Spaces:
Sleeping
Sleeping
Update app/app.py
Browse files- app/app.py +132 -98
app/app.py
CHANGED
|
@@ -9,21 +9,6 @@ from pydantic import BaseModel
|
|
| 9 |
from llama_cpp import Llama
|
| 10 |
from app.policy_vector_db import PolicyVectorDB, ensure_db_populated
|
| 11 |
|
| 12 |
-
# -----------------------------
|
| 13 |
-
# β
Optimized Configuration for Hugging Face Free Tier
|
| 14 |
-
# -----------------------------
|
| 15 |
-
DB_PERSIST_DIRECTORY = os.getenv("DB_PERSIST_DIRECTORY", "/app/vector_database")
|
| 16 |
-
CHUNKS_FILE_PATH = os.getenv("CHUNKS_FILE_PATH", "/app/granular_chunks_final.jsonl")
|
| 17 |
-
MODEL_PATH = os.getenv("MODEL_PATH", "/app/tinyllama_dop_q4_k_m.gguf")
|
| 18 |
-
LLM_TIMEOUT_SECONDS = int(os.getenv("LLM_TIMEOUT_SECONDS", "60")) # Reduced timeout for free tier
|
| 19 |
-
RELEVANCE_THRESHOLD = float(os.getenv("RELEVANCE_THRESHOLD", "0.3"))
|
| 20 |
-
TOP_K_SEARCH = int(os.getenv("TOP_K_SEARCH", "3")) # Reduced for efficiency
|
| 21 |
-
TOP_K_CONTEXT = int(os.getenv("TOP_K_CONTEXT", "2"))
|
| 22 |
-
|
| 23 |
-
# β
Single-threaded CPU optimization
|
| 24 |
-
LLM_THREADS = 1 # Single thread for free tier
|
| 25 |
-
MAX_CONCURRENT_REQUESTS = 1 # Process one request at a time
|
| 26 |
-
|
| 27 |
# -----------------------------
|
| 28 |
# β
Logging Configuration
|
| 29 |
# -----------------------------
|
|
@@ -36,12 +21,25 @@ class RequestIdAdapter(logging.LoggerAdapter):
|
|
| 36 |
logger = logging.getLogger("app")
|
| 37 |
|
| 38 |
# -----------------------------
|
| 39 |
-
# β
|
| 40 |
# -----------------------------
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
# β
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
@app.middleware("http")
|
| 47 |
async def add_request_id(request: Request, call_next):
|
|
@@ -73,23 +71,19 @@ except Exception as e:
|
|
| 73 |
db_ready = False
|
| 74 |
|
| 75 |
# -----------------------------
|
| 76 |
-
# β
|
| 77 |
# -----------------------------
|
| 78 |
-
logger.info(f"Loading GGUF model
|
| 79 |
try:
|
| 80 |
llm = Llama(
|
| 81 |
model_path=MODEL_PATH,
|
| 82 |
-
n_ctx=
|
| 83 |
-
n_threads=
|
| 84 |
-
n_batch=
|
| 85 |
-
use_mlock=
|
| 86 |
-
|
| 87 |
-
verbose=False,
|
| 88 |
-
n_gpu_layers=0, # CPU only
|
| 89 |
-
f16_kv=True, # Use 16-bit for key-value cache to save memory
|
| 90 |
-
low_vram=True, # Enable low VRAM mode for better memory usage
|
| 91 |
)
|
| 92 |
-
logger.info("GGUF model loaded successfully
|
| 93 |
model_ready = True
|
| 94 |
except Exception as e:
|
| 95 |
logger.error(f"FATAL: Failed to load GGUF model: {e}", exc_info=True)
|
|
@@ -111,7 +105,7 @@ class Feedback(BaseModel):
|
|
| 111 |
comment: str | None = None
|
| 112 |
|
| 113 |
# -----------------------------
|
| 114 |
-
# β
Query Processing Functions
|
| 115 |
# -----------------------------
|
| 116 |
def classify_query_type(question: str) -> str:
|
| 117 |
"""Classify the type of query to choose appropriate search strategy."""
