|
import streamlit as st |
|
import random |
|
import pandas as pd |
|
from PIL import Image |
|
import requests |
|
import json |
|
from transformers import pipeline |
|
import numpy as np |
|
from transformers import AutoFeatureExtractor |
|
from transformers import AutoModelForImageClassification |
|
import plotly.graph_objects as go |
|
import plotly |
|
import re |
|
import io |
|
from fpdf import FPDF |
|
import base64 |
|
from fpdf import FPDF, HTMLMixin |
|
|
|
|
|
st.set_page_config(layout='wide', |
|
page_title='Food Category Classification & Recipes' |
|
) |
|
|
|
|
|
sidebar_acc = ['App Description', 'About Project'] |
|
sidebar_acc_nav = st.sidebar.radio('**INFORMATION SECTION**', sidebar_acc) |
|
|
|
if sidebar_acc_nav == 'App Description': |
|
st.sidebar.markdown("<h2 style='text-align: center;'> Food Category Classification Description </h2> ", unsafe_allow_html=True) |
|
st.sidebar.markdown("This is a Food Category Image Classifier model that has been trained by [Kaludi](https://huggingface.co/Kaludi) to recognize **12** different categories of foods, which includes **Bread**, **Dairy**, **Dessert**, **Egg**, **Fried Food**, **Fruit**, **Meat**, **Noodles**, **Rice**, **Seafood**, **Soup**, and **Vegetable**. It can accurately classify an image of food into one of these categories by analyzing its visual features. This model can be used by food bloggers, restaurants, and recipe websites to quickly categorize and sort their food images, making it easier to manage their content and provide a better user experience.") |
|
|
|
elif sidebar_acc_nav == 'About Project': |
|
st.sidebar.markdown("<h2 style='text-align: center;'> About Project </h2>", unsafe_allow_html=True) |
|
st.sidebar.markdown("<hr style='text-align: center;'>", unsafe_allow_html=True) |
|
st.sidebar.markdown("<h3 style='text-align: center;'>Project Location:</h3>", unsafe_allow_html=True) |
|
st.sidebar.markdown("<p style='text-align: center;'><strong><a href='https://huggingface.co/Kaludi/food-category-classification-v2.0'>Model</a></strong> | <strong><a href='https://huggingface.co/datasets/Kaludi/food-category-classification-v2.0'>Dataset</a></strong></p>", unsafe_allow_html=True) |
|
st.sidebar.markdown("<hr style='text-align: center;'>", unsafe_allow_html=True) |
|
st.sidebar.markdown("<h3 style='text-align: center;'>Project Creators:</h3>", unsafe_allow_html=True) |
|
st.sidebar.markdown("<p style='text-align: center;'><a href='https://github.com/Kaludii'><strong>AA</strong></a></p>", unsafe_allow_html=True) |
|
st.sidebar.markdown("<p style='text-align: center;'><a href='https://github.com/Kaludii'><strong>AM</strong></a></p>", unsafe_allow_html=True) |
|
st.sidebar.markdown("<p style='text-align: center;'><a href='https://github.com/Kaludii'><strong>BK</strong></a></p>", unsafe_allow_html=True) |
|
st.sidebar.markdown("<p style='text-align: center;'><a href='https://github.com/Kaludii'><strong>DK</strong></a></p>", unsafe_allow_html=True) |
|
|
|
|
|
def main(): |
|
st.title("Food Category Classification & Recipes") |
|
|
|
st.markdown("### Backgroud") |
|
st.markdown("This is a Food Category Image Classifier model that has been trained by [Kaludi](https://huggingface.co/Kaludi) to recognize **12** different categories of foods, which includes **Bread**, **Dairy**, **Dessert**, **Egg**, **Fried Food**, **Fruit**, **Meat**, **Noodles**, **Rice**, **Seafood**, **Soup**, and **Vegetable**. It can accurately classify an image of food into one of these categories by analyzing its visual features. This model can be used by food bloggers, restaurants, and recipe websites to quickly categorize and sort their food images, making it easier to manage their content and provide a better user experience.") |
|
st.header("Try it out!") |
|
