1])
|
| 222 |
+
|
| 223 |
+
lin_xy = torch.stack([lin_x, lin_y], dim=-1)
|
| 224 |
+
|
| 225 |
+
grid_xy = lin_xy * scale_xy + pos_xy
|
| 226 |
+
|
| 227 |
+
# Convert to [-1, 1] range
|
| 228 |
+
grid_xy.mul_(2).sub_(1)
|
| 229 |
+
|
| 230 |
+
pos_embed = F.grid_sample(
|
| 231 |
+
pos_embed.float().expand(batch_size, -1, -1, -1),
|
| 232 |
+
grid=grid_xy,
|
| 233 |
+
mode='bilinear',
|
| 234 |
+
padding_mode='zeros',
|
| 235 |
+
align_corners=True,
|
| 236 |
+
).to(pos_embed.dtype)
|
| 237 |
+
else:
|
| 238 |
+
# i_rows, i_cols = input_dims
|
| 239 |
+
# p_rows, p_cols = pos_embed.shape[2:]
|
| 240 |
+
# if i_rows <= p_rows and i_cols <= p_cols:
|
| 241 |
+
# left = (p_cols - i_cols) // 2
|
| 242 |
+
# top = (p_rows - i_rows) // 2
|
| 243 |
+
# pos_embed = pos_embed[..., top:top+i_rows, left:left+i_cols]
|
| 244 |
+
# else:
|
| 245 |
+
max_dim = max(input_dims)
|
| 246 |
+
pos_embed = F.interpolate(pos_embed.float(), size=(max_dim, max_dim), align_corners=True, mode='bilinear').to(pos_embed.dtype)
|
| 247 |
+
|
| 248 |
+
pos_embed = window_select(pos_embed)
|
| 249 |
+
else:
|
| 250 |
+
pos_embed = window_select(pos_embed)
|
| 251 |
+
|
| 252 |
+
if pos_embed.shape[-2:] != input_dims:
|
| 253 |
+
pos_embed = F.interpolate(pos_embed.float(), size=input_dims, align_corners=True, mode='bilinear').to(pos_embed.dtype)
|
| 254 |
+
|
| 255 |
+
pos_embed = pos_embed.flatten(2).permute(0, 2, 1)
|
| 256 |
+
|
| 257 |
+
return pos_embed
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
class Im2Patches(nn.Module):
|
| 261 |
+
def __init__(self, patch_size: int):
|
| 262 |
+
super().__init__()
|
| 263 |
+
self.patch_size = patch_size
|
| 264 |
+
|
| 265 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 266 |
+
if self.patch_size == 1:
|
| 267 |
+
patches = x.flatten(2)
|
| 268 |
+
patches = patches.permute(0, 2, 1)
|
| 269 |
+
return patches
|
| 270 |
+
|
| 271 |
+
py = x.shape[-2] // self.patch_size
|
| 272 |
+
px = x.shape[-1] // self.patch_size
|
| 273 |
+
patches = rearrange(x, 'b c (py yy) (px xx) -> b (py px) (c yy xx)',
|
| 274 |
+
py=py, yy=self.patch_size,
|
| 275 |
+
px=px, xx=self.patch_size,
|
| 276 |
+
)
|
| 277 |
+
return patches
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
class ViTPatchLinear(nn.Linear):
|
| 281 |
+
def __init__(self, patch_size: int, embed_dim: int, bias: bool = False, **factory):
|
| 282 |
+
super().__init__(
|
| 283 |
+
3 * (patch_size ** 2),
|
| 284 |
+
embed_dim,
|
| 285 |
+
bias=bias,
|
| 286 |
+
**factory
|
| 287 |
+
)
|
| 288 |
+
self.patch_size = patch_size
|
src/models/radiov3/vitdet.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import defaultdict
|
| 2 |
+
from contextlib import contextmanager
|
| 3 |
+
from logging import getLogger
|
| 4 |
+
import math
|
| 5 |
+
import sys
|
| 6 |
+
from typing import List, Union, Iterable
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
from torch import nn
|
| 11 |
+
|
| 12 |
+
from timm.models import VisionTransformer
|
| 13 |
+
from einops import rearrange
|
| 14 |
+
|
| 15 |
+
from .extra_models import DinoWrapper
|
| 16 |
+
|
| 17 |
+
DEFAULT_NUM_WINDOWED = 5
|
| 18 |
+
DEFAULT_NUM_GLOBAL = 4
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class VitDetArgs:
|
| 22 |
+
def __init__(self,
|
| 23 |
+
window_size: int,
|
| 24 |
+
num_summary_tokens: int,
|
| 25 |
+
num_windowed: int = None,
|
| 26 |
+
num_global: int = None,
|
| 27 |
+
):
|
| 28 |
+
self.window_size = window_size
|
| 29 |
+
self.num_summary_tokens = num_summary_tokens
|
| 30 |
+
self.num_windowed = num_windowed
|
| 31 |
+
self.num_global = num_global
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def apply_vitdet_arch(model: Union[VisionTransformer, DinoWrapper], args: VitDetArgs):
|
| 35 |
+
if isinstance(model, VisionTransformer):
|
| 36 |
+
patch_embed = getattr(model, 'patch_generator', model.patch_embed)
|
| 37 |
+
|
| 38 |
+
return ViTDetHook(patch_embed, model.blocks, args)
|
| 39 |
+
elif isinstance(model, DinoWrapper):
|
| 40 |
+
inner = model.inner
|
| 41 |
+
|
| 42 |
+
patch_embed = getattr(inner, 'patch_generator', inner.patch_embed)
|
| 43 |
+
return ViTDetHook(patch_embed, inner.blocks, args)
|
| 44 |
+
else:
|
| 45 |
+
print(f'Warning: Unable to apply VitDet aug!', file=sys.stderr)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class ViTDetHook:
|
| 49 |
+
def __init__(self,
|
| 50 |
+
embedder: nn.Module,
|
| 51 |
+
blocks: nn.Sequential,
|
| 52 |
+
args: VitDetArgs,
|
| 53 |
+
):
|
| 54 |
+
self.blocks = blocks
|
| 55 |
+
self.num_summary_tokens = args.num_summary_tokens
|
| 56 |
+
self.window_size = args.window_size
|
| 57 |
+
|
| 58 |
+
self._input_resolution = None
|
| 59 |
+
self._num_windows = None
|
| 60 |
+
self._cls_patch = None
|
| 61 |
+
self._order_cache = dict()
|
| 62 |
+
|
| 63 |
+
embedder.register_forward_pre_hook(self._enter_model)
|
| 64 |
+
|
| 65 |
+
# This will decide if we window-fy the patches
|
| 66 |
+
# and enable vit-det for this iteration, and if so,
|
| 67 |
+
# rearrange the patches for efficient mode switching
|
| 68 |
+
blocks.register_forward_pre_hook(self._enter_blocks)
|
| 69 |
+
|
| 70 |
+
is_global = True
|
| 71 |
+
if args.num_windowed is not None:
|
| 72 |
+
period = args.num_windowed + 1
|
| 73 |
+
else:
|
| 74 |
+
num_global = args.num_global or DEFAULT_NUM_GLOBAL
|
| 75 |
+
period = max(len(blocks) // num_global, 1)
|
| 76 |
+
|
| 77 |
+
for i, layer in enumerate(blocks[:-1]):
|
| 78 |
+
ctr = i % period
|
| 79 |
+
if ctr == 0:
|
| 80 |
+
layer.register_forward_pre_hook(self._to_windows)
|
| 81 |
+
is_global = False
|
| 82 |
+
elif ctr == period - 1:
|
| 83 |
+
layer.register_forward_pre_hook(self._to_global)
|
| 84 |
+
is_global = True
|
| 85 |
+
|
| 86 |
+
# Always ensure the final layer is a global layer
|
| 87 |
+
if not is_global:
|
| 88 |
+
blocks[-1].register_forward_pre_hook(self._to_global)
|
| 89 |
+
|
| 90 |
+
blocks.register_forward_hook(self._exit_model)
|
| 91 |
+
|
| 92 |
+
def _enter_model(self, _, input: List[torch.Tensor]):
|
| 93 |
+
self._input_resolution = input[0].shape[-2:]
|
| 94 |
+
|
| 95 |
+
def _enter_blocks(self, _, input: List[torch.Tensor]):
|
| 96 |
+
# print(f'{get_rank()} - ViTDet Window Size: {self._window_size}', file=sys.stderr)
|
| 97 |
+
|
| 98 |
+
patches = input[0]
|
| 99 |
+
patches = self._rearrange_patches(patches)
|
| 100 |
+
|
| 101 |
+
return (patches,) + input[1:]
|
| 102 |
+
|
| 103 |
+
def _to_windows(self, _, input: List[torch.Tensor]):
|
| 104 |
+
patches = input[0]
|
| 105 |
+
|
| 106 |
+
if self.num_summary_tokens:
|
| 107 |
+
self._cls_patch = patches[:, :self.num_summary_tokens]
|
| 108 |
+
patches = patches[:, self.num_summary_tokens:]
|
| 109 |
+
|
| 110 |
+
patches = rearrange(
|
| 111 |
+
patches, 'b (p t) c -> (b p) t c',
|
| 112 |
+
p=self._num_windows, t=self.window_size ** 2,
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
return (patches,) + input[1:]
|
| 116 |
+
|
| 117 |
+
def _to_global(self, _, input: List[torch.Tensor]):
|
| 118 |
+
patches = input[0]
|
| 119 |
+
|
| 120 |
+
patches = rearrange(
|
| 121 |
+
patches, '(b p) t c -> b (p t) c',
|
| 122 |
+
p=self._num_windows, t=self.window_size ** 2,
|
| 123 |
+
b=patches.shape[0] // self._num_windows,
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
if self.num_summary_tokens:
|
| 127 |
+
patches = torch.cat([
|
| 128 |
+
self._cls_patch,
|
| 129 |
+
patches,
|
| 130 |
+
], dim=1)
|
| 131 |
+
|
| 132 |
+
return (patches,) + input[1:]
|
| 133 |
+
|
| 134 |
+
def _exit_model(self, _, inputs: List[torch.Tensor], patches: torch.Tensor):
|
| 135 |
+
# Return patches to their original order
|
| 136 |
+
patch_order = self._order_cache[self._input_resolution][0]
|
| 137 |
+
patch_order = patch_order.reshape(1, -1, 1).expand_as(patches)
|
| 138 |
+
|
| 139 |
+
ret_patches = torch.empty_like(patches)
|
| 140 |
+
ret_patches = torch.scatter(
|
| 141 |
+
ret_patches,
|
| 142 |
+
dim=1,
|
| 143 |
+
index=patch_order,
|
| 144 |
+
src=patches,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
return ret_patches
|
| 148 |
+
|
| 149 |
+
def _rearrange_patches(self, patches: torch.Tensor):
|
| 150 |
+
# We rearrange the patches so that we can efficiently
|
| 151 |
+
# switch between windowed and global mode by just
|
| 152 |
+
# reshaping the tensor
|
| 153 |
+
|
| 154 |
+
patch_order, self._num_windows = self._order_cache.get(self._input_resolution, (None, None))
|
| 155 |
+
if patch_order is None:
|
| 156 |
+
num_feat_patches = patches.shape[1] - self.num_summary_tokens
|
| 157 |
+
num_pixels = self._input_resolution[0] * self._input_resolution[1]
|
| 158 |
+
|
| 159 |
+
patch_size = int(round(math.sqrt(num_pixels / num_feat_patches)))
|
| 160 |
+
rows = self._input_resolution[-2] // patch_size
|
| 161 |
+
cols = self._input_resolution[-1] // patch_size
|
| 162 |
+
|
| 163 |
+
w_rows = rows // self.window_size
|
| 164 |
+
w_cols = cols // self.window_size
|
| 165 |
+
|
| 166 |
+
patch_order = torch.arange(0, num_feat_patches, device=patches.device)
|
| 167 |
+
|
| 168 |
+
patch_order = rearrange(
|
| 169 |
+
patch_order, '(wy py wx px) -> (wy wx py px)',
|
| 170 |
+
wy=w_rows, wx=w_cols,
|
| 171 |
+
py=self.window_size, px=self.window_size,
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
if self.num_summary_tokens:
|
| 175 |
+
patch_order = torch.cat([
|
| 176 |
+
torch.arange(self.num_summary_tokens, dtype=patch_order.dtype, device=patch_order.device),
|
| 177 |
+
patch_order + self.num_summary_tokens,
|
| 178 |
+
])
|
| 179 |
+
|
| 180 |
+
self._num_windows = w_rows * w_cols
|
| 181 |
+
self._order_cache[self._input_resolution] = (
|
| 182 |
+
patch_order,
|
| 183 |
+
self._num_windows,
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
patch_order = patch_order.reshape(1, -1, 1).expand_as(patches)
|
| 187 |
+
patches = torch.gather(patches, dim=1, index=patch_order)
|
| 188 |
+
return patches
|
src/models/stable_diffusion3/pipeline_stable_diffusion_3.py
ADDED
|
@@ -0,0 +1,1256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import inspect
|
| 16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
from transformers import (
|
| 20 |
+
CLIPTextModelWithProjection,
|
| 21 |
+
CLIPTokenizer,
|
| 22 |
+
SiglipImageProcessor,
|
| 23 |
+
SiglipVisionModel,
|
| 24 |
+
T5EncoderModel,
|
| 25 |
+
T5TokenizerFast,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 29 |
+
from diffusers.loaders import FromSingleFileMixin, SD3IPAdapterMixin, SD3LoraLoaderMixin
|
| 30 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
| 31 |
+
from diffusers.models.transformers import SD3Transformer2DModel
|
| 32 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 33 |
+
from diffusers.utils import (
|
| 34 |
+
USE_PEFT_BACKEND,
|
| 35 |
+
is_torch_xla_available,
|
| 36 |
+
logging,
|
| 37 |
+
replace_example_docstring,
|
| 38 |
+
scale_lora_layers,
|
| 39 |
+
unscale_lora_layers,
|
| 40 |
+
)
|
| 41 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 42 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 43 |
+
from diffusers.pipelines.stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
if is_torch_xla_available():
|
| 47 |
+
import torch_xla.core.xla_model as xm
|
| 48 |
+
|
| 49 |
+
XLA_AVAILABLE = True
|
| 50 |
+
else:
|
| 51 |
+
XLA_AVAILABLE = False
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 55 |
+
|
| 56 |
+
EXAMPLE_DOC_STRING = """
|
| 57 |
+
Examples:
|
| 58 |
+
```py
|
| 59 |
+
>>> import torch
|
| 60 |
+
>>> from diffusers import StableDiffusion3Pipeline
|
| 61 |
+
|
| 62 |
+
>>> pipe = StableDiffusion3Pipeline.from_pretrained(
|
| 63 |
+
... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
|
| 64 |
+
... )
|
| 65 |
+
>>> pipe.to("cuda")
|
| 66 |
+
>>> prompt = "A cat holding a sign that says hello world"
|
| 67 |
+
>>> image = pipe(prompt).images[0]
|
| 68 |
+
>>> image.save("sd3.png")
|
| 69 |
+
```
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
| 74 |
+
def calculate_shift(
|
| 75 |
+
image_seq_len,
|
| 76 |
+
base_seq_len: int = 256,
|
| 77 |
+
max_seq_len: int = 4096,
|
| 78 |
+
base_shift: float = 0.5,
|
| 79 |
+
max_shift: float = 1.15,
|
| 80 |
+
):
|
| 81 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
| 82 |
+
b = base_shift - m * base_seq_len
|
| 83 |
+
mu = image_seq_len * m + b
|
| 84 |
+
return mu
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 88 |
+
def retrieve_timesteps(
|
| 89 |
+
scheduler,
|
| 90 |
+
num_inference_steps: Optional[int] = None,
|
| 91 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 92 |
+
timesteps: Optional[List[int]] = None,
|
| 93 |
+
sigmas: Optional[List[float]] = None,
|
| 94 |
+
**kwargs,
|
| 95 |
+
):
|
| 96 |
+
r"""
|
| 97 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 98 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
scheduler (`SchedulerMixin`):
|
| 102 |
+
The scheduler to get timesteps from.
