Spaces:
Running
Running
Update app/policy_vector_db.py
Browse files- app/policy_vector_db.py +28 -59
app/policy_vector_db.py
CHANGED
|
@@ -1,113 +1,82 @@
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
-
import
|
| 4 |
-
import logging
|
| 5 |
from typing import List, Dict
|
| 6 |
-
|
| 7 |
-
import chromadb
|
| 8 |
from sentence_transformers import SentenceTransformer
|
| 9 |
-
import
|
| 10 |
-
|
| 11 |
-
logger = logging.getLogger("vector-db")
|
| 12 |
|
| 13 |
class PolicyVectorDB:
|
| 14 |
-
def __init__(self, persist_directory: str, top_k_default: int = 5, relevance_threshold: float = 0.
|
| 15 |
self.persist_directory = persist_directory
|
|
|
|
| 16 |
self.collection_name = "neepco_dop_policies"
|
|
|
|
|
|
|
| 17 |
self.top_k_default = top_k_default
|
| 18 |
self.relevance_threshold = relevance_threshold
|
| 19 |
|
| 20 |
-
self.client = chromadb.PersistentClient(path=self.persist_directory)
|
| 21 |
-
self.collection = None
|
| 22 |
-
|
| 23 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
-
self.embedding_model = SentenceTransformer("BAAI/bge-large-en-v1.5", device=device)
|
| 25 |
-
logger.info(f"[INIT] Embedding model loaded on {device.upper()}.")
|
| 26 |
-
|
| 27 |
def _get_collection(self):
|
| 28 |
if self.collection is None:
|
| 29 |
self.collection = self.client.get_or_create_collection(
|
| 30 |
name=self.collection_name,
|
| 31 |
metadata={"description": "NEEPCO Delegation of Powers Policy"}
|
| 32 |
)
|
| 33 |
-
logger.info(f"[COLLECTION] Loaded collection '{self.collection_name}'. Count: {self.collection.count()}")
|
| 34 |
return self.collection
|
| 35 |
|
| 36 |
def _flatten_metadata(self, metadata: Dict) -> Dict:
|
| 37 |
-
return {
|
| 38 |
|
| 39 |
def add_chunks(self, chunks: List[Dict]):
|
| 40 |
collection = self._get_collection()
|
| 41 |
if not chunks:
|
| 42 |
-
|
| 43 |
return
|
| 44 |
-
|
| 45 |
existing_ids = set(collection.get()['ids'])
|
| 46 |
-
new_chunks = [
|
| 47 |
-
|
| 48 |
if not new_chunks:
|
| 49 |
-
|
| 50 |
return
|
| 51 |
-
|
| 52 |
-
logger.info(f"[ADD] Adding {len(new_chunks)} new chunks.")
|
| 53 |
batch_size = 128
|
| 54 |
for i in range(0, len(new_chunks), batch_size):
|
| 55 |
batch = new_chunks[i:i + batch_size]
|
| 56 |
-
texts = [
|
| 57 |
-
ids = [
|
| 58 |
-
metadatas = [self._flatten_metadata(
|
| 59 |
-
|
| 60 |
embeddings = self.embedding_model.encode(texts, show_progress_bar=False).tolist()
|
| 61 |
collection.add(ids=ids, embeddings=embeddings, documents=texts, metadatas=metadatas)
|
| 62 |
-
|
| 63 |
-
logger.info(f"[ADD] Total docs after insert: {collection.count()}")
|
| 64 |
|
| 65 |
def search(self, query_text: str, top_k: int = None) -> List[Dict]:
|
| 66 |
collection = self._get_collection()
|
| 67 |
-
top_k = top_k or self.top_k_default
|
| 68 |
-
|
| 69 |
query_embedding = self.embedding_model.encode([query_text]).tolist()
|
|
|
|
| 70 |
results = collection.query(
|
| 71 |
query_embeddings=query_embedding,
|
| 72 |
n_results=top_k,
|
| 73 |
include=["documents", "metadatas", "distances"]
|
| 74 |
)
|
| 75 |
-
|
| 76 |
search_results = []
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
return []
|
| 80 |
-
|
| 81 |
-
for i, doc in enumerate(results["documents"][0]):
|
| 82 |
-
score = 1 - results["distances"][0][i]
|
| 83 |
search_results.append({
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
})
|
| 88 |
-
|
| 89 |
-
logger.info(f"[SEARCH] Retrieved {len(search_results)} results for query: {query_text}")
|
| 90 |
return search_results
|
| 91 |
|
| 92 |
-
|
| 93 |
-
def ensure_db_populated(db_instance: PolicyVectorDB, chunks_file_path: str) -> bool:
|
| 94 |
-
logger.info("[POPULATE] Checking vector DB...")
|
| 95 |
-
|
| 96 |
try:
|
| 97 |
if db_instance._get_collection().count() == 0:
|
| 98 |
if not os.path.exists(chunks_file_path):
|
| 99 |
-
|
| 100 |
return False
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
logger.info(f"[POPULATE] Loaded {len(chunks)} chunks. Populating DB...")
|
| 106 |
-
db_instance.add_chunks(chunks)
|
| 107 |
-
logger.info("[POPULATE] DB population complete.")