|
|
if st.checkbox("Show/Hide Examples"): |
|
st.header("Example Images") |
|
|
|
col1, col2, col3, col4 = st.columns(4) |
|
|
|
with col1: |
|
st.image("examples/example_0.jpg", width=260) |
|
st.image("examples/example_1.jpg", width=260) |
|
|
|
with col2: |
|
st.image("examples/example_2.jpg", width=260) |
|
st.image("examples/example_3.jpg", width=260) |
|
|
|
with col3: |
|
st.image("examples/example_4.jpg", width=260) |
|
st.image("examples/example_5.jpg", width=260) |
|
|
|
with col4: |
|
st.image("examples/example_6.jpg", width=260) |
|
st.image("examples/example_7.jpg", width=260) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diet_options = ['All', 'Gluten-Free', 'Vegan', 'Vegetarian', 'Dairy-Free'] |
|
diet = st.selectbox('Diet', diet_options) |
|
|
|
|
|
cuisine_options = ['All', 'African', 'Asian', 'Caribbean', 'Central American', 'Europe', 'Middle Eastern', 'North American', 'Oceanic', 'South American'] |
|
|
|
cuisine = st.selectbox('Cuisine', cuisine_options) |
|
|
|
|
|
calories = st.slider("Select Max Calories (Per Serving)", 25, 1000, 500) |
|
|
|
|
|
st.write("Selected: **{}** Max Calories.".format(calories)) |
|
|
|
uploaded_file = st.file_uploader("Upload Files", type=['png','jpeg','jpg']) |
|
|
|
loading_text = st.empty() |
|
|
|
if uploaded_file != None: |
|
loading_text.markdown("Loading...") |
|
img = Image.open(uploaded_file) |
|
extractor = AutoFeatureExtractor.from_pretrained("Kaludi/food-category-classification-v2.0") |
|
model = AutoModelForImageClassification.from_pretrained("Kaludi/food-category-classification-v2.0") |
|
inputs = extractor(img, return_tensors="pt") |
|
outputs = model(**inputs) |
|
|
|
loading_text.empty() |
|
label_num=outputs.logits.softmax(1).argmax(1) |
|
label_num=label_num.item() |
|
|
|
|
|
probs = outputs.logits.softmax(dim=1) |
|
percentage = round(probs[0, label_num].item() * 100, 2) |
|
|
|
st.markdown("### Your Image:") |
|
st.image(img, width=260) |
|
|
|
st.write("The Predicted Classification is:") |
|
|
|
if label_num==0: |
|
st.write("**Bread** (" + f"{percentage}%)") |
|
elif label_num==1: |
|
st.write("**Dairy** (" + f"{percentage}%)") |
|
elif label_num==2: |
|
st.write("**Dessert** (" + f"{percentage}%)") |
|
elif label_num==3: |
|
st.write("**Egg** (" + f"{percentage}%)") |
|
elif label_num==4: |
|
st.write("**Fried Food** (" + f"{percentage}%)") |
|
elif label_num==5: |
|
st.write("**Fruit** (" + f"{percentage}%)") |
|
elif label_num==6: |
|
st.write("**Meat** (" + f"{percentage}%)") |
|
elif label_num==7: |
|
st.write("**Noodles** (" + f"{percentage}%)") |
|
elif label_num==8: |
|
st.write("**Rice** (" + f"{percentage}%)") |
|
elif label_num==9: |
|
st.write("**Seafood** (" + f"{percentage}%)") |
|
elif label_num==10: |
|
st.write("**Soup** (" + f"{percentage}%)") |
|
else: |
|
st.write("**Vegetable** (" + f"{percentage}%)") |
|
|
|
st.write("You Selected **{}** For Diet and **{}** For Cuisine with Max".format(diet, cuisine), calories, "Calories For", ( "**Bread**" if label_num==0 else "**Dairy**" if label_num==1 else "**Dessert**" if label_num==2 else "**Egg**" if label_num==3 else "**Fried Food**" if label_num==4 else "**Fruit**" if label_num==5 else "**Meat**" if label_num==6 else "**Noodles**" if label_num==7 else "**Rice**" if label_num==8 else "**Seafood**" if label_num==9 else "**Soup**" if label_num==10 else "**Vegetable**")) |
|
|
|
url = "https://alcksyjrmd.execute-api.us-east-2.amazonaws.com/default/nutrients_response" |
|
|
|
category = ("Bread" if label_num==0 else "Dairy" if label_num==1 else "Dessert" if label_num==2 else "Egg" if label_num==3 else "Fried" if label_num==4 else "Fruit" if label_num==5 else "Meat" if label_num==6 else "Noodles" if label_num==7 else "Rice" if label_num==8 else "Seafood" if label_num==9 else "**Soup**" if label_num==10 else "Vegetable") |