|
|
@@ -210,33 +204,34 @@ Your task is to answer the user's question based ONLY on the provided context.
|
|
| 210 |
return prompt
|
| 211 |
|
| 212 |
# -----------------------------
|
| 213 |
-
# β
|
| 214 |
# -----------------------------
|
| 215 |
-
def
|
| 216 |
-
"""
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
|
|
|
| 220 |
prompt,
|
| 221 |
-
max_tokens=
|
| 222 |
stop=["###", "Question:", "Context:", "</s>"],
|
| 223 |
-
temperature=0.
|
| 224 |
-
top_p=0.9,
|
| 225 |
-
repeat_penalty=1.1,
|
| 226 |
echo=False
|
| 227 |
)
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
| 237 |
|
| 238 |
# -----------------------------
|
| 239 |
-
# β
Endpoints with Request
|
| 240 |
# -----------------------------
|
| 241 |
def get_logger_adapter(request: Request):
|
| 242 |
return RequestIdAdapter(logger, {'request_id': getattr(request.state, 'request_id', 'N/A')})
|
|
@@ -244,10 +239,10 @@ def get_logger_adapter(request: Request):
|
|
| 244 |
@app.get("/")
|
| 245 |
async def root():
|
| 246 |
return {
|
| 247 |
-
"status": "β
Server is running
|
| 248 |
-
"mode": "
|
| 249 |
-
"
|
| 250 |
-
"
|
| 251 |
}
|
| 252 |
|
| 253 |
@app.get("/health")
|
|
@@ -256,8 +251,7 @@ async def health_check():
|
|
| 256 |
"status": "ok",
|
| 257 |
"database_status": "ready" if db_ready else "error",
|
| 258 |
"model_status": "ready" if model_ready else "error",
|
| 259 |
-
"processing_mode": "
|
| 260 |
-
"max_concurrent_requests": MAX_CONCURRENT_REQUESTS
|
| 261 |
}
|
| 262 |
if not db_ready or not model_ready:
|
| 263 |
raise HTTPException(status_code=503, detail=status)
|
|
@@ -265,14 +259,19 @@ async def health_check():
|
|
| 265 |
|
| 266 |
@app.post("/chat")
|
| 267 |
async def chat(query: Query, request: Request):
|
| 268 |
-
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
adapter = get_logger_adapter(request)
|
| 271 |
-
adapter.info("Processing request (single-threaded mode)")
|
| 272 |
-
|
| 273 |
question_lower = query.question.strip().lower()
|
| 274 |
|
| 275 |
-
#
|
| 276 |
greeting_keywords = ["hello", "hi", "hey", "what can you do", "who are you"]
|
| 277 |
if question_lower in greeting_keywords:
|
| 278 |
adapter.info(f"Handling a greeting or introductory query: '{query.question}'")
|
|
@@ -300,22 +299,32 @@ async def chat(query: Query, request: Request):
|
|
| 300 |
|
| 301 |
search_results = []
|
| 302 |
|
|
|
|
| 303 |
if query_type == "monetary":
|
| 304 |
amount = extract_monetary_amount(query.question)
|
| 305 |
if amount:
|
| 306 |
adapter.info(f"Extracted monetary amount: βΉ{amount}")
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
|
|
|
|
|
|
|
|
|
| 311 |
|
| 312 |
if not search_results:
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
if not search_results:
|
| 321 |
adapter.warning("No relevant context found in vector DB.")
|
|
@@ -326,43 +335,62 @@ async def chat(query: Query, request: Request):
|
|
| 326 |
"answer": "Sorry, I could not find a relevant policy to answer that question. Please try rephrasing or ask about specific delegation limits, approval authorities, or procedures."