|
| 108 |
else:
|
| 109 |
-
|
| 110 |
-
return True
|
| 111 |
except Exception as e:
|
| 112 |
-
|
| 113 |
return False
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
+
import torch
|
|
|
|
| 4 |
from typing import List, Dict
|
|
|
|
|
|
|
| 5 |
from sentence_transformers import SentenceTransformer
|
| 6 |
+
import chromadb
|
| 7 |
+
from chromadb.config import Settings
|
|
|
|
| 8 |
|
| 9 |
class PolicyVectorDB:
|
| 10 |
+
def __init__(self, persist_directory: str, top_k_default: int = 5, relevance_threshold: float = 0.5):
|
| 11 |
self.persist_directory = persist_directory
|
| 12 |
+
self.client = chromadb.PersistentClient(path=persist_directory, settings=Settings(allow_reset=True))
|
| 13 |
self.collection_name = "neepco_dop_policies"
|
| 14 |
+
self.embedding_model = SentenceTransformer('BAAI/bge-large-en-v1.5', device='cuda' if torch.cuda.is_available() else 'cpu')
|
| 15 |
+
self.collection = None
|
| 16 |
self.top_k_default = top_k_default
|
| 17 |
self.relevance_threshold = relevance_threshold
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
def _get_collection(self):
|
| 20 |
if self.collection is None:
|
| 21 |
self.collection = self.client.get_or_create_collection(
|
| 22 |
name=self.collection_name,
|
| 23 |
metadata={"description": "NEEPCO Delegation of Powers Policy"}
|
| 24 |
)
|
|
|
|
| 25 |
return self.collection
|
| 26 |
|
| 27 |
def _flatten_metadata(self, metadata: Dict) -> Dict:
|
| 28 |
+
return {key: str(value) for key, value in metadata.items()}
|
| 29 |
|
| 30 |
def add_chunks(self, chunks: List[Dict]):
|
| 31 |
collection = self._get_collection()
|
| 32 |
if not chunks:
|
| 33 |
+
print("No chunks provided to add.")
|
| 34 |
return
|
|
|
|
| 35 |
existing_ids = set(collection.get()['ids'])
|
| 36 |
+
new_chunks = [chunk for chunk in chunks if chunk.get('id') not in existing_ids]
|
|
|
|
| 37 |
if not new_chunks:
|
| 38 |
+
print("No new chunks to add.")
|
| 39 |
return
|
|
|
|
|
|
|
| 40 |
batch_size = 128
|
| 41 |
for i in range(0, len(new_chunks), batch_size):
|
| 42 |
batch = new_chunks[i:i + batch_size]
|
| 43 |
+
texts = [chunk['text'] for chunk in batch]
|
| 44 |
+
ids = [chunk['id'] for chunk in batch]
|
| 45 |
+
metadatas = [self._flatten_metadata(chunk['metadata']) for chunk in batch]
|
|
|
|
| 46 |
embeddings = self.embedding_model.encode(texts, show_progress_bar=False).tolist()
|
| 47 |
collection.add(ids=ids, embeddings=embeddings, documents=texts, metadatas=metadatas)
|
|
|
|
|
|
|
| 48 |
|
| 49 |
def search(self, query_text: str, top_k: int = None) -> List[Dict]:
|
| 50 |
collection = self._get_collection()
|
|
|
|
|
|
|
| 51 |
query_embedding = self.embedding_model.encode([query_text]).tolist()
|
| 52 |
+
top_k = top_k if top_k else self.top_k_default
|
| 53 |
results = collection.query(
|
| 54 |
query_embeddings=query_embedding,
|
| 55 |
n_results=top_k,
|
| 56 |
include=["documents", "metadatas", "distances"]
|
| 57 |
)
|
|
|
|
| 58 |
search_results = []
|
| 59 |
+
for i, doc in enumerate(results['documents'][0]):
|
| 60 |
+
relevance_score = 1 - results['distances'][0][i]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
search_results.append({
|
| 62 |
+
'text': doc,
|
| 63 |
+
'metadata': results['metadatas'][0][i],
|
| 64 |
+
'relevance_score': relevance_score
|
| 65 |
})
|
|
|
|
|
|
|
| 66 |
return search_results
|
| 67 |
|
| 68 |
+
def ensure_db_populated(db_instance: PolicyVectorDB, chunks_file_path: str):
|
|
|
|
|
|
|
|
|
|
| 69 |
try:
|
| 70 |
if db_instance._get_collection().count() == 0:
|
| 71 |
if not os.path.exists(chunks_file_path):
|
| 72 |
+
print(f"Chunks file not found at {chunks_file_path}")
|
| 73 |
return False
|
| 74 |
+
with open(chunks_file_path, 'r', encoding='utf-8') as f:
|
| 75 |
+
chunks_to_add = json.load(f)
|
| 76 |
+
db_instance.add_chunks(chunks_to_add)
|
| 77 |
+
return True
|
|
|
|
|
|
|
|
|
|
| 78 |
else:
|
| 79 |
+
return True
|
|
|
|
| 80 |
except Exception as e:
|
| 81 |
+
print(f"DB Population Error: {e}")
|
| 82 |
return False
|