|
|
|
params = {"f": category, "k": str(calories)} |
|
|
|
if diet != "All": |
|
params["d"] = diet |
|
|
|
if cuisine != "All": |
|
params["c"] = cuisine |
|
|
|
response = requests.get(url, params=params) |
|
response_json = json.loads(response.content) |
|
|
|
response_json = list(response_json) |
|
|
|
if len(response_json) == 0: |
|
st.markdown("### No Recipe Found:") |
|
st.write("**No recipes found. Please adjust your search criteria.**") |
|
else: |
|
if len(response_json) > 1: |
|
random_recipe = random.choice(response_json) |
|
if st.button("Get Another Recipe"): |
|
response_json.remove(random_recipe) |
|
if len(response_json) == 0: |
|
st.write("No more recipes. Please adjust your search criteria.") |
|
else: |
|
random_recipe = random.choice(response_json) |
|
st.markdown("### Recommended Recipe:") |
|
st.write("**Title:** ", random_recipe['Title']) |
|
if random_recipe['Image Link'].endswith(".jpg") or random_recipe['Image Link'].endswith(".jpeg") or random_recipe['Image Link'].endswith(".png"): |
|
st.image(random_recipe['Image Link'], width=300) |
|
else: |
|
st.write("**Image Link:** ", random_recipe['Image Link']) |
|
st.write("**Rating:** ", random_recipe['Rating']) |
|
if random_recipe['Description'] != "Description not found": |
|
st.write("**Description:** ", random_recipe['Description']) |
|
st.write("**Ingredients:** ", random_recipe['Ingredients']) |
|
st.write("**Recipe Facts:** ", random_recipe['Recipe Facts']) |
|
st.write("**Directions:** ", random_recipe['Directions']) |
|
|
|
values = [ |
|
float(re.sub(r'[^\d.]+', '', random_recipe['Total Fat'])), |
|
float(re.sub(r'[^\d.]+', '', random_recipe['Saturated Fat'])), |
|
float(re.sub(r'[^\d.]+', '', random_recipe['Cholesterol'])) / 1000, |
|
float(re.sub(r'[^\d.]+', '', random_recipe['Sodium'])) / 1000, |
|
float(re.sub(r'[^\d.]+', '', random_recipe['Total Carbohydrate'])), |
|
float(re.sub(r'[^\d.]+', '', random_recipe['Dietary Fiber'])), |
|
float(re.sub(r'[^\d.]+', '', random_recipe['Total Sugars'])), |
|
float(re.sub(r'[^\d.]+', '', random_recipe['Protein'])), |
|
float(re.sub(r'[^\d.]+', '', random_recipe['Vitamin C'])) / 1000, |
|
float(re.sub(r'[^\d.]+', '', random_recipe['Calcium'])) / 1000, |
|
float(re.sub(r'[^\d.]+', '', random_recipe['Iron'])) / 1000, |
|
float(re.sub(r'[^\d.]+', '', random_recipe['Potassium'])) / 1000 |
|
] |
|
|
|
dv = [65, 20, 0.3, 2.3, 300, 28, 50, 50, 0.09, 1, 0.018, 4.7] |
|
|
|
|
|
dv_percent = [round(value * 100 / dv[i]) for i, value in enumerate(values)] |
|
nutrition_html = """ |
|
<div id="nutrition-info_6-0" class="comp nutrition-info"> |
|
<table class="nutrition-info__table"> |
|
<thead> |
|
<tr> |
|
<th class="nutrition-info__heading" colspan="3">Number of Servings: <span class="nutrition-info__heading-aside">{servings}</span></th> |
|
</tr> |
|
</thead> |
|
<tbody class="nutrition-info__table--body"> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Calories</td> |
|
<td class="nutrition-info__table--cell">{calories}</td> |
|
<td class="nutrition-info__table--cell"></td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Total Fat</td> |
|
<td class="nutrition-info__table--cell">{total_fat}</td> |
|
<td class="nutrition-info__table--cell">{fat_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Saturated Fat</td> |
|
<td class="nutrition-info__table--cell">{saturated_fat}</td> |
|
<td class="nutrition-info__table--cell">{sat_fat_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Cholesterol</td> |
|
<td class="nutrition-info__table--cell">{cholesterol}</td> |
|
<td class="nutrition-info__table--cell">{chol_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Sodium</td> |
|
<td class="nutrition-info__table--cell">{sodium}</td> |
|