|
| 103 |
+
num_inference_steps (`int`):
|
| 104 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 105 |
+
must be `None`.
|
| 106 |
+
device (`str` or `torch.device`, *optional*):
|
| 107 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 108 |
+
timesteps (`List[int]`, *optional*):
|
| 109 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 110 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 111 |
+
sigmas (`List[float]`, *optional*):
|
| 112 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 113 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 114 |
+
|
| 115 |
+
Returns:
|
| 116 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 117 |
+
second element is the number of inference steps.
|
| 118 |
+
"""
|
| 119 |
+
if timesteps is not None and sigmas is not None:
|
| 120 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 121 |
+
if timesteps is not None:
|
| 122 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 123 |
+
if not accepts_timesteps:
|
| 124 |
+
raise ValueError(
|
| 125 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 126 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 127 |
+
)
|
| 128 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 129 |
+
timesteps = scheduler.timesteps
|
| 130 |
+
num_inference_steps = len(timesteps)
|
| 131 |
+
elif sigmas is not None:
|
| 132 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 133 |
+
if not accept_sigmas:
|
| 134 |
+
raise ValueError(
|
| 135 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 136 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 137 |
+
)
|
| 138 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 139 |
+
timesteps = scheduler.timesteps
|
| 140 |
+
num_inference_steps = len(timesteps)
|
| 141 |
+
else:
|
| 142 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 143 |
+
timesteps = scheduler.timesteps
|
| 144 |
+
return timesteps, num_inference_steps
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, SD3IPAdapterMixin):
|
| 148 |
+
r"""
|
| 149 |
+
Args:
|
| 150 |
+
transformer ([`SD3Transformer2DModel`]):
|
| 151 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
| 152 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
| 153 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
| 154 |
+
vae ([`AutoencoderKL`]):
|
| 155 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 156 |
+
text_encoder ([`CLIPTextModelWithProjection`]):
|
| 157 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
| 158 |
+
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
|
| 159 |
+
with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
|
| 160 |
+
as its dimension.
|
| 161 |
+
text_encoder_2 ([`CLIPTextModelWithProjection`]):
|
| 162 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
| 163 |
+
specifically the
|
| 164 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
| 165 |
+
variant.
|
| 166 |
+
text_encoder_3 ([`T5EncoderModel`]):
|
| 167 |
+
Frozen text-encoder. Stable Diffusion 3 uses
|
| 168 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
| 169 |
+
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
| 170 |
+
tokenizer (`CLIPTokenizer`):
|
| 171 |
+
Tokenizer of class
|
| 172 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 173 |
+
tokenizer_2 (`CLIPTokenizer`):
|
| 174 |
+
Second Tokenizer of class
|
| 175 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 176 |
+
tokenizer_3 (`T5TokenizerFast`):
|
| 177 |
+
Tokenizer of class
|
| 178 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
| 179 |
+
image_encoder (`SiglipVisionModel`, *optional*):
|
| 180 |
+
Pre-trained Vision Model for IP Adapter.
|
| 181 |
+
feature_extractor (`SiglipImageProcessor`, *optional*):
|
| 182 |
+
Image processor for IP Adapter.
|
| 183 |
+
"""
|
| 184 |
+
|
| 185 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->image_encoder->transformer->vae"
|
| 186 |
+
_optional_components = ["image_encoder", "feature_extractor"]
|
| 187 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
|
| 188 |
+
|
| 189 |
+
def __init__(
|
| 190 |
+
self,
|
| 191 |
+
transformer: SD3Transformer2DModel,
|
| 192 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 193 |
+
vae: AutoencoderKL,
|
| 194 |
+
text_encoder: CLIPTextModelWithProjection,
|
| 195 |
+
tokenizer: CLIPTokenizer,
|
| 196 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
| 197 |
+
tokenizer_2: CLIPTokenizer,
|
| 198 |
+
text_encoder_3: T5EncoderModel,
|
| 199 |
+
tokenizer_3: T5TokenizerFast,
|
| 200 |
+
image_encoder: SiglipVisionModel = None,
|
| 201 |
+
feature_extractor: SiglipImageProcessor = None,
|
| 202 |
+
):
|
| 203 |
+
super().__init__()
|
| 204 |
+
|
| 205 |
+
self.register_modules(
|
| 206 |
+
vae=vae,
|
| 207 |
+
text_encoder=text_encoder,
|
| 208 |
+
text_encoder_2=text_encoder_2,
|
| 209 |
+
text_encoder_3=text_encoder_3,
|
| 210 |
+
tokenizer=tokenizer,
|
| 211 |
+
tokenizer_2=tokenizer_2,
|
| 212 |
+
tokenizer_3=tokenizer_3,
|
| 213 |
+
transformer=transformer,
|
| 214 |
+
scheduler=scheduler,
|
| 215 |
+
image_encoder=image_encoder,
|
| 216 |
+
feature_extractor=feature_extractor,
|
| 217 |
+
)
|
| 218 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
| 219 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 220 |
+
self.tokenizer_max_length = (
|
| 221 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
| 222 |
+
)
|
| 223 |
+
self.default_sample_size = (
|
| 224 |
+
self.transformer.config.sample_size
|
| 225 |
+
if hasattr(self, "transformer") and self.transformer is not None
|
| 226 |
+
else 128
|
| 227 |
+
)
|
| 228 |
+
self.patch_size = (
|
| 229 |
+
self.transformer.config.patch_size if hasattr(self, "transformer") and self.transformer is not None else 2
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
def _get_t5_prompt_embeds(
|
| 233 |
+
self,
|
| 234 |
+
prompt: Union[str, List[str]] = None,
|
| 235 |
+
num_images_per_prompt: int = 1,
|
| 236 |
+
max_sequence_length: int = 256,
|
| 237 |
+
device: Optional[torch.device] = None,
|
| 238 |
+
dtype: Optional[torch.dtype] = None,
|
| 239 |
+
):
|
| 240 |
+
device = device or self._execution_device
|
| 241 |
+
dtype = dtype or self.text_encoder.dtype
|
| 242 |
+
|
| 243 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 244 |
+
batch_size = len(prompt)
|
| 245 |
+
|
| 246 |
+
if self.text_encoder_3 is None:
|
| 247 |
+
return torch.zeros(
|
| 248 |
+
(
|
| 249 |
+
batch_size * num_images_per_prompt,
|
| 250 |
+
self.tokenizer_max_length,
|
| 251 |
+
self.transformer.config.joint_attention_dim,
|
| 252 |
+
),
|
| 253 |
+
device=device,
|
| 254 |
+
dtype=dtype,
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
text_inputs = self.tokenizer_3(
|
| 258 |
+
prompt,
|
| 259 |
+
padding="max_length",
|
| 260 |
+
max_length=max_sequence_length,
|
| 261 |
+
truncation=True,
|
| 262 |
+
add_special_tokens=True,
|
| 263 |
+
return_tensors="pt",
|
| 264 |
+
)
|
| 265 |
+
text_input_ids = text_inputs.input_ids
|
| 266 |
+
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
|
| 267 |
+
|
| 268 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 269 |
+
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
| 270 |
+
# logger.warning(
|
| 271 |
+
# "The following part of your input was truncated because `max_sequence_length` is set to "
|
| 272 |
+
# f" {max_sequence_length} tokens: {removed_text}"
|
| 273 |
+
# )
|
| 274 |
+
|
| 275 |
+
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
|
| 276 |
+
|
| 277 |
+
dtype = self.text_encoder_3.dtype
|
| 278 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 279 |
+
|
| 280 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 281 |
+
|
| 282 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 283 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 284 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 285 |
+
|
| 286 |
+
return prompt_embeds
|
| 287 |
+
|
| 288 |
+
def _get_clip_prompt_embeds(
|
| 289 |
+
self,
|
| 290 |
+
prompt: Union[str, List[str]],
|
| 291 |
+
num_images_per_prompt: int = 1,
|
| 292 |
+
device: Optional[torch.device] = None,
|
| 293 |
+
clip_skip: Optional[int] = None,
|
| 294 |
+
clip_model_index: int = 0,
|
| 295 |
+
):
|
| 296 |
+
device = device or self._execution_device
|
| 297 |
+
|
| 298 |
+
clip_tokenizers = [self.tokenizer, self.tokenizer_2]
|
| 299 |
+
clip_text_encoders = [self.text_encoder, self.text_encoder_2]
|
| 300 |
+
|
| 301 |
+
tokenizer = clip_tokenizers[clip_model_index]
|
| 302 |
+
text_encoder = clip_text_encoders[clip_model_index]
|
| 303 |
+
|
| 304 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 305 |
+
batch_size = len(prompt)
|
| 306 |
+
|
| 307 |
+
text_inputs = tokenizer(
|
| 308 |
+
prompt,
|
| 309 |
+
padding="max_length",
|
| 310 |
+
max_length=self.tokenizer_max_length,
|
| 311 |
+
truncation=True,
|
| 312 |
+
return_tensors="pt",
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
text_input_ids = text_inputs.input_ids
|
| 316 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 317 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 318 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
| 319 |
+
# logger.warning(
|
| 320 |
+
# "The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 321 |
+
# f" {self.tokenizer_max_length} tokens: {removed_text}"
|
| 322 |
+
# )
|
| 323 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
| 324 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
| 325 |
+
|
| 326 |
+
if clip_skip is None:
|
| 327 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
| 328 |
+
else:
|
| 329 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
| 330 |
+
|
| 331 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
| 332 |
+
|
| 333 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 334 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 335 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 336 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 337 |
+
|
| 338 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 339 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
| 340 |
+
|
| 341 |
+
return prompt_embeds, pooled_prompt_embeds
|
| 342 |
+
|
| 343 |
+
def encode_pooled_prompt(
|
| 344 |
+
self,
|
| 345 |
+
prompt: Union[str, List[str]],
|
| 346 |
+
prompt_2: Union[str, List[str]],
|
| 347 |
+
device: Optional[torch.device] = None,
|
| 348 |
+
num_images_per_prompt: int = 1,
|
| 349 |
+
do_classifier_free_guidance: bool = True,
|
| 350 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 351 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 352 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 353 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 354 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 355 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 356 |
+
clip_skip: Optional[int] = None,
|
| 357 |
+
lora_scale: Optional[float] = None,
|
| 358 |
+
):
|
| 359 |
+
device = device or self._execution_device
|
| 360 |
+
|
| 361 |
+
# set lora scale so that monkey patched LoRA
|
| 362 |
+
# function of text encoder can correctly access it
|
| 363 |
+
if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
|
| 364 |
+
self._lora_scale = lora_scale
|
| 365 |
+
|
| 366 |
+
# dynamically adjust the LoRA scale
|
| 367 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
| 368 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
| 369 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
| 370 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
| 371 |
+
|
| 372 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 373 |
+
if prompt is not None:
|
| 374 |
+
batch_size = len(prompt)
|
| 375 |
+
else:
|
| 376 |
+
batch_size = prompt_embeds.shape[0]
|
| 377 |
+
|
| 378 |
+
if prompt_embeds is None:
|
| 379 |
+
prompt_2 = prompt_2 or prompt
|
| 380 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 381 |
+
|
| 382 |
+
_, pooled_prompt_embed = self._get_clip_prompt_embeds(
|
| 383 |
+
prompt=prompt,
|
| 384 |
+
device=device,
|
| 385 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 386 |
+
clip_skip=clip_skip,
|
| 387 |
+
clip_model_index=0,
|
| 388 |
+
)
|
| 389 |
+
_, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
| 390 |
+
prompt=prompt_2,
|
| 391 |
+
device=device,
|
| 392 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 393 |
+
clip_skip=clip_skip,
|
| 394 |
+
clip_model_index=1,
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
|
| 398 |
+
|
| 399 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 400 |
+
negative_prompt = negative_prompt or ""
|
| 401 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
| 402 |
+
|
| 403 |
+
# normalize str to list
|
| 404 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
| 405 |
+
negative_prompt_2 = (
|
| 406 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
| 411 |
+
raise TypeError(
|
| 412 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 413 |
+
f" {type(prompt)}."
|
| 414 |
+
)
|
| 415 |
+
elif batch_size != len(negative_prompt):
|
| 416 |
+
raise ValueError(
|
| 417 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 418 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 419 |
+
" the batch size of `prompt`."