|
| 327 |
}
|
| 328 |
|
| 329 |
-
# Log search results
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
metadata = result.get('metadata', {})
|
| 333 |
-
role = metadata.get('role', 'N/A')
|
| 334 |
-
section = metadata.get('section', 'N/A')
|
| 335 |
-
score = result.get('relevance_score', 0)
|
| 336 |
-
result_info.append(f"#{i+1}: Score={score:.3f}, Role={role}, Section={section}")
|
| 337 |
-
|
| 338 |
-
adapter.info(f"Search results: {' | '.join(result_info)}")
|
| 339 |
|
| 340 |
-
# Prepare context with metadata
|
| 341 |
context_chunks = []
|
| 342 |
for result in search_results[:TOP_K_CONTEXT]:
|
| 343 |
chunk_text = result['text']
|
| 344 |
metadata = result.get('metadata', {})
|
| 345 |
|
| 346 |
-
if metadata.get('section') or metadata.get('role'):
|
| 347 |
metadata_prefix = f"[Section: {metadata.get('section', 'N/A')}, Role: {metadata.get('role', 'N/A')}] "
|
| 348 |
chunk_text = metadata_prefix + chunk_text
|
| 349 |
|
| 350 |
context_chunks.append(chunk_text)
|
| 351 |
|
| 352 |
context = "\n---\n".join(context_chunks)
|
| 353 |
-
prompt = build_enhanced_prompt(query.question, context, query_type, search_results)
|
| 354 |
|
| 355 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
answer = "An error occurred while processing your request."
|
| 357 |
try:
|
| 358 |
-
adapter.info(
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
adapter.info(f"LLM generation successful. Raw response: {raw_answer[:250]}...")
|
| 364 |
|
| 365 |
-
# Post-processing
|
| 366 |
if '|' in raw_answer:
|
| 367 |
adapter.info("Pipe separator found. Formatting response as a bulleted list.")
|
| 368 |
items = raw_answer.split('|')
|
|
@@ -371,10 +399,14 @@ async def chat(query: Query, request: Request):
|
|
| 371 |
else:
|
| 372 |
answer = raw_answer.strip()
|
| 373 |
|
|
|
|
| 374 |
if query_type == "monetary" and "βΉ" not in answer and extract_monetary_amount(query.question):
|
| 375 |
amount = extract_monetary_amount(query.question)
|
| 376 |
answer = f"For amounts of βΉ{amount:,.0f}:\n\n{answer}"
|
| 377 |
|
|
|
|
|
|
|
|
|
|
| 378 |
except Exception as e:
|
| 379 |
adapter.error(f"An unexpected error occurred during LLM generation: {e}", exc_info=True)
|
| 380 |
answer = "Sorry, an unexpected error occurred while generating a response."
|
|
@@ -385,10 +417,13 @@ async def chat(query: Query, request: Request):
|
|
| 385 |
"question": query.question,
|
| 386 |
"context_used": context,
|
| 387 |
"answer": answer,
|
| 388 |
-
"query_type": query_type
|
| 389 |
-
"search_strategy": "monetary" if query_type == "monetary" and extract_monetary_amount(query.question) else "semantic_with_context",
|
| 390 |
-
"processing_mode": "single_threaded"
|
| 391 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
|
| 393 |
@app.post("/feedback")
|
| 394 |
async def collect_feedback(feedback: Feedback, request: Request):
|
|
@@ -405,7 +440,6 @@ async def collect_feedback(feedback: Feedback, request: Request):
|
|
| 405 |
adapter.info(json.dumps(feedback_log))
|
| 406 |
return {"status": "β
Feedback recorded. Thank you!"}
|
| 407 |
|
| 408 |
-
# β
No cleanup needed for single-threaded processing
|
| 409 |
@app.on_event("shutdown")
|
| 410 |
async def shutdown_event():
|
| 411 |
-