<td class="nutrition-info__table--cell">{sodium_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Total Carbohydrate</td> |
|
<td class="nutrition-info__table--cell">{total_carbohydrate}</td> |
|
<td class="nutrition-info__table--cell">{carb_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Dietary Fiber</td> |
|
<td class="nutrition-info__table--cell">{dietary_fiber}</td> |
|
<td class="nutrition-info__table--cell">{diet_fibe_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Total Sugars</td> |
|
<td class="nutrition-info__table--cell">{total_sugars}</td> |
|
<td class="nutrition-info__table--cell">{tot_sugars_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Protein</td> |
|
<td class="nutrition-info__table--cell">{protein}</td> |
|
<td class="nutrition-info__table--cell">{protein_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Vitamin C</td> |
|
<td class="nutrition-info__table--cell">{vitc}</td> |
|
<td class="nutrition-info__table--cell">{vitc_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Calcium</td> |
|
<td class="nutrition-info__table--cell">{calc}</td> |
|
<td class="nutrition-info__table--cell">{calc_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Iron</td> |
|
<td class="nutrition-info__table--cell">{iron}</td> |
|
<td class="nutrition-info__table--cell">{iron_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Potassium</td> |
|
<td class="nutrition-info__table--cell">{pota}</td> |
|
<td class="nutrition-info__table--cell">{pota_percent}% DV</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
</div> |
|
""" |
|
|
|
formatted_html = nutrition_html.format( |
|
calories=random_recipe['Calories'], |
|
total_fat=random_recipe['Total Fat'], |
|
saturated_fat=random_recipe['Saturated Fat'], |
|
cholesterol=random_recipe['Cholesterol'], |
|
sodium=random_recipe['Sodium'], |
|
total_carbohydrate=random_recipe['Total Carbohydrate'], |
|
dietary_fiber=random_recipe['Dietary Fiber'], |
|
total_sugars=random_recipe['Total Sugars'], |
|
servings=random_recipe['Number of Servings'], |
|
vitc=random_recipe['Vitamin C'], |
|
calc=random_recipe['Calcium'], |
|
iron=random_recipe['Iron'], |
|
pota=random_recipe['Potassium'], |
|
protein=random_recipe['Protein'], |
|
fat_percent=dv_percent[0], |
|
sat_fat_percent=dv_percent[1], |
|
chol_percent=dv_percent[2], |
|
sodium_percent=dv_percent[3], |
|
carb_percent=dv_percent[4], |
|
diet_fibe_percent=dv_percent[5], |
|
tot_sugars_percent=dv_percent[6], |
|
protein_percent=dv_percent[7], |
|
vitc_percent=dv_percent[8], |
|
calc_percent=dv_percent[9], |
|
iron_percent=dv_percent[10], |
|
pota_percent=dv_percent[11] |
|
|
|
) |
|
|
|
|
|
def format_table(val): |
|
return f"background-color: #133350; color: #fff; border: 1px solid #ddd; border-radius: .25rem; padding: .625rem .625rem 0; font-family: Helvetica; font-size: 1rem;" |
|
|
|
with st.container(): |
|
|
|
st.write("<h2 style='text-align:left;'>Nutrition Facts (per serving)</h2>", unsafe_allow_html=True) |
|
st.write(f"<div style='max-height:none; overflow:auto'>{formatted_html}</div>", unsafe_allow_html=True) |
|
st.write("<p style='text-align:left;'>*The % Daily Value (DV) tells you how much a nutrient in a food serving contributes to a daily diet. 2,000 calories a day is used for general nutrition advice.</p>", unsafe_allow_html=True) |
|
|
|
labels = ['Total Fat', 'Saturated Fat', 'Cholesterol', 'Sodium', 'Total Carbohydrate', 'Dietary Fiber', 'Total Sugars', 'Protein', 'Vitamin C', 'Calcium', 'Iron', 'Potassium'] |
|
fig = go.Figure(data=[go.Pie(labels=labels, values=values)]) |
|
st.markdown("### Macronutrients Pie Chart ;) (In Grams)") |
|
st.plotly_chart(fig) |
|
st.write("**Tags:** ", random_recipe['Tags']) |
|
st.write("**Recipe URL:** ", random_recipe['Recipe URLs']) |
|