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
_, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
|
| 423 |
+
negative_prompt,
|
| 424 |
+
device=device,
|
| 425 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 426 |
+
clip_skip=None,
|
| 427 |
+
clip_model_index=0,
|
| 428 |
+
)
|
| 429 |
+
_, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
| 430 |
+
negative_prompt_2,
|
| 431 |
+
device=device,
|
| 432 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 433 |
+
clip_skip=None,
|
| 434 |
+
clip_model_index=1,
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
negative_pooled_prompt_embeds = torch.cat(
|
| 438 |
+
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
if self.text_encoder is not None:
|
| 442 |
+
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 443 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 444 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 445 |
+
|
| 446 |
+
if self.text_encoder_2 is not None:
|
| 447 |
+
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 448 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 449 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
| 450 |
+
|
| 451 |
+
return pooled_prompt_embeds, negative_pooled_prompt_embeds
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
def encode_prompt(
|
| 455 |
+
self,
|
| 456 |
+
prompt: Union[str, List[str]],
|
| 457 |
+
prompt_2: Union[str, List[str]],
|
| 458 |
+
prompt_3: Union[str, List[str]],
|
| 459 |
+
device: Optional[torch.device] = None,
|
| 460 |
+
num_images_per_prompt: int = 1,
|
| 461 |
+
do_classifier_free_guidance: bool = True,
|
| 462 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 463 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 464 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
| 465 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 466 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 467 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 468 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 469 |
+
clip_skip: Optional[int] = None,
|
| 470 |
+
max_sequence_length: int = 256,
|
| 471 |
+
lora_scale: Optional[float] = None,
|
| 472 |
+
):
|
| 473 |
+
r"""
|
| 474 |
+
|
| 475 |
+
Args:
|
| 476 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 477 |
+
prompt to be encoded
|
| 478 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 479 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 480 |
+
used in all text-encoders
|
| 481 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
| 482 |
+
The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
| 483 |
+
used in all text-encoders
|
| 484 |
+
device: (`torch.device`):
|
| 485 |
+
torch device
|
| 486 |
+
num_images_per_prompt (`int`):
|
| 487 |
+
number of images that should be generated per prompt
|
| 488 |
+
do_classifier_free_guidance (`bool`):
|
| 489 |
+
whether to use classifier free guidance or not
|
| 490 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 491 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 492 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 493 |
+
less than `1`).
|
| 494 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 495 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 496 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
| 497 |
+
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
| 498 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
| 499 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used in all the text-encoders.
|
| 500 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 501 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 502 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 503 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 504 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 505 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 506 |
+
argument.
|
| 507 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 508 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 509 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 510 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 511 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 512 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 513 |
+
input argument.
|
| 514 |
+
clip_skip (`int`, *optional*):
|
| 515 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 516 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 517 |
+
lora_scale (`float`, *optional*):
|
| 518 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
| 519 |
+
"""
|
| 520 |
+
device = device or self._execution_device
|
| 521 |
+
|
| 522 |
+
# set lora scale so that monkey patched LoRA
|
| 523 |
+
# function of text encoder can correctly access it
|
| 524 |
+
if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
|
| 525 |
+
self._lora_scale = lora_scale
|
| 526 |
+
|
| 527 |
+
# dynamically adjust the LoRA scale
|
| 528 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
| 529 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
| 530 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
| 531 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
| 532 |
+
|
| 533 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 534 |
+
if prompt is not None:
|
| 535 |
+
batch_size = len(prompt)
|
| 536 |
+
else:
|
| 537 |
+
batch_size = prompt_embeds.shape[0]
|
| 538 |
+
|
| 539 |
+
if prompt_embeds is None:
|
| 540 |
+
prompt_2 = prompt_2 or prompt
|
| 541 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 542 |
+
|
| 543 |
+
prompt_3 = prompt_3 or prompt
|
| 544 |
+
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
| 545 |
+
|
| 546 |
+
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
|
| 547 |
+
prompt=prompt,
|
| 548 |
+
device=device,
|
| 549 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 550 |
+
clip_skip=clip_skip,
|
| 551 |
+
clip_model_index=0,
|
| 552 |
+
)
|
| 553 |
+
prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
| 554 |
+
prompt=prompt_2,
|
| 555 |
+
device=device,
|
| 556 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 557 |
+
clip_skip=clip_skip,
|
| 558 |
+
clip_model_index=1,
|
| 559 |
+
)
|
| 560 |
+
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
|
| 561 |
+
|
| 562 |
+
t5_prompt_embed = self._get_t5_prompt_embeds(
|
| 563 |
+
prompt=prompt_3,
|
| 564 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 565 |
+
max_sequence_length=max_sequence_length,
|
| 566 |
+
device=device,
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
clip_prompt_embeds = torch.nn.functional.pad(
|
| 570 |
+
clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
|
| 574 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
|
| 575 |
+
|
| 576 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 577 |
+
negative_prompt = negative_prompt or ""
|
| 578 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
| 579 |
+
negative_prompt_3 = negative_prompt_3 or negative_prompt
|
| 580 |
+
|
| 581 |
+
# normalize str to list
|
| 582 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
| 583 |
+
negative_prompt_2 = (
|
| 584 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
| 585 |
+
)
|
| 586 |
+
negative_prompt_3 = (
|
| 587 |
+
batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
| 591 |
+
raise TypeError(
|
| 592 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 593 |
+
f" {type(prompt)}."
|
| 594 |
+
)
|
| 595 |
+
elif batch_size != len(negative_prompt):
|
| 596 |
+
raise ValueError(
|
| 597 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 598 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 599 |
+
" the batch size of `prompt`."
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
|
| 603 |
+
negative_prompt,
|
| 604 |
+
device=device,
|
| 605 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 606 |
+
clip_skip=None,
|
| 607 |
+
clip_model_index=0,
|
| 608 |
+
)
|
| 609 |
+
negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
| 610 |
+
negative_prompt_2,
|
| 611 |
+
device=device,
|
| 612 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 613 |
+
clip_skip=None,
|
| 614 |
+
clip_model_index=1,
|
| 615 |
+
)
|
| 616 |
+
negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
|
| 617 |
+
|
| 618 |
+
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
|
| 619 |
+
prompt=negative_prompt_3,
|
| 620 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 621 |
+
max_sequence_length=max_sequence_length,
|
| 622 |
+
device=device,
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
negative_clip_prompt_embeds = torch.nn.functional.pad(
|
| 626 |
+
negative_clip_prompt_embeds,
|
| 627 |
+
(0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
|
| 628 |
+
)
|
| 629 |
+
|
| 630 |
+
negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
|
| 631 |
+
negative_pooled_prompt_embeds = torch.cat(
|
| 632 |
+
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
|
| 633 |
+
)
|
| 634 |
+
|
| 635 |
+
if self.text_encoder is not None:
|
| 636 |
+
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 637 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 638 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 639 |
+
|
| 640 |
+
if self.text_encoder_2 is not None:
|
| 641 |
+
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 642 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 643 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
| 644 |
+
|
| 645 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
| 646 |
+
|
| 647 |
+
def check_inputs(
|
| 648 |
+
self,
|
| 649 |
+
prompt,
|
| 650 |
+
prompt_2,
|
| 651 |
+
prompt_3,
|
| 652 |
+
height,
|
| 653 |
+
width,
|
| 654 |
+
negative_prompt=None,
|
| 655 |
+
negative_prompt_2=None,
|
| 656 |
+
negative_prompt_3=None,
|
| 657 |
+
prompt_embeds=None,
|
| 658 |
+
negative_prompt_embeds=None,
|
| 659 |
+
pooled_prompt_embeds=None,
|
| 660 |
+
negative_pooled_prompt_embeds=None,
|
| 661 |
+
callback_on_step_end_tensor_inputs=None,
|
| 662 |
+
max_sequence_length=None,
|
| 663 |
+
):
|
| 664 |
+
if (
|
| 665 |
+
height % (self.vae_scale_factor * self.patch_size) != 0
|
| 666 |
+
or width % (self.vae_scale_factor * self.patch_size) != 0
|
| 667 |
+
):
|
| 668 |
+
raise ValueError(
|
| 669 |
+
f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}."
|
| 670 |
+
f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}."
|
| 671 |
+
)
|
| 672 |
+
|
| 673 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 674 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
| 675 |
+
):
|
| 676 |
+
raise ValueError(
|
| 677 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
if prompt is not None and prompt_embeds is not None:
|
| 681 |
+
raise ValueError(
|
| 682 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 683 |
+
" only forward one of the two."
|
| 684 |
+
)
|
| 685 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
| 686 |
+
raise ValueError(
|
| 687 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 688 |
+
" only forward one of the two."
|
| 689 |
+
)
|
| 690 |
+
elif prompt_3 is not None and prompt_embeds is not None:
|
| 691 |
+
raise ValueError(
|
| 692 |
+
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 693 |
+
" only forward one of the two."
|
| 694 |
+
)
|
| 695 |
+
elif prompt is None and prompt_embeds is None:
|
| 696 |
+
raise ValueError(
|
| 697 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 698 |
+
)
|
| 699 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 700 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 701 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
| 702 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
| 703 |
+
elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
|
| 704 |
+
raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
|
| 705 |
+
|
| 706 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 707 |
+
raise ValueError(
|
| 708 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 709 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 710 |
+
)
|
| 711 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
| 712 |
+
raise ValueError(
|
| 713 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
| 714 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 715 |
+
)
|
| 716 |
+
elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
|
| 717 |
+
raise ValueError(
|
| 718 |
+
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
|
| 719 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 720 |
+
)
|
| 721 |
+
|
| 722 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 723 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 724 |
+
raise ValueError(
|
| 725 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 726 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 727 |
+
f" {negative_prompt_embeds.shape}."
|
| 728 |
+
)
|
| 729 |
+
|
| 730 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
| 731 |
+
raise ValueError(
|
| 732 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
| 736 |
+
raise ValueError(
|
| 737 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
| 738 |
+
)
|
| 739 |
+
|
| 740 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
| 741 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
| 742 |
+
|
| 743 |
+
def prepare_latents(
|
| 744 |
+
self,
|
| 745 |
+
batch_size,
|
| 746 |
+
num_channels_latents,
|
| 747 |
+
height,
|
| 748 |
+
width,
|
| 749 |
+
dtype,
|
| 750 |
+
device,
|
| 751 |
+
generator,
|
| 752 |
+
latents=None,
|
| 753 |
+
):
|
| 754 |
+
if latents is not None:
|
| 755 |
+
return latents.to(device=device, dtype=dtype)
|
| 756 |
+
|
| 757 |
+
shape = (
|
| 758 |
+
batch_size,
|
| 759 |
+
num_channels_latents,
|
| 760 |
+
int(height) // self.vae_scale_factor,
|
| 761 |
+
int(width) // self.vae_scale_factor,
|
| 762 |
+
)
|
| 763 |
+
|
| 764 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 765 |
+
raise ValueError(
|
| 766 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 767 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 768 |
+
)
|
| 769 |
+
|
| 770 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 771 |
+
|
| 772 |
+
return latents
|
| 773 |
+
|
| 774 |
+
@property
|
| 775 |
+
def guidance_scale(self):
|
| 776 |
+
return self._guidance_scale
|
| 777 |
+
|
| 778 |
+
@property
|
| 779 |
+
def skip_guidance_layers(self):
|
| 780 |
+
return self._skip_guidance_layers
|
| 781 |
+
|
| 782 |
+
@property
|
| 783 |
+
def clip_skip(self):
|
| 784 |
+
return self._clip_skip
|
| 785 |
+
|
| 786 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 787 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
| 788 |
+
# corresponds to doing no classifier free guidance.
|
| 789 |
+
@property
|
| 790 |
+
def do_classifier_free_guidance(self):
|
| 791 |
+
return self._guidance_scale > 1
|
| 792 |
+
|
| 793 |
+
@property
|
| 794 |
+
def joint_attention_kwargs(self):
|
| 795 |
+
return self._joint_attention_kwargs
|
| 796 |
+
|
| 797 |
+
@property
|
| 798 |
+
def num_timesteps(self):
|
| 799 |
+
return self._num_timesteps
|
| 800 |
+
|
| 801 |
+
@property
|
| 802 |
+
def interrupt(self):
|
| 803 |
+
return self._interrupt
|
| 804 |
+
|
| 805 |
+
# Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_image
|
| 806 |
+
def encode_image(self, image: PipelineImageInput, device: torch.device) -> torch.Tensor:
|
| 807 |
+
"""Encodes the given image into a feature representation using a pre-trained image encoder.
|
| 808 |
+
|
| 809 |
+
Args:
|
| 810 |
+
image (`PipelineImageInput`):
|
| 811 |
+
Input image to be encoded.
|
| 812 |
+
device: (`torch.device`):
|
| 813 |
+
Torch device.
|
| 814 |
+
|
| 815 |
+
Returns:
|
| 816 |
+
`torch.Tensor`: The encoded image feature representation.
|
| 817 |
+
"""
|
| 818 |
+
if not isinstance(image, torch.Tensor):
|
| 819 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
| 820 |
+
|
| 821 |
+
image = image.to(device=device, dtype=self.dtype)
|
| 822 |
+
|
| 823 |
+
return self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
| 824 |
+
|
| 825 |
+
# Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.prepare_ip_adapter_image_embeds
|
| 826 |
+
def prepare_ip_adapter_image_embeds(
|
| 827 |
+
self,
|
| 828 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 829 |
+
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
|
| 830 |
+
device: Optional[torch.device] = None,
|
| 831 |
+
num_images_per_prompt: int = 1,
|
| 832 |
+
do_classifier_free_guidance: bool = True,
|
| 833 |
+
) -> torch.Tensor:
|
| 834 |
+
"""Prepares image embeddings for use in the IP-Adapter.
|
| 835 |
+
|
| 836 |
+
Either `ip_adapter_image` or `ip_adapter_image_embeds` must be passed.
|
| 837 |
+
|
| 838 |
+
Args:
|
| 839 |
+
ip_adapter_image (`PipelineImageInput`, *optional*):
|
| 840 |
+
The input image to extract features from for IP-Adapter.
|
| 841 |
+
ip_adapter_image_embeds (`torch.Tensor`, *optional*):
|
| 842 |
+
Precomputed image embeddings.
|
| 843 |
+
device: (`torch.device`, *optional*):
|
| 844 |
+
Torch device.
|
| 845 |
+
num_images_per_prompt (`int`, defaults to 1):
|
| 846 |
+
Number of images that should be generated per prompt.
|
| 847 |
+
do_classifier_free_guidance (`bool`, defaults to True):
|
| 848 |
+
Whether to use classifier free guidance or not.
|
| 849 |
+
"""
|
| 850 |
+
device = device or self._execution_device
|
| 851 |
+
|
| 852 |
+
if ip_adapter_image_embeds is not None:
|
| 853 |
+
if do_classifier_free_guidance:
|
| 854 |
+
single_negative_image_embeds, single_image_embeds = ip_adapter_image_embeds.chunk(2)
|
| 855 |
+
else:
|
| 856 |
+
single_image_embeds = ip_adapter_image_embeds
|
| 857 |
+
elif ip_adapter_image is not None:
|
| 858 |
+
single_image_embeds = self.encode_image(ip_adapter_image, device)
|
| 859 |
+
if do_classifier_free_guidance:
|
| 860 |
+
single_negative_image_embeds = torch.zeros_like(single_image_embeds)
|
| 861 |
+
else:
|
| 862 |
+
raise ValueError("Neither `ip_adapter_image_embeds` or `ip_adapter_image_embeds` were provided.")
|
| 863 |
+
|
| 864 |
+
image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
| 865 |
+
|
| 866 |
+
if do_classifier_free_guidance:
|
| 867 |
+
negative_image_embeds = torch.cat([single_negative_image_embeds] * num_images_per_prompt, dim=0)
|
| 868 |
+
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
|
| 869 |
+
|
| 870 |
+
return image_embeds.to(device=device)
|
| 871 |
+
|
| 872 |
+
def enable_sequential_cpu_offload(self, *args, **kwargs):
|
| 873 |
+
if self.image_encoder is not None and "image_encoder" not in self._exclude_from_cpu_offload:
|
| 874 |
+
logger.warning(
|
| 875 |
+
"`pipe.enable_sequential_cpu_offload()` might fail for `image_encoder` if it uses "
|
| 876 |
+
"`torch.nn.MultiheadAttention`. You can exclude `image_encoder` from CPU offloading by calling "
|
| 877 |
+
"`pipe._exclude_from_cpu_offload.append('image_encoder')` before `pipe.enable_sequential_cpu_offload()`."
|
| 878 |
+
)
|
| 879 |
+
|
| 880 |
+
super().enable_sequential_cpu_offload(*args, **kwargs)
|
| 881 |
+
|
| 882 |
+
@torch.no_grad()
|
| 883 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 884 |
+
def __call__(
|
| 885 |
+
self,
|
| 886 |
+
prompt: Union[str, List[str]] = None,
|
| 887 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 888 |
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
| 889 |
+
height: Optional[int] = None,
|
| 890 |
+
width: Optional[int] = None,
|
| 891 |
+
num_inference_steps: int = 28,
|
| 892 |
+
sigmas: Optional[List[float]] = None,
|
| 893 |
+
guidance_scale: float = 7.0,
|
| 894 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 895 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 896 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
| 897 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 898 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 899 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 900 |
+
cond_latents: Optional[torch.FloatTensor] = None,
|
| 901 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 902 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 903 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 904 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 905 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 906 |
+
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
|
| 907 |
+
output_type: Optional[str] = "pil",
|
| 908 |
+
return_dict: bool = True,
|
| 909 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 910 |
+
clip_skip: Optional[int] = None,
|
| 911 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 912 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 913 |
+
max_sequence_length: int = 256,
|
| 914 |
+
skip_guidance_layers: List[int] = None,
|
| 915 |
+
skip_layer_guidance_scale: float = 2.8,
|
| 916 |
+
skip_layer_guidance_stop: float = 0.2,
|
| 917 |
+
skip_layer_guidance_start: float = 0.01,
|
| 918 |
+
mu: Optional[float] = None,
|
| 919 |
+
):
|
| 920 |
+
r"""
|
| 921 |
+
Function invoked when calling the pipeline for generation.
|
| 922 |
+
|
| 923 |
+
Args:
|
| 924 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 925 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 926 |
+
instead.
|
| 927 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 928 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 929 |
+
will be used instead
|
| 930 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
| 931 |
+
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
| 932 |
+
will be used instead
|
| 933 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 934 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 935 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 936 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 937 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 938 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 939 |
+
expense of slower inference.
|
| 940 |
+
sigmas (`List[float]`, *optional*):
|
| 941 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 942 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 943 |
+
will be used.
|
| 944 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
| 945 |
+
Guidance scale as defined in [Classifier-Free Diffusion
|
| 946 |
+
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
| 947 |
+
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
| 948 |
+
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
| 949 |
+
the text `prompt`, usually at the expense of lower image quality.
|
| 950 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 951 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 952 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 953 |
+
less than `1`).
|
| 954 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 955 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 956 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used instead
|
| 957 |
+
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
| 958 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
| 959 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used instead
|
| 960 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 961 |
+
The number of images to generate per prompt.
|
| 962 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 963 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 964 |
+
to make generation deterministic.
|
| 965 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 966 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 967 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 968 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 969 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 970 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 971 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 972 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 973 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 974 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 975 |
+
argument.
|
| 976 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 977 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 978 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 979 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 980 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 981 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 982 |
+
input argument.
|
| 983 |
+
ip_adapter_image (`PipelineImageInput`, *optional*):
|
| 984 |
+
Optional image input to work with IP Adapters.
|
| 985 |
+
ip_adapter_image_embeds (`torch.Tensor`, *optional*):
|
| 986 |
+
Pre-generated image embeddings for IP-Adapter. Should be a tensor of shape `(batch_size, num_images,
|
| 987 |
+
emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to
|
| 988 |
+
`True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument.
|
| 989 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 990 |
+
The output format of the generate image. Choose between
|
| 991 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 992 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 993 |
+
Whether or not to return a [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] instead of
|
| 994 |
+
a plain tuple.
|
| 995 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 996 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 997 |
+
`self.processor` in
|
| 998 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 999 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 1000 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
| 1001 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
| 1002 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
| 1003 |
+
`callback_on_step_end_tensor_inputs`.
|
| 1004 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 1005 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 1006 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 1007 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 1008 |
+
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
|
| 1009 |
+
skip_guidance_layers (`List[int]`, *optional*):
|
| 1010 |
+
A list of integers that specify layers to skip during guidance. If not provided, all layers will be
|
| 1011 |
+
used for guidance. If provided, the guidance will only be applied to the layers specified in the list.
|
| 1012 |
+
Recommended value by StabiltyAI for Stable Diffusion 3.5 Medium is [7, 8, 9].
|
| 1013 |
+
skip_layer_guidance_scale (`int`, *optional*): The scale of the guidance for the layers specified in
|
| 1014 |
+
`skip_guidance_layers`. The guidance will be applied to the layers specified in `skip_guidance_layers`
|
| 1015 |
+
with a scale of `skip_layer_guidance_scale`. The guidance will be applied to the rest of the layers
|
| 1016 |
+
with a scale of `1`.
|
| 1017 |
+
skip_layer_guidance_stop (`int`, *optional*): The step at which the guidance for the layers specified in
|
| 1018 |
+
`skip_guidance_layers` will stop. The guidance will be applied to the layers specified in
|
| 1019 |
+
`skip_guidance_layers` until the fraction specified in `skip_layer_guidance_stop`. Recommended value by
|
| 1020 |
+
StabiltyAI for Stable Diffusion 3.5 Medium is 0.2.
|
| 1021 |
+
skip_layer_guidance_start (`int`, *optional*): The step at which the guidance for the layers specified in
|
| 1022 |
+
`skip_guidance_layers` will start. The guidance will be applied to the layers specified in
|
| 1023 |
+
`skip_guidance_layers` from the fraction specified in `skip_layer_guidance_start`. Recommended value by
|
| 1024 |
+
StabiltyAI for Stable Diffusion 3.5 Medium is 0.01.
|
| 1025 |
+
mu (`float`, *optional*): `mu` value used for `dynamic_shifting`.