st.write("*To download this recipe as a PDF, open the hamburger menu on the top right and click on Print.*") |
|
st.markdown("### JSON Response:") |
|
st.write(response_json) |
|
|
|
else: |
|
st.markdown("### Recommended Recipe:") |
|
st.write("**Title:** ", response_json[0]['Title']) |
|
if response_json[0]['Image Link'].endswith(".jpg") or response_json[0]['Image Link'].endswith(".jpeg") or response_json[0]['Image Link'].endswith(".png"): |
|
st.image(response_json[0]['Image Link'], width=300) |
|
else: |
|
st.write("**Image Link:** ", response_json[0]['Image Link']) |
|
st.write("**Rating:** ", response_json[0]['Rating']) |
|
if response_json[0]['Description'] != "Description not found": |
|
st.write("**Description:** ", response_json[0]['Description']) |
|
st.write("**Ingredients:** ", response_json[0]['Ingredients']) |
|
st.write("**Recipe Facts:** ", response_json[0]['Recipe Facts']) |
|
st.write("**Directions:** ", response_json[0]['Directions']) |
|
|
|
values = [ |
|
float(re.sub(r'[^\d.]+', '', response_json[0]['Total Fat'])), |
|
float(re.sub(r'[^\d.]+', '', response_json[0]['Saturated Fat'])), |
|
float(re.sub(r'[^\d.]+', '', response_json[0]['Cholesterol'])) / 1000, |
|
float(re.sub(r'[^\d.]+', '', response_json[0]['Sodium'])) / 1000, |
|
float(re.sub(r'[^\d.]+', '', response_json[0]['Total Carbohydrate'])), |
|
float(re.sub(r'[^\d.]+', '', response_json[0]['Dietary Fiber'])), |
|
float(re.sub(r'[^\d.]+', '', response_json[0]['Total Sugars'])), |
|
float(re.sub(r'[^\d.]+', '', response_json[0]['Protein'])), |
|
float(re.sub(r'[^\d.]+', '', response_json[0]['Vitamin C'])) / 1000, |
|
float(re.sub(r'[^\d.]+', '', response_json[0]['Calcium'])) / 1000, |
|
float(re.sub(r'[^\d.]+', '', response_json[0]['Iron'])) / 1000, |
|
float(re.sub(r'[^\d.]+', '', response_json[0]['Potassium'])) / 1000 |
|
] |
|
|
|
dv = [65, 20, 0.3, 2.3, 300, 28, 50, 50, 0.09, 1, 0.018, 4.7] |
|
|
|
|
|
dv_percent = [round(value * 100 / dv[i]) for i, value in enumerate(values)] |
|
nutrition_html = """ |
|
<div id="nutrition-info_6-0" class="comp nutrition-info"> |
|
<table class="nutrition-info__table"> |
|
<thead> |
|
<tr> |
|
<th class="nutrition-info__heading" colspan="3">Number of Servings: <span class="nutrition-info__heading-aside">{servings}</span></th> |
|
</tr> |
|
</thead> |
|
<tbody class="nutrition-info__table--body"> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Calories</td> |
|
<td class="nutrition-info__table--cell">{calories}</td> |
|
<td class="nutrition-info__table--cell"></td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Total Fat</td> |
|
<td class="nutrition-info__table--cell">{total_fat}</td> |
|
<td class="nutrition-info__table--cell">{fat_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Saturated Fat</td> |
|
<td class="nutrition-info__table--cell">{saturated_fat}</td> |
|
<td class="nutrition-info__table--cell">{sat_fat_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Cholesterol</td> |
|
<td class="nutrition-info__table--cell">{cholesterol}</td> |
|
<td class="nutrition-info__table--cell">{chol_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Sodium</td> |
|
<td class="nutrition-info__table--cell">{sodium}</td> |
|
<td class="nutrition-info__table--cell">{sodium_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Total Carbohydrate</td> |
|
<td class="nutrition-info__table--cell">{total_carbohydrate}</td> |
|
<td class="nutrition-info__table--cell">{carb_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Dietary Fiber</td> |
|
<td class="nutrition-info__table--cell">{dietary_fiber}</td> |
|
<td class="nutrition-info__table--cell">{diet_fibe_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Total Sugars</td> |
|
<td class="nutrition-info__table--cell">{total_sugars}</td> |
|