|
| 1026 |
+
|
| 1027 |
+
Examples:
|
| 1028 |
+
|
| 1029 |
+
Returns:
|
| 1030 |
+
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`:
|
| 1031 |
+
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a
|
| 1032 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
| 1033 |
+
"""
|
| 1034 |
+
|
| 1035 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 1036 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 1037 |
+
|
| 1038 |
+
# 1. Check inputs. Raise error if not correct
|
| 1039 |
+
self.check_inputs(
|
| 1040 |
+
prompt,
|
| 1041 |
+
prompt_2,
|
| 1042 |
+
prompt_3,
|
| 1043 |
+
height,
|
| 1044 |
+
width,
|
| 1045 |
+
negative_prompt=negative_prompt,
|
| 1046 |
+
negative_prompt_2=negative_prompt_2,
|
| 1047 |
+
negative_prompt_3=negative_prompt_3,
|
| 1048 |
+
prompt_embeds=prompt_embeds,
|
| 1049 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1050 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1051 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1052 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 1053 |
+
max_sequence_length=max_sequence_length,
|
| 1054 |
+
)
|
| 1055 |
+
|
| 1056 |
+
self._guidance_scale = guidance_scale
|
| 1057 |
+
self._skip_layer_guidance_scale = skip_layer_guidance_scale
|
| 1058 |
+
self._clip_skip = clip_skip
|
| 1059 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 1060 |
+
self._interrupt = False
|
| 1061 |
+
|
| 1062 |
+
# 2. Define call parameters
|
| 1063 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1064 |
+
batch_size = 1
|
| 1065 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1066 |
+
batch_size = len(prompt)
|
| 1067 |
+
else:
|
| 1068 |
+
batch_size = prompt_embeds.shape[0]
|
| 1069 |
+
|
| 1070 |
+
device = self._execution_device
|
| 1071 |
+
|
| 1072 |
+
lora_scale = (
|
| 1073 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
| 1074 |
+
)
|
| 1075 |
+
(
|
| 1076 |
+
prompt_embeds,
|
| 1077 |
+
negative_prompt_embeds,
|
| 1078 |
+
pooled_prompt_embeds,
|
| 1079 |
+
negative_pooled_prompt_embeds,
|
| 1080 |
+
) = self.encode_prompt(
|
| 1081 |
+
prompt=prompt,
|
| 1082 |
+
prompt_2=prompt_2,
|
| 1083 |
+
prompt_3=prompt_3,
|
| 1084 |
+
negative_prompt=negative_prompt,
|
| 1085 |
+
negative_prompt_2=negative_prompt_2,
|
| 1086 |
+
negative_prompt_3=negative_prompt_3,
|
| 1087 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 1088 |
+
prompt_embeds=prompt_embeds,
|
| 1089 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1090 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1091 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1092 |
+
device=device,
|
| 1093 |
+
clip_skip=self.clip_skip,
|
| 1094 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1095 |
+
max_sequence_length=max_sequence_length,
|
| 1096 |
+
lora_scale=lora_scale,
|
| 1097 |
+
)
|
| 1098 |
+
|
| 1099 |
+
if self.do_classifier_free_guidance:
|
| 1100 |
+
if skip_guidance_layers is not None:
|
| 1101 |
+
original_prompt_embeds = prompt_embeds
|
| 1102 |
+
original_pooled_prompt_embeds = pooled_prompt_embeds
|
| 1103 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 1104 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
| 1105 |
+
|
| 1106 |
+
# 4. Prepare latent variables
|
| 1107 |
+
num_channels_latents = self.transformer.config.in_channels
|
| 1108 |
+
latents = self.prepare_latents(
|
| 1109 |
+
batch_size * num_images_per_prompt,
|
| 1110 |
+
num_channels_latents,
|
| 1111 |
+
height,
|
| 1112 |
+
width,
|
| 1113 |
+
prompt_embeds.dtype,
|
| 1114 |
+
device,
|
| 1115 |
+
generator,
|
| 1116 |
+
latents,
|
| 1117 |
+
)
|
| 1118 |
+
|
| 1119 |
+
# 5. Prepare timesteps
|
| 1120 |
+
scheduler_kwargs = {}
|
| 1121 |
+
if self.scheduler.config.get("use_dynamic_shifting", None) and mu is None:
|
| 1122 |
+
_, _, height, width = latents.shape
|
| 1123 |
+
image_seq_len = (height // self.transformer.config.patch_size) * (
|
| 1124 |
+
width // self.transformer.config.patch_size
|
| 1125 |
+
)
|
| 1126 |
+
mu = calculate_shift(
|
| 1127 |
+
image_seq_len,
|
| 1128 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
| 1129 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
| 1130 |
+
self.scheduler.config.get("base_shift", 0.5),
|
| 1131 |
+
self.scheduler.config.get("max_shift", 1.16),
|
| 1132 |
+
)
|
| 1133 |
+
scheduler_kwargs["mu"] = mu
|
| 1134 |
+
elif mu is not None:
|
| 1135 |
+
scheduler_kwargs["mu"] = mu
|
| 1136 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 1137 |
+
self.scheduler,
|
| 1138 |
+
num_inference_steps,
|
| 1139 |
+
device,
|
| 1140 |
+
sigmas=sigmas,
|
| 1141 |
+
**scheduler_kwargs,
|
| 1142 |
+
)
|
| 1143 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 1144 |
+
self._num_timesteps = len(timesteps)
|
| 1145 |
+
|
| 1146 |
+
# 6. Prepare image embeddings
|
| 1147 |
+
if (ip_adapter_image is not None and self.is_ip_adapter_active) or ip_adapter_image_embeds is not None:
|
| 1148 |
+
ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
|
| 1149 |
+
ip_adapter_image,
|
| 1150 |
+
ip_adapter_image_embeds,
|
| 1151 |
+
device,
|
| 1152 |
+
batch_size * num_images_per_prompt,
|
| 1153 |
+
self.do_classifier_free_guidance,
|
| 1154 |
+
)
|
| 1155 |
+
|
| 1156 |
+
if self.joint_attention_kwargs is None:
|
| 1157 |
+
self._joint_attention_kwargs = {"ip_adapter_image_embeds": ip_adapter_image_embeds}
|
| 1158 |
+
else:
|
| 1159 |
+
self._joint_attention_kwargs.update(ip_adapter_image_embeds=ip_adapter_image_embeds)
|
| 1160 |
+
|
| 1161 |
+
if cond_latents is not None and self.do_classifier_free_guidance:
|
| 1162 |
+
if cond_latents.shape[0] == latents.shape[0]:
|
| 1163 |
+
cond_latents = torch.cat([cond_latents]*2)
|
| 1164 |
+
|
| 1165 |
+
# 7. Denoising loop
|
| 1166 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1167 |
+
for i, t in enumerate(timesteps):
|
| 1168 |
+
if self.interrupt:
|
| 1169 |
+
continue
|
| 1170 |
+
|
| 1171 |
+
# expand the latents if we are doing classifier free guidance
|
| 1172 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
| 1173 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 1174 |
+
timestep = t.expand(latent_model_input.shape[0])
|
| 1175 |
+
|
| 1176 |
+
noise_pred = self.transformer(
|
| 1177 |
+
hidden_states=latent_model_input,
|
| 1178 |
+
cond_hidden_states=cond_latents,
|
| 1179 |
+
timestep=timestep,
|
| 1180 |
+
encoder_hidden_states=prompt_embeds,
|
| 1181 |
+
pooled_projections=pooled_prompt_embeds,
|
| 1182 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 1183 |
+
return_dict=False,
|
| 1184 |
+
)[0]
|
| 1185 |
+
|
| 1186 |
+
# perform guidance
|
| 1187 |
+
if self.do_classifier_free_guidance:
|
| 1188 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1189 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1190 |
+
should_skip_layers = (
|
| 1191 |
+
True
|
| 1192 |
+
if i > num_inference_steps * skip_layer_guidance_start
|
| 1193 |
+
and i < num_inference_steps * skip_layer_guidance_stop
|
| 1194 |
+
else False
|
| 1195 |
+
)
|
| 1196 |
+
if skip_guidance_layers is not None and should_skip_layers:
|
| 1197 |
+
timestep = t.expand(latents.shape[0])
|
| 1198 |
+
latent_model_input = latents
|
| 1199 |
+
noise_pred_skip_layers = self.transformer(
|
| 1200 |
+
hidden_states=latent_model_input,
|
| 1201 |
+
timestep=timestep,
|
| 1202 |
+
encoder_hidden_states=original_prompt_embeds,
|
| 1203 |
+
pooled_projections=original_pooled_prompt_embeds,
|
| 1204 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 1205 |
+
return_dict=False,
|
| 1206 |
+
skip_layers=skip_guidance_layers,
|
| 1207 |
+
)[0]
|
| 1208 |
+
noise_pred = (
|
| 1209 |
+
noise_pred + (noise_pred_text - noise_pred_skip_layers) * self._skip_layer_guidance_scale
|
| 1210 |
+
)
|
| 1211 |
+
|
| 1212 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1213 |
+
latents_dtype = latents.dtype
|
| 1214 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 1215 |
+
|
| 1216 |
+
if latents.dtype != latents_dtype:
|
| 1217 |
+
if torch.backends.mps.is_available():
|
| 1218 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 1219 |
+
latents = latents.to(latents_dtype)
|
| 1220 |
+
|
| 1221 |
+
if callback_on_step_end is not None:
|
| 1222 |
+
callback_kwargs = {}
|
| 1223 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 1224 |
+
callback_kwargs[k] = locals()[k]
|
| 1225 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 1226 |
+
|
| 1227 |
+
latents = callback_outputs.pop("latents", latents)
|
| 1228 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1229 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
| 1230 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
| 1231 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
| 1232 |
+
)
|
| 1233 |
+
|
| 1234 |
+
# call the callback, if provided
|
| 1235 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1236 |
+
progress_bar.update()
|
| 1237 |
+
|
| 1238 |
+
if XLA_AVAILABLE:
|
| 1239 |
+
xm.mark_step()
|
| 1240 |
+
|
| 1241 |
+
if output_type == "latent":
|
| 1242 |
+
image = latents
|
| 1243 |
+
|
| 1244 |
+
else:
|
| 1245 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 1246 |
+
|
| 1247 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 1248 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1249 |
+
|
| 1250 |
+
# Offload all models
|
| 1251 |
+
self.maybe_free_model_hooks()
|
| 1252 |
+
|
| 1253 |
+
if not return_dict:
|
| 1254 |
+
return (image,)
|
| 1255 |
+
|
| 1256 |
+
return StableDiffusion3PipelineOutput(images=image)
|
src/models/stable_diffusion3/pipeline_stable_diffusion_3_dynamic.py
ADDED
|
@@ -0,0 +1,1257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import inspect
|
| 16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
from transformers import (
|
| 20 |
+
CLIPTextModelWithProjection,
|
| 21 |
+
CLIPTokenizer,
|
| 22 |
+
SiglipImageProcessor,
|
| 23 |
+
SiglipVisionModel,
|
| 24 |
+
T5EncoderModel,
|
| 25 |
+
T5TokenizerFast,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 29 |
+
from diffusers.loaders import FromSingleFileMixin, SD3IPAdapterMixin, SD3LoraLoaderMixin
|
| 30 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
| 31 |
+
from diffusers.models.transformers import SD3Transformer2DModel
|
| 32 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 33 |
+
from diffusers.utils import (
|
| 34 |
+
USE_PEFT_BACKEND,
|
| 35 |
+
is_torch_xla_available,
|
| 36 |
+
logging,
|
| 37 |
+
replace_example_docstring,
|
| 38 |
+
scale_lora_layers,
|
| 39 |
+
unscale_lora_layers,
|
| 40 |
+
)
|
| 41 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 42 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 43 |
+
from diffusers.pipelines.stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
if is_torch_xla_available():
|
| 47 |
+
import torch_xla.core.xla_model as xm
|
| 48 |
+
|
| 49 |
+
XLA_AVAILABLE = True
|
| 50 |
+
else:
|
| 51 |
+
XLA_AVAILABLE = False
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 55 |
+
|
| 56 |
+
EXAMPLE_DOC_STRING = """
|
| 57 |
+
Examples:
|
| 58 |
+
```py
|
| 59 |
+
>>> import torch
|
| 60 |
+
>>> from diffusers import StableDiffusion3Pipeline
|
| 61 |
+
|
| 62 |
+
>>> pipe = StableDiffusion3Pipeline.from_pretrained(
|
| 63 |
+
... "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
|
| 64 |
+
... )
|
| 65 |
+
>>> pipe.to("cuda")
|
| 66 |
+
>>> prompt = "A cat holding a sign that says hello world"
|
| 67 |
+
>>> image = pipe(prompt).images[0]
|
| 68 |
+
>>> image.save("sd3.png")
|
| 69 |
+
```
|
| 70 |
+
"""
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
| 74 |
+
def calculate_shift(
|
| 75 |
+
image_seq_len,
|
| 76 |
+
base_seq_len: int = 256,
|
| 77 |
+
max_seq_len: int = 4096,
|
| 78 |
+
base_shift: float = 0.5,
|
| 79 |
+
max_shift: float = 1.15,
|
| 80 |
+
):
|
| 81 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
| 82 |
+
b = base_shift - m * base_seq_len
|
| 83 |
+
mu = image_seq_len * m + b
|
| 84 |
+
return mu
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 88 |
+
def retrieve_timesteps(
|
| 89 |
+
scheduler,
|
| 90 |
+
num_inference_steps: Optional[int] = None,
|
| 91 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 92 |
+
timesteps: Optional[List[int]] = None,
|
| 93 |
+
sigmas: Optional[List[float]] = None,
|
| 94 |
+
**kwargs,
|
| 95 |
+
):
|
| 96 |
+
r"""
|
| 97 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 98 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
scheduler (`SchedulerMixin`):
|
| 102 |
+
The scheduler to get timesteps from.
|
| 103 |
+
num_inference_steps (`int`):
|
| 104 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 105 |
+
must be `None`.
|
| 106 |
+
device (`str` or `torch.device`, *optional*):
|
| 107 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 108 |
+
timesteps (`List[int]`, *optional*):
|
| 109 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 110 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 111 |
+
sigmas (`List[float]`, *optional*):
|
| 112 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 113 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 114 |
+
|
| 115 |
+
Returns:
|
| 116 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 117 |
+
second element is the number of inference steps.
|
| 118 |
+
"""
|
| 119 |
+
if timesteps is not None and sigmas is not None:
|
| 120 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 121 |
+
if timesteps is not None:
|
| 122 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 123 |
+
if not accepts_timesteps:
|
| 124 |
+
raise ValueError(
|
| 125 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 126 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 127 |
+
)
|
| 128 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 129 |
+
timesteps = scheduler.timesteps
|
| 130 |
+
num_inference_steps = len(timesteps)
|
| 131 |
+
elif sigmas is not None:
|
| 132 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 133 |
+
if not accept_sigmas:
|
| 134 |
+
raise ValueError(
|
| 135 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 136 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 137 |
+
)
|
| 138 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 139 |
+
timesteps = scheduler.timesteps
|
| 140 |
+
num_inference_steps = len(timesteps)
|
| 141 |
+
else:
|
| 142 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 143 |
+
timesteps = scheduler.timesteps
|
| 144 |
+
return timesteps, num_inference_steps
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, SD3IPAdapterMixin):
|
| 148 |
+
r"""
|
| 149 |
+
Args:
|
| 150 |
+
transformer ([`SD3Transformer2DModel`]):
|
| 151 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
| 152 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
| 153 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
| 154 |
+
vae ([`AutoencoderKL`]):
|
| 155 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 156 |
+
text_encoder ([`CLIPTextModelWithProjection`]):
|
| 157 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
| 158 |
+
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
|
| 159 |
+
with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
|
| 160 |
+
as its dimension.
|
| 161 |
+
text_encoder_2 ([`CLIPTextModelWithProjection`]):
|
| 162 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
| 163 |
+
specifically the
|
| 164 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
| 165 |
+
variant.
|
| 166 |
+
text_encoder_3 ([`T5EncoderModel`]):
|
| 167 |
+
Frozen text-encoder. Stable Diffusion 3 uses
|
| 168 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
| 169 |
+
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
| 170 |
+
tokenizer (`CLIPTokenizer`):
|
| 171 |
+
Tokenizer of class
|
| 172 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 173 |
+
tokenizer_2 (`CLIPTokenizer`):
|
| 174 |
+
Second Tokenizer of class
|
| 175 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 176 |
+
tokenizer_3 (`T5TokenizerFast`):
|
| 177 |
+
Tokenizer of class
|
| 178 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
| 179 |
+
image_encoder (`SiglipVisionModel`, *optional*):
|
| 180 |
+
Pre-trained Vision Model for IP Adapter.
|
| 181 |
+
feature_extractor (`SiglipImageProcessor`, *optional*):
|
| 182 |
+
Image processor for IP Adapter.
|
| 183 |
+
"""
|
| 184 |
+
|
| 185 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->image_encoder->transformer->vae"
|
| 186 |
+
_optional_components = ["image_encoder", "feature_extractor"]
|
| 187 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
|
| 188 |
+
|
| 189 |
+
def __init__(
|
| 190 |
+
self,
|
| 191 |
+
transformer: SD3Transformer2DModel,
|
| 192 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 193 |
+
vae: AutoencoderKL,
|
| 194 |
+
text_encoder: CLIPTextModelWithProjection,
|
| 195 |
+
tokenizer: CLIPTokenizer,
|
| 196 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
| 197 |
+
tokenizer_2: CLIPTokenizer,
|
| 198 |
+
text_encoder_3: T5EncoderModel,
|
| 199 |
+
tokenizer_3: T5TokenizerFast,
|
| 200 |
+
image_encoder: SiglipVisionModel = None,
|
| 201 |
+
feature_extractor: SiglipImageProcessor = None,
|
| 202 |
+
):
|
| 203 |
+
super().__init__()
|
| 204 |
+
|
| 205 |
+
self.register_modules(
|
| 206 |
+
vae=vae,
|
| 207 |
+
text_encoder=text_encoder,
|
| 208 |
+
text_encoder_2=text_encoder_2,
|
| 209 |
+
text_encoder_3=text_encoder_3,
|
| 210 |
+
tokenizer=tokenizer,
|
| 211 |
+
tokenizer_2=tokenizer_2,
|
| 212 |
+
tokenizer_3=tokenizer_3,
|
| 213 |
+
transformer=transformer,
|
| 214 |
+
scheduler=scheduler,
|
| 215 |
+
image_encoder=image_encoder,
|
| 216 |
+
feature_extractor=feature_extractor,
|
| 217 |
+
)
|
| 218 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
| 219 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 220 |
+
self.tokenizer_max_length = (
|
| 221 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
| 222 |
+
)
|
| 223 |
+
self.default_sample_size = (
|
| 224 |
+
self.transformer.config.sample_size
|
| 225 |
+
if hasattr(self, "transformer") and self.transformer is not None
|
| 226 |
+
else 128
|
| 227 |
+
)
|
| 228 |
+
self.patch_size = (
|
| 229 |
+
self.transformer.config.patch_size if hasattr(self, "transformer") and self.transformer is not None else 2
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
def _get_t5_prompt_embeds(
|
| 233 |
+
self,
|
| 234 |
+
prompt: Union[str, List[str]] = None,
|
| 235 |
+
num_images_per_prompt: int = 1,
|
| 236 |
+
max_sequence_length: int = 256,
|
| 237 |
+
device: Optional[torch.device] = None,
|
| 238 |
+
dtype: Optional[torch.dtype] = None,
|
| 239 |
+
):
|
| 240 |
+
device = device or self._execution_device
|
| 241 |
+
dtype = dtype or self.text_encoder.dtype
|
| 242 |
+
|
| 243 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 244 |
+
batch_size = len(prompt)
|
| 245 |
+
|
| 246 |
+
if self.text_encoder_3 is None:
|
| 247 |
+
return torch.zeros(
|
| 248 |
+
(
|
| 249 |
+
batch_size * num_images_per_prompt,
|
| 250 |
+
self.tokenizer_max_length,
|
| 251 |
+
self.transformer.config.joint_attention_dim,
|
| 252 |
+
),
|
| 253 |
+
device=device,
|
| 254 |
+
dtype=dtype,
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
text_inputs = self.tokenizer_3(
|
| 258 |
+
prompt,
|
| 259 |
+
padding="max_length",
|
| 260 |
+
max_length=max_sequence_length,
|
| 261 |
+
truncation=True,
|
| 262 |
+
add_special_tokens=True,
|
| 263 |
+
return_tensors="pt",
|
| 264 |
+
)
|
| 265 |
+
text_input_ids = text_inputs.input_ids
|
| 266 |
+
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
|
| 267 |
+
|
| 268 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 269 |
+
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
| 270 |
+
# logger.warning(
|
| 271 |
+
# "The following part of your input was truncated because `max_sequence_length` is set to "
|
| 272 |
+
# f" {max_sequence_length} tokens: {removed_text}"
|
| 273 |
+
# )
|
| 274 |
+
|
| 275 |
+
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
|
| 276 |
+
|
| 277 |
+
dtype = self.text_encoder_3.dtype
|
| 278 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 279 |
+
|
| 280 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 281 |
+
|
| 282 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 283 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 284 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 285 |
+
|
| 286 |
+
return prompt_embeds
|
| 287 |
+
|
| 288 |
+
def _get_clip_prompt_embeds(
|
| 289 |
+
self,
|
| 290 |
+
prompt: Union[str, List[str]],
|
| 291 |
+
num_images_per_prompt: int = 1,
|
| 292 |
+
device: Optional[torch.device] = None,
|
| 293 |
+
clip_skip: Optional[int] = None,
|
| 294 |
+
clip_model_index: int = 0,
|
| 295 |
+
):
|
| 296 |
+
device = device or self._execution_device
|
| 297 |
+
|
| 298 |
+
clip_tokenizers = [self.tokenizer, self.tokenizer_2]
|
| 299 |
+
clip_text_encoders = [self.text_encoder, self.text_encoder_2]
|
| 300 |
+
|
| 301 |
+
tokenizer = clip_tokenizers[clip_model_index]
|
| 302 |
+
text_encoder = clip_text_encoders[clip_model_index]
|
| 303 |
+
|
| 304 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 305 |
+
batch_size = len(prompt)
|
| 306 |
+
|
| 307 |
+
text_inputs = tokenizer(
|
| 308 |
+
prompt,
|
| 309 |
+
padding="max_length",
|
| 310 |
+
max_length=self.tokenizer_max_length,
|
| 311 |
+
truncation=True,
|
| 312 |
+
return_tensors="pt",
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
text_input_ids = text_inputs.input_ids
|
| 316 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 317 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 318 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
| 319 |
+
# logger.warning(
|
| 320 |
+
# "The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 321 |
+
# f" {self.tokenizer_max_length} tokens: {removed_text}"
|
| 322 |
+
# )
|
| 323 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
| 324 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
| 325 |
+
|
| 326 |
+
if clip_skip is None:
|
| 327 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
| 328 |
+
else:
|
| 329 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
| 330 |
+
|
| 331 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
| 332 |
+
|
| 333 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 334 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 335 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 336 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 337 |
+
|
| 338 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 339 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
| 340 |
+
|
| 341 |
+
return prompt_embeds, pooled_prompt_embeds
|
| 342 |
+
|
| 343 |
+
def encode_pooled_prompt(
|
| 344 |
+
self,
|
| 345 |
+
prompt: Union[str, List[str]],
|
| 346 |
+
prompt_2: Union[str, List[str]],
|
| 347 |
+
device: Optional[torch.device] = None,
|
| 348 |
+
num_images_per_prompt: int = 1,
|
| 349 |
+
do_classifier_free_guidance: bool = True,
|
| 350 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 351 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 352 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 353 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 354 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 355 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 356 |
+
clip_skip: Optional[int] = None,
|
| 357 |
+
lora_scale: Optional[float] = None,
|
| 358 |
+
):
|
| 359 |
+
device = device or self._execution_device
|
| 360 |
+
|
| 361 |
+
# set lora scale so that monkey patched LoRA
|
| 362 |
+
# function of text encoder can correctly access it
|
| 363 |
+
if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
|
| 364 |
+
self._lora_scale = lora_scale
|
| 365 |
+
|
| 366 |
+
# dynamically adjust the LoRA scale
|
| 367 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
| 368 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
| 369 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
| 370 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
| 371 |
+
|
| 372 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 373 |
+
if prompt is not None:
|
| 374 |
+
batch_size = len(prompt)
|
| 375 |
+
else:
|
| 376 |
+
batch_size = prompt_embeds.shape[0]
|
| 377 |
+
|
| 378 |
+
if prompt_embeds is None:
|
| 379 |
+
prompt_2 = prompt_2 or prompt
|
| 380 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 381 |
+
|
| 382 |
+
_, pooled_prompt_embed = self._get_clip_prompt_embeds(
|
| 383 |
+
prompt=prompt,
|
| 384 |
+
device=device,
|
| 385 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 386 |
+
clip_skip=clip_skip,
|
| 387 |
+
clip_model_index=0,
|
| 388 |
+
)
|
| 389 |
+
_, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
| 390 |
+
prompt=prompt_2,
|
| 391 |
+
device=device,
|
| 392 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 393 |
+
clip_skip=clip_skip,
|
| 394 |
+
clip_model_index=1,
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
|
| 398 |
+
|
| 399 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 400 |
+
negative_prompt = negative_prompt or ""
|
| 401 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
| 402 |
+
|
| 403 |
+
# normalize str to list
|
| 404 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
| 405 |
+
negative_prompt_2 = (
|
| 406 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
| 411 |
+
raise TypeError(
|
| 412 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 413 |
+
f" {type(prompt)}."
|
| 414 |
+
)
|
| 415 |
+
elif batch_size != len(negative_prompt):
|
| 416 |
+
raise ValueError(
|
| 417 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 418 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 419 |
+
" the batch size of `prompt`."
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
_, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
|
| 423 |
+
negative_prompt,
|
| 424 |
+
device=device,
|
| 425 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 426 |
+
clip_skip=None,
|
| 427 |
+
clip_model_index=0,
|
| 428 |
+
)
|
| 429 |
+
_, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
| 430 |
+
negative_prompt_2,
|
| 431 |
+
device=device,
|
| 432 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 433 |
+
clip_skip=None,
|
| 434 |
+
clip_model_index=1,
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
negative_pooled_prompt_embeds = torch.cat(
|
| 438 |
+
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
if self.text_encoder is not None:
|
| 442 |
+
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 443 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 444 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 445 |
+
|
| 446 |
+
if self.text_encoder_2 is not None:
|
| 447 |
+
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 448 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 449 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
| 450 |
+
|
| 451 |
+
return pooled_prompt_embeds, negative_pooled_prompt_embeds
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
def encode_prompt(
|
| 455 |
+
self,
|
| 456 |
+
prompt: Union[str, List[str]],
|
| 457 |
+
prompt_2: Union[str, List[str]],
|
| 458 |
+
prompt_3: Union[str, List[str]],
|
| 459 |
+
device: Optional[torch.device] = None,
|
| 460 |
+
num_images_per_prompt: int = 1,
|
| 461 |
+
do_classifier_free_guidance: bool = True,
|
| 462 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 463 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 464 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
| 465 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 466 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 467 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 468 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 469 |
+
clip_skip: Optional[int] = None,
|
| 470 |
+
max_sequence_length: int = 256,
|
| 471 |
+
lora_scale: Optional[float] = None,
|
| 472 |
+
):
|
| 473 |
+
r"""
|
| 474 |
+
|
| 475 |
+
Args:
|
| 476 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 477 |
+
prompt to be encoded
|
| 478 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 479 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 480 |
+
used in all text-encoders
|
| 481 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
| 482 |
+
The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
| 483 |
+
used in all text-encoders
|
| 484 |
+
device: (`torch.device`):
|
| 485 |
+
torch device
|
| 486 |
+
num_images_per_prompt (`int`):
|
| 487 |
+
number of images that should be generated per prompt
|
| 488 |
+
do_classifier_free_guidance (`bool`):
|
| 489 |
+
whether to use classifier free guidance or not
|
| 490 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 491 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 492 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 493 |
+
less than `1`).
|
| 494 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 495 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 496 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
| 497 |
+
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
| 498 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
| 499 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used in all the text-encoders.
|
| 500 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 501 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 502 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 503 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 504 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 505 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 506 |
+
argument.
|
| 507 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 508 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 509 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 510 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 511 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 512 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 513 |
+
input argument.
|
| 514 |
+
clip_skip (`int`, *optional*):
|
| 515 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 516 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 517 |
+
lora_scale (`float`, *optional*):
|
| 518 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
| 519 |
+
"""
|
| 520 |
+
device = device or self._execution_device
|
| 521 |
+
|
| 522 |
+
# set lora scale so that monkey patched LoRA
|
| 523 |
+
# function of text encoder can correctly access it
|
| 524 |
+
if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
|
| 525 |
+
self._lora_scale = lora_scale
|
| 526 |
+
|
| 527 |
+
# dynamically adjust the LoRA scale
|
| 528 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
| 529 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
| 530 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
| 531 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
| 532 |
+
|
| 533 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 534 |
+
if prompt is not None:
|
| 535 |
+
batch_size = len(prompt)
|
| 536 |
+
else:
|
| 537 |
+
batch_size = prompt_embeds.shape[0]
|
| 538 |
+
|
| 539 |
+
if prompt_embeds is None:
|
| 540 |
+
prompt_2 = prompt_2 or prompt
|
| 541 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 542 |
+
|
| 543 |
+
prompt_3 = prompt_3 or prompt
|
| 544 |
+
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
| 545 |
+
|
| 546 |
+
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
|
| 547 |
+
prompt=prompt,
|
| 548 |
+
device=device,
|
| 549 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 550 |
+
clip_skip=clip_skip,
|
| 551 |
+
clip_model_index=0,
|
| 552 |
+
)
|
| 553 |
+
prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
| 554 |
+
prompt=prompt_2,
|
| 555 |
+
device=device,
|
| 556 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 557 |
+
clip_skip=clip_skip,
|
| 558 |
+
clip_model_index=1,
|
| 559 |
+
)
|
| 560 |
+
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
|
| 561 |
+
|
| 562 |
+
t5_prompt_embed = self._get_t5_prompt_embeds(
|
| 563 |
+
prompt=prompt_3,
|
| 564 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 565 |
+
max_sequence_length=max_sequence_length,
|
| 566 |
+
device=device,
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
clip_prompt_embeds = torch.nn.functional.pad(
|
| 570 |
+
clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
|
| 574 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
|
| 575 |
+
|
| 576 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 577 |
+
negative_prompt = negative_prompt or ""
|
| 578 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
| 579 |
+
negative_prompt_3 = negative_prompt_3 or negative_prompt
|
| 580 |
+
|
| 581 |
+
# normalize str to list
|
| 582 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
| 583 |
+
negative_prompt_2 = (
|
| 584 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
| 585 |
+
)
|
| 586 |
+
negative_prompt_3 = (
|
| 587 |
+
batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
| 591 |
+
raise TypeError(
|
| 592 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 593 |
+
f" {type(prompt)}."
|
| 594 |
+
)
|
| 595 |
+
elif batch_size != len(negative_prompt):
|
| 596 |
+
raise ValueError(
|
| 597 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 598 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 599 |
+
" the batch size of `prompt`."