<td class="nutrition-info__table--cell">{tot_sugars_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Protein</td> |
|
<td class="nutrition-info__table--cell">{protein}</td> |
|
<td class="nutrition-info__table--cell">{protein_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Vitamin C</td> |
|
<td class="nutrition-info__table--cell">{vitc}</td> |
|
<td class="nutrition-info__table--cell">{vitc_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Calcium</td> |
|
<td class="nutrition-info__table--cell">{calc}</td> |
|
<td class="nutrition-info__table--cell">{calc_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Iron</td> |
|
<td class="nutrition-info__table--cell">{iron}</td> |
|
<td class="nutrition-info__table--cell">{iron_percent}% DV</td> |
|
</tr> |
|
<tr class="nutrition-info__table--row"> |
|
<td class="nutrition-info__table--cell">Potassium</td> |
|
<td class="nutrition-info__table--cell">{pota}</td> |
|
<td class="nutrition-info__table--cell">{pota_percent}% DV</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
</div> |
|
""" |
|
|
|
formatted_html = nutrition_html.format( |
|
calories=response_json[0]['Calories'], |
|
total_fat=response_json[0]['Total Fat'], |
|
saturated_fat=response_json[0]['Saturated Fat'], |
|
cholesterol=response_json[0]['Cholesterol'], |
|
sodium=response_json[0]['Sodium'], |
|
total_carbohydrate=response_json[0]['Total Carbohydrate'], |
|
dietary_fiber=response_json[0]['Dietary Fiber'], |
|
total_sugars=response_json[0]['Total Sugars'], |
|
servings=response_json[0]['Number of Servings'], |
|
vitc=response_json[0]['Vitamin C'], |
|
calc=response_json[0]['Calcium'], |
|
iron=response_json[0]['Iron'], |
|
pota=response_json[0]['Potassium'], |
|
protein=response_json[0]['Protein'], |
|
fat_percent=dv_percent[0], |
|
sat_fat_percent=dv_percent[1], |
|
chol_percent=dv_percent[2], |
|
sodium_percent=dv_percent[3], |
|
carb_percent=dv_percent[4], |
|
diet_fibe_percent=dv_percent[5], |
|
tot_sugars_percent=dv_percent[6], |
|
protein_percent=dv_percent[7], |
|
vitc_percent=dv_percent[8], |
|
calc_percent=dv_percent[9], |
|
iron_percent=dv_percent[10], |
|
pota_percent=dv_percent[11] |
|
|
|
) |
|
|
|
|
|
def format_table(val): |
|
return f"background-color: #133350; color: #fff; border: 1px solid #ddd; border-radius: .25rem; padding: .625rem .625rem 0; font-family: Helvetica; font-size: 1rem;" |
|
|
|
with st.container(): |
|
|
|
st.write("<h2 style='text-align:left;'>Nutrition Facts (per serving)</h2>", unsafe_allow_html=True) |
|
st.write(f"<div style='max-height:none; overflow:auto'>{formatted_html}</div>", unsafe_allow_html=True) |
|
st.write("<p style='text-align:left;'>*The % Daily Value (DV) tells you how much a nutrient in a food serving contributes to a daily diet. 2,000 calories a day is used for general nutrition advice.</p>", unsafe_allow_html=True) |
|
|
|
labels = ['Total Fat', 'Saturated Fat', 'Cholesterol', 'Sodium', 'Total Carbohydrate', 'Dietary Fiber', 'Total Sugars', 'Protein', 'Vitamin C', 'Calcium', 'Iron', 'Potassium'] |
|
fig = go.Figure(data=[go.Pie(labels=labels, values=values)]) |
|
st.markdown("### Macronutrients Pie Chart ;) (In Grams)") |
|
st.plotly_chart(fig) |
|
st.write("**Tags:** ", response_json[0]['Tags']) |
|
st.write("**Recipe URL:** ", response_json[0]['Recipe URLs']) |
|
st.write("*To download this recipe as a PDF, open the hamburger menu on the top right and click on Print.*") |
|
st.markdown("### JSON Response:") |
|
st.write(response_json) |
|
|
|
st.markdown("<hr style='text-align: center;'>", unsafe_allow_html=True) |
|
st.markdown("<p style='text-align: center'><a href='https://github.com/Kaludii'>Github</a> | <a href='https://huggingface.co/Kaludi'>HuggingFace</a></p>", unsafe_allow_html=True) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|