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
|
| 603 |
+
negative_prompt,
|
| 604 |
+
device=device,
|
| 605 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 606 |
+
clip_skip=None,
|
| 607 |
+
clip_model_index=0,
|
| 608 |
+
)
|
| 609 |
+
negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
| 610 |
+
negative_prompt_2,
|
| 611 |
+
device=device,
|
| 612 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 613 |
+
clip_skip=None,
|
| 614 |
+
clip_model_index=1,
|
| 615 |
+
)
|
| 616 |
+
negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
|
| 617 |
+
|
| 618 |
+
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
|
| 619 |
+
prompt=negative_prompt_3,
|
| 620 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 621 |
+
max_sequence_length=max_sequence_length,
|
| 622 |
+
device=device,
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
negative_clip_prompt_embeds = torch.nn.functional.pad(
|
| 626 |
+
negative_clip_prompt_embeds,
|
| 627 |
+
(0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
|
| 628 |
+
)
|
| 629 |
+
|
| 630 |
+
negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
|
| 631 |
+
negative_pooled_prompt_embeds = torch.cat(
|
| 632 |
+
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
|
| 633 |
+
)
|
| 634 |
+
|
| 635 |
+
if self.text_encoder is not None:
|
| 636 |
+
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 637 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 638 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 639 |
+
|
| 640 |
+
if self.text_encoder_2 is not None:
|
| 641 |
+
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 642 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
| 643 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
| 644 |
+
|
| 645 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
| 646 |
+
|
| 647 |
+
def check_inputs(
|
| 648 |
+
self,
|
| 649 |
+
prompt,
|
| 650 |
+
prompt_2,
|
| 651 |
+
prompt_3,
|
| 652 |
+
height,
|
| 653 |
+
width,
|
| 654 |
+
negative_prompt=None,
|
| 655 |
+
negative_prompt_2=None,
|
| 656 |
+
negative_prompt_3=None,
|
| 657 |
+
prompt_embeds=None,
|
| 658 |
+
negative_prompt_embeds=None,
|
| 659 |
+
pooled_prompt_embeds=None,
|
| 660 |
+
negative_pooled_prompt_embeds=None,
|
| 661 |
+
callback_on_step_end_tensor_inputs=None,
|
| 662 |
+
max_sequence_length=None,
|
| 663 |
+
):
|
| 664 |
+
if (
|
| 665 |
+
height % (self.vae_scale_factor * self.patch_size) != 0
|
| 666 |
+
or width % (self.vae_scale_factor * self.patch_size) != 0
|
| 667 |
+
):
|
| 668 |
+
raise ValueError(
|
| 669 |
+
f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}."
|
| 670 |
+
f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}."
|
| 671 |
+
)
|
| 672 |
+
|
| 673 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 674 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
| 675 |
+
):
|
| 676 |
+
raise ValueError(
|
| 677 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
if prompt is not None and prompt_embeds is not None:
|
| 681 |
+
raise ValueError(
|
| 682 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 683 |
+
" only forward one of the two."
|
| 684 |
+
)
|
| 685 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
| 686 |
+
raise ValueError(
|
| 687 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 688 |
+
" only forward one of the two."
|
| 689 |
+
)
|
| 690 |
+
elif prompt_3 is not None and prompt_embeds is not None:
|
| 691 |
+
raise ValueError(
|
| 692 |
+
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 693 |
+
" only forward one of the two."
|
| 694 |
+
)
|
| 695 |
+
elif prompt is None and prompt_embeds is None:
|
| 696 |
+
raise ValueError(
|
| 697 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 698 |
+
)
|
| 699 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 700 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 701 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
| 702 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
| 703 |
+
elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
|
| 704 |
+
raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
|
| 705 |
+
|
| 706 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 707 |
+
raise ValueError(
|
| 708 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 709 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 710 |
+
)
|
| 711 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
| 712 |
+
raise ValueError(
|
| 713 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
| 714 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 715 |
+
)
|
| 716 |
+
elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
|
| 717 |
+
raise ValueError(
|
| 718 |
+
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
|
| 719 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 720 |
+
)
|
| 721 |
+
|
| 722 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 723 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 724 |
+
raise ValueError(
|
| 725 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 726 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 727 |
+
f" {negative_prompt_embeds.shape}."
|
| 728 |
+
)
|
| 729 |
+
|
| 730 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
| 731 |
+
raise ValueError(
|
| 732 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
| 736 |
+
raise ValueError(
|
| 737 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
| 738 |
+
)
|
| 739 |
+
|
| 740 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
| 741 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
| 742 |
+
|
| 743 |
+
def prepare_latents(
|
| 744 |
+
self,
|
| 745 |
+
batch_size,
|
| 746 |
+
num_channels_latents,
|
| 747 |
+
height,
|
| 748 |
+
width,
|
| 749 |
+
dtype,
|
| 750 |
+
device,
|
| 751 |
+
generator,
|
| 752 |
+
latents=None,
|
| 753 |
+
):
|
| 754 |
+
if latents is not None:
|
| 755 |
+
return latents.to(device=device, dtype=dtype)
|
| 756 |
+
|
| 757 |
+
shape = (
|
| 758 |
+
batch_size,
|
| 759 |
+
num_channels_latents,
|
| 760 |
+
int(height) // self.vae_scale_factor,
|
| 761 |
+
int(width) // self.vae_scale_factor,
|
| 762 |
+
)
|
| 763 |
+
|
| 764 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 765 |
+
raise ValueError(
|
| 766 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 767 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 768 |
+
)
|
| 769 |
+
|
| 770 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 771 |
+
|
| 772 |
+
return latents
|
| 773 |
+
|
| 774 |
+
@property
|
| 775 |
+
def guidance_scale(self):
|
| 776 |
+
return self._guidance_scale
|
| 777 |
+
|
| 778 |
+
@property
|
| 779 |
+
def skip_guidance_layers(self):
|
| 780 |
+
return self._skip_guidance_layers
|
| 781 |
+
|
| 782 |
+
@property
|
| 783 |
+
def clip_skip(self):
|
| 784 |
+
return self._clip_skip
|
| 785 |
+
|
| 786 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 787 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 788 |
+
# corresponds to doing no classifier free guidance.
|
| 789 |
+
@property
|
| 790 |
+
def do_classifier_free_guidance(self):
|
| 791 |
+
return self._guidance_scale > 1
|
| 792 |
+
|
| 793 |
+
@property
|
| 794 |
+
def joint_attention_kwargs(self):
|
| 795 |
+
return self._joint_attention_kwargs
|
| 796 |
+
|
| 797 |
+
@property
|
| 798 |
+
def num_timesteps(self):
|
| 799 |
+
return self._num_timesteps
|
| 800 |
+
|
| 801 |
+
@property
|
| 802 |
+
def interrupt(self):
|
| 803 |
+
return self._interrupt
|
| 804 |
+
|
| 805 |
+
# Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_image
|
| 806 |
+
def encode_image(self, image: PipelineImageInput, device: torch.device) -> torch.Tensor:
|
| 807 |
+
"""Encodes the given image into a feature representation using a pre-trained image encoder.
|
| 808 |
+
|
| 809 |
+
Args:
|
| 810 |
+
image (`PipelineImageInput`):
|
| 811 |
+
Input image to be encoded.
|
| 812 |
+
device: (`torch.device`):
|
| 813 |
+
Torch device.
|
| 814 |
+
|
| 815 |
+
Returns:
|
| 816 |
+
`torch.Tensor`: The encoded image feature representation.
|
| 817 |
+
"""
|
| 818 |
+
if not isinstance(image, torch.Tensor):
|
| 819 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
| 820 |
+
|
| 821 |
+
image = image.to(device=device, dtype=self.dtype)
|
| 822 |
+
|
| 823 |
+
return self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
| 824 |
+
|
| 825 |
+
# Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.prepare_ip_adapter_image_embeds
|
| 826 |
+
def prepare_ip_adapter_image_embeds(
|
| 827 |
+
self,
|
| 828 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 829 |
+
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
|
| 830 |
+
device: Optional[torch.device] = None,
|
| 831 |
+
num_images_per_prompt: int = 1,
|
| 832 |
+
do_classifier_free_guidance: bool = True,
|
| 833 |
+
) -> torch.Tensor:
|
| 834 |
+
"""Prepares image embeddings for use in the IP-Adapter.
|
| 835 |
+
|
| 836 |
+
Either `ip_adapter_image` or `ip_adapter_image_embeds` must be passed.
|
| 837 |
+
|
| 838 |
+
Args:
|
| 839 |
+
ip_adapter_image (`PipelineImageInput`, *optional*):
|
| 840 |
+
The input image to extract features from for IP-Adapter.
|
| 841 |
+
ip_adapter_image_embeds (`torch.Tensor`, *optional*):
|
| 842 |
+
Precomputed image embeddings.
|
| 843 |
+
device: (`torch.device`, *optional*):
|
| 844 |
+
Torch device.
|
| 845 |
+
num_images_per_prompt (`int`, defaults to 1):
|
| 846 |
+
Number of images that should be generated per prompt.
|
| 847 |
+
do_classifier_free_guidance (`bool`, defaults to True):
|
| 848 |
+
Whether to use classifier free guidance or not.
|
| 849 |
+
"""
|
| 850 |
+
device = device or self._execution_device
|
| 851 |
+
|
| 852 |
+
if ip_adapter_image_embeds is not None:
|
| 853 |
+
if do_classifier_free_guidance:
|
| 854 |
+
single_negative_image_embeds, single_image_embeds = ip_adapter_image_embeds.chunk(2)
|
| 855 |
+
else:
|
| 856 |
+
single_image_embeds = ip_adapter_image_embeds
|
| 857 |
+
elif ip_adapter_image is not None:
|
| 858 |
+
single_image_embeds = self.encode_image(ip_adapter_image, device)
|
| 859 |
+
if do_classifier_free_guidance:
|
| 860 |
+
single_negative_image_embeds = torch.zeros_like(single_image_embeds)
|
| 861 |
+
else:
|
| 862 |
+
raise ValueError("Neither `ip_adapter_image_embeds` or `ip_adapter_image_embeds` were provided.")
|
| 863 |
+
|
| 864 |
+
image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
| 865 |
+
|
| 866 |
+
if do_classifier_free_guidance:
|
| 867 |
+
negative_image_embeds = torch.cat([single_negative_image_embeds] * num_images_per_prompt, dim=0)
|
| 868 |
+
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
|
| 869 |
+
|
| 870 |
+
return image_embeds.to(device=device)
|
| 871 |
+
|
| 872 |
+
def enable_sequential_cpu_offload(self, *args, **kwargs):
|
| 873 |
+
if self.image_encoder is not None and "image_encoder" not in self._exclude_from_cpu_offload:
|
| 874 |
+
logger.warning(
|
| 875 |
+
"`pipe.enable_sequential_cpu_offload()` might fail for `image_encoder` if it uses "
|
| 876 |
+
"`torch.nn.MultiheadAttention`. You can exclude `image_encoder` from CPU offloading by calling "
|
| 877 |
+
"`pipe._exclude_from_cpu_offload.append('image_encoder')` before `pipe.enable_sequential_cpu_offload()`."
|
| 878 |
+
)
|
| 879 |
+
|
| 880 |
+
super().enable_sequential_cpu_offload(*args, **kwargs)
|
| 881 |
+
|
| 882 |
+
@torch.no_grad()
|
| 883 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 884 |
+
def __call__(
|
| 885 |
+
self,
|
| 886 |
+
prompt: Union[str, List[str]] = None,
|
| 887 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 888 |
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
| 889 |
+
height: Optional[int] = None,
|
| 890 |
+
width: Optional[int] = None,
|
| 891 |
+
num_inference_steps: int = 28,
|
| 892 |
+
sigmas: Optional[List[float]] = None,
|
| 893 |
+
guidance_scale: float = 7.0,
|
| 894 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 895 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 896 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
| 897 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 898 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 899 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 900 |
+
cond_latents: Optional[list[torch.FloatTensor]] = None,
|
| 901 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 902 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 903 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 904 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 905 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 906 |
+
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
|
| 907 |
+
output_type: Optional[str] = "pil",
|
| 908 |
+
return_dict: bool = True,
|
| 909 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 910 |
+
clip_skip: Optional[int] = None,
|
| 911 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 912 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 913 |
+
max_sequence_length: int = 256,
|
| 914 |
+
skip_guidance_layers: List[int] = None,
|
| 915 |
+
skip_layer_guidance_scale: float = 2.8,
|
| 916 |
+
skip_layer_guidance_stop: float = 0.2,
|
| 917 |
+
skip_layer_guidance_start: float = 0.01,
|
| 918 |
+
mu: Optional[float] = None,
|
| 919 |
+
):
|
| 920 |
+
r"""
|
| 921 |
+
Function invoked when calling the pipeline for generation.
|
| 922 |
+
|
| 923 |
+
Args:
|
| 924 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 925 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 926 |
+
instead.
|
| 927 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 928 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 929 |
+
will be used instead
|
| 930 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
| 931 |
+
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
| 932 |
+
will be used instead
|
| 933 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 934 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 935 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 936 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 937 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 938 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 939 |
+
expense of slower inference.
|
| 940 |
+
sigmas (`List[float]`, *optional*):
|
| 941 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 942 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 943 |
+
will be used.
|
| 944 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
| 945 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 946 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 947 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 948 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 949 |
+
usually at the expense of lower image quality.
|
| 950 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 951 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 952 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 953 |
+
less than `1`).
|
| 954 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 955 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 956 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used instead
|
| 957 |
+
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
| 958 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
| 959 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used instead
|
| 960 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 961 |
+
The number of images to generate per prompt.
|
| 962 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 963 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 964 |
+
to make generation deterministic.
|
| 965 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 966 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 967 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 968 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 969 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 970 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 971 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 972 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 973 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 974 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 975 |
+
argument.
|
| 976 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 977 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 978 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 979 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 980 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 981 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 982 |
+
input argument.
|
| 983 |
+
ip_adapter_image (`PipelineImageInput`, *optional*):
|
| 984 |
+
Optional image input to work with IP Adapters.
|
| 985 |
+
ip_adapter_image_embeds (`torch.Tensor`, *optional*):
|
| 986 |
+
Pre-generated image embeddings for IP-Adapter. Should be a tensor of shape `(batch_size, num_images,
|
| 987 |
+
emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to
|
| 988 |
+
`True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument.
|
| 989 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 990 |
+
The output format of the generate image. Choose between
|
| 991 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 992 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 993 |
+
Whether or not to return a [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] instead of
|
| 994 |
+
a plain tuple.
|
| 995 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 996 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 997 |
+
`self.processor` in
|
| 998 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 999 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 1000 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
| 1001 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
| 1002 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
| 1003 |
+
`callback_on_step_end_tensor_inputs`.
|
| 1004 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 1005 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 1006 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 1007 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 1008 |
+
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
|
| 1009 |
+
skip_guidance_layers (`List[int]`, *optional*):
|
| 1010 |
+
A list of integers that specify layers to skip during guidance. If not provided, all layers will be
|
| 1011 |
+
used for guidance. If provided, the guidance will only be applied to the layers specified in the list.
|
| 1012 |
+
Recommended value by StabiltyAI for Stable Diffusion 3.5 Medium is [7, 8, 9].
|
| 1013 |
+
skip_layer_guidance_scale (`int`, *optional*): The scale of the guidance for the layers specified in
|
| 1014 |
+
`skip_guidance_layers`. The guidance will be applied to the layers specified in `skip_guidance_layers`
|
| 1015 |
+
with a scale of `skip_layer_guidance_scale`. The guidance will be applied to the rest of the layers
|
| 1016 |
+
with a scale of `1`.
|
| 1017 |
+
skip_layer_guidance_stop (`int`, *optional*): The step at which the guidance for the layers specified in
|
| 1018 |
+
`skip_guidance_layers` will stop. The guidance will be applied to the layers specified in
|
| 1019 |
+
`skip_guidance_layers` until the fraction specified in `skip_layer_guidance_stop`. Recommended value by
|
| 1020 |
+
StabiltyAI for Stable Diffusion 3.5 Medium is 0.2.
|
| 1021 |
+
skip_layer_guidance_start (`int`, *optional*): The step at which the guidance for the layers specified in
|
| 1022 |
+
`skip_guidance_layers` will start. The guidance will be applied to the layers specified in
|
| 1023 |
+
`skip_guidance_layers` from the fraction specified in `skip_layer_guidance_start`. Recommended value by
|
| 1024 |
+
StabiltyAI for Stable Diffusion 3.5 Medium is 0.01.
|
| 1025 |
+
mu (`float`, *optional*): `mu` value used for `dynamic_shifting`.
|
| 1026 |
+
|
| 1027 |
+
Examples:
|
| 1028 |
+
|
| 1029 |
+
Returns:
|
| 1030 |
+
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`:
|
| 1031 |
+
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a
|
| 1032 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
| 1033 |
+
"""
|
| 1034 |
+
|
| 1035 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 1036 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 1037 |
+
|
| 1038 |
+
# 1. Check inputs. Raise error if not correct
|
| 1039 |
+
self.check_inputs(
|
| 1040 |
+
prompt,
|
| 1041 |
+
prompt_2,
|
| 1042 |
+
prompt_3,
|
| 1043 |
+
height,
|
| 1044 |
+
width,
|
| 1045 |
+
negative_prompt=negative_prompt,
|
| 1046 |
+
negative_prompt_2=negative_prompt_2,
|
| 1047 |
+
negative_prompt_3=negative_prompt_3,
|
| 1048 |
+
prompt_embeds=prompt_embeds,
|
| 1049 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1050 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1051 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1052 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 1053 |
+
max_sequence_length=max_sequence_length,
|
| 1054 |
+
)
|
| 1055 |
+
|
| 1056 |
+
self._guidance_scale = guidance_scale
|
| 1057 |
+
self._skip_layer_guidance_scale = skip_layer_guidance_scale
|
| 1058 |
+
self._clip_skip = clip_skip
|
| 1059 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 1060 |
+
self._interrupt = False
|
| 1061 |
+
|
| 1062 |
+
# 2. Define call parameters
|
| 1063 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1064 |
+
batch_size = 1
|
| 1065 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1066 |
+
batch_size = len(prompt)
|
| 1067 |
+
else:
|
| 1068 |
+
batch_size = prompt_embeds.shape[0]
|
| 1069 |
+
|
| 1070 |
+
device = self._execution_device
|
| 1071 |
+
|
| 1072 |
+
lora_scale = (
|
| 1073 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
| 1074 |
+
)
|
| 1075 |
+
(
|
| 1076 |
+
prompt_embeds,
|
| 1077 |
+
negative_prompt_embeds,
|
| 1078 |
+
pooled_prompt_embeds,
|
| 1079 |
+
negative_pooled_prompt_embeds,
|
| 1080 |
+
) = self.encode_prompt(
|
| 1081 |
+
prompt=prompt,
|
| 1082 |
+
prompt_2=prompt_2,
|
| 1083 |
+
prompt_3=prompt_3,
|
| 1084 |
+
negative_prompt=negative_prompt,
|
| 1085 |
+
negative_prompt_2=negative_prompt_2,
|
| 1086 |
+
negative_prompt_3=negative_prompt_3,
|
| 1087 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 1088 |
+
prompt_embeds=prompt_embeds,
|
| 1089 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1090 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1091 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1092 |
+
device=device,
|
| 1093 |
+
clip_skip=self.clip_skip,
|
| 1094 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1095 |
+
max_sequence_length=max_sequence_length,
|
| 1096 |
+
lora_scale=lora_scale,
|
| 1097 |
+
)
|
| 1098 |
+
|
| 1099 |
+
if self.do_classifier_free_guidance:
|
| 1100 |
+
if skip_guidance_layers is not None:
|
| 1101 |
+
original_prompt_embeds = prompt_embeds
|
| 1102 |
+
original_pooled_prompt_embeds = pooled_prompt_embeds
|
| 1103 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 1104 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
| 1105 |
+
|
| 1106 |
+
# 4. Prepare latent variables
|
| 1107 |
+
num_channels_latents = self.transformer.config.in_channels
|
| 1108 |
+
latents = self.prepare_latents(
|
| 1109 |
+
batch_size * num_images_per_prompt,
|
| 1110 |
+
num_channels_latents,
|
| 1111 |
+
height,
|
| 1112 |
+
width,
|
| 1113 |
+
prompt_embeds.dtype,
|
| 1114 |
+
device,
|
| 1115 |
+
generator,
|
| 1116 |
+
latents,
|
| 1117 |
+
)
|
| 1118 |
+
|
| 1119 |
+
# 5. Prepare timesteps
|
| 1120 |
+
scheduler_kwargs = {}
|
| 1121 |
+
if self.scheduler.config.get("use_dynamic_shifting", None) and mu is None:
|
| 1122 |
+
_, _, height, width = latents.shape
|
| 1123 |
+
image_seq_len = (height // self.transformer.config.patch_size) * (
|
| 1124 |
+
width // self.transformer.config.patch_size
|
| 1125 |
+
)
|
| 1126 |
+
mu = calculate_shift(
|
| 1127 |
+
image_seq_len,
|
| 1128 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
| 1129 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
| 1130 |
+
self.scheduler.config.get("base_shift", 0.5),
|
| 1131 |
+
self.scheduler.config.get("max_shift", 1.16),
|
| 1132 |
+
)
|
| 1133 |
+
scheduler_kwargs["mu"] = mu
|
| 1134 |
+
elif mu is not None:
|
| 1135 |
+
scheduler_kwargs["mu"] = mu
|
| 1136 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 1137 |
+
self.scheduler,
|
| 1138 |
+
num_inference_steps,
|
| 1139 |
+
device,
|
| 1140 |
+
sigmas=sigmas,
|
| 1141 |
+
**scheduler_kwargs,
|
| 1142 |
+
)
|
| 1143 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 1144 |
+
self._num_timesteps = len(timesteps)
|
| 1145 |
+
|
| 1146 |
+
# 6. Prepare image embeddings
|
| 1147 |
+
if (ip_adapter_image is not None and self.is_ip_adapter_active) or ip_adapter_image_embeds is not None:
|
| 1148 |
+
ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
|
| 1149 |
+
ip_adapter_image,
|
| 1150 |
+
ip_adapter_image_embeds,
|
| 1151 |
+
device,
|
| 1152 |
+
batch_size * num_images_per_prompt,
|
| 1153 |
+
self.do_classifier_free_guidance,
|
| 1154 |
+
)
|
| 1155 |
+
|
| 1156 |
+
if self.joint_attention_kwargs is None:
|
| 1157 |
+
self._joint_attention_kwargs = {"ip_adapter_image_embeds": ip_adapter_image_embeds}
|
| 1158 |
+
else:
|
| 1159 |
+
self._joint_attention_kwargs.update(ip_adapter_image_embeds=ip_adapter_image_embeds)
|
| 1160 |
+
|
| 1161 |
+
|
| 1162 |
+
if cond_latents is not None and self.do_classifier_free_guidance:
|
| 1163 |
+
if len(cond_latents) == latents.shape[0]:
|
| 1164 |
+
cond_latents = cond_latents * 2
|
| 1165 |
+
|
| 1166 |
+
# 7. Denoising loop
|
| 1167 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1168 |
+
for i, t in enumerate(timesteps):
|
| 1169 |
+
if self.interrupt:
|
| 1170 |
+
continue
|
| 1171 |
+
|
| 1172 |
+
# expand the latents if we are doing classifier free guidance
|
| 1173 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
| 1174 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 1175 |
+
timestep = t.expand(latent_model_input.shape[0])
|
| 1176 |
+
|
| 1177 |
+
noise_pred = self.transformer(
|
| 1178 |
+
hidden_states=latent_model_input,
|
| 1179 |
+
cond_hidden_states=cond_latents,
|
| 1180 |
+
timestep=timestep,
|
| 1181 |
+
encoder_hidden_states=prompt_embeds,
|
| 1182 |
+
pooled_projections=pooled_prompt_embeds,
|
| 1183 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 1184 |
+
return_dict=False,
|
| 1185 |
+
)[0]
|
| 1186 |
+
|
| 1187 |
+
# perform guidance
|
| 1188 |
+
if self.do_classifier_free_guidance:
|
| 1189 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1190 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1191 |
+
should_skip_layers = (
|
| 1192 |
+
True
|
| 1193 |
+
if i > num_inference_steps * skip_layer_guidance_start
|
| 1194 |
+
and i < num_inference_steps * skip_layer_guidance_stop
|
| 1195 |
+
else False
|
| 1196 |
+
)
|
| 1197 |
+
if skip_guidance_layers is not None and should_skip_layers:
|
| 1198 |
+
timestep = t.expand(latents.shape[0])
|
| 1199 |
+
latent_model_input = latents
|
| 1200 |
+
noise_pred_skip_layers = self.transformer(
|
| 1201 |
+
hidden_states=latent_model_input,
|
| 1202 |
+
timestep=timestep,
|
| 1203 |
+
encoder_hidden_states=original_prompt_embeds,
|
| 1204 |
+
pooled_projections=original_pooled_prompt_embeds,
|
| 1205 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 1206 |
+
return_dict=False,
|
| 1207 |
+
skip_layers=skip_guidance_layers,
|
| 1208 |
+
)[0]
|
| 1209 |
+
noise_pred = (
|
| 1210 |
+
noise_pred + (noise_pred_text - noise_pred_skip_layers) * self._skip_layer_guidance_scale
|
| 1211 |
+
)
|
| 1212 |
+
|
| 1213 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1214 |
+
latents_dtype = latents.dtype
|
| 1215 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 1216 |
+
|
| 1217 |
+
if latents.dtype != latents_dtype:
|
| 1218 |
+
if torch.backends.mps.is_available():
|
| 1219 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 1220 |
+
latents = latents.to(latents_dtype)
|
| 1221 |
+
|
| 1222 |
+
if callback_on_step_end is not None:
|
| 1223 |
+
callback_kwargs = {}
|
| 1224 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 1225 |
+
callback_kwargs[k] = locals()[k]
|
| 1226 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 1227 |
+
|
| 1228 |
+
latents = callback_outputs.pop("latents", latents)
|
| 1229 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1230 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
| 1231 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
| 1232 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
| 1233 |
+
)
|
| 1234 |
+
|
| 1235 |
+
# call the callback, if provided
|
| 1236 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1237 |
+
progress_bar.update()
|
| 1238 |
+
|
| 1239 |
+
if XLA_AVAILABLE:
|
| 1240 |
+
xm.mark_step()
|
| 1241 |
+
|
| 1242 |
+
if output_type == "latent":
|
| 1243 |
+
image = latents
|
| 1244 |
+
|
| 1245 |
+
else:
|
| 1246 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 1247 |
+
|
| 1248 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 1249 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1250 |
+
|
| 1251 |
+
# Offload all models
|
| 1252 |
+
self.maybe_free_model_hooks()
|
| 1253 |
+
|
| 1254 |
+
if not return_dict:
|
| 1255 |
+
return (image,)
|
| 1256 |
+
|
| 1257 |
+
return StableDiffusion3PipelineOutput(images=image)
|