logger.info("Application shutting down
|
|
|
|
| 9 |
from llama_cpp import Llama
|
| 10 |
from app.policy_vector_db import PolicyVectorDB, ensure_db_populated
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# -----------------------------
|
| 13 |
# β
Logging Configuration
|
| 14 |
# -----------------------------
|
|
|
|
| 21 |
logger = logging.getLogger("app")
|
| 22 |
|
| 23 |
# -----------------------------
|
| 24 |
+
# β
Configuration - Restored Original Efficient Settings
|
| 25 |
# -----------------------------
|
| 26 |
+
DB_PERSIST_DIRECTORY = os.getenv("DB_PERSIST_DIRECTORY", "/app/vector_database")
|
| 27 |
+
CHUNKS_FILE_PATH = os.getenv("CHUNKS_FILE_PATH", "/app/granular_chunks_final.jsonl")
|
| 28 |
+
MODEL_PATH = os.getenv("MODEL_PATH", "/app/tinyllama_dop_q4_k_m.gguf")
|
| 29 |
+
LLM_TIMEOUT_SECONDS = int(os.getenv("LLM_TIMEOUT_SECONDS", "90")) # Back to original timeout
|
| 30 |
+
RELEVANCE_THRESHOLD = float(os.getenv("RELEVANCE_THRESHOLD", "0.3"))
|
| 31 |
+
TOP_K_SEARCH = int(os.getenv("TOP_K_SEARCH", "3")) # Keep reduced for efficiency
|
| 32 |
+
TOP_K_CONTEXT = int(os.getenv("TOP_K_CONTEXT", "1")) # Keep reduced for efficiency
|
| 33 |
|
| 34 |
+
# β
Single request processing without blocking semaphore
|
| 35 |
+
MAX_CONCURRENT_REQUESTS = 1
|
| 36 |
+
request_in_progress = False
|
| 37 |
+
request_lock = asyncio.Lock()
|
| 38 |
+
|
| 39 |
+
# -----------------------------
|
| 40 |
+
# β
Initialize FastAPI App
|
| 41 |
+
# -----------------------------
|
| 42 |
+
app = FastAPI(title="NEEPCO DoP RAG Chatbot", version="2.5.0")
|
| 43 |
|
| 44 |
@app.middleware("http")
|
| 45 |
async def add_request_id(request: Request, call_next):
|
|
|
|
| 71 |
db_ready = False
|
| 72 |
|
| 73 |
# -----------------------------
|
| 74 |
+
# β
Load GGUF Model - Restored Original Efficient Settings
|
| 75 |
# -----------------------------
|
| 76 |
+
logger.info(f"Loading GGUF model from: {MODEL_PATH}")
|
| 77 |
try:
|
| 78 |
llm = Llama(
|
| 79 |
model_path=MODEL_PATH,
|
| 80 |
+
n_ctx=4096, # β
Restored original context size
|
| 81 |
+
n_threads=4, # β
Restored original thread count for efficient CPU usage
|
| 82 |
+
n_batch=512, # β
Restored original batch size
|
| 83 |
+
use_mlock=True, # β
Restored original memory settings
|
| 84 |
+
verbose=False
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
)
|
| 86 |
+
logger.info("GGUF model loaded successfully.")
|
| 87 |
model_ready = True
|
| 88 |
except Exception as e:
|
| 89 |
logger.error(f"FATAL: Failed to load GGUF model: {e}", exc_info=True)
|
|
|
|
| 105 |
comment: str | None = None
|
| 106 |
|
| 107 |
# -----------------------------
|
| 108 |
+
# β
Enhanced Query Processing Functions
|
| 109 |
# -----------------------------
|
| 110 |
def classify_query_type(question: str) -> str:
|
| 111 |
"""Classify the type of query to choose appropriate search strategy."""
|
|
|
|
| 204 |
return prompt
|
| 205 |
|
| 206 |
# -----------------------------
|
| 207 |
+
# β
Efficient LLM Response Generation - Restored Original Async Pattern
|
| 208 |
# -----------------------------
|
| 209 |
+
async def generate_llm_response(prompt: str, request_id: str):
|
| 210 |
+
"""Async LLM generation using original efficient pattern."""
|
| 211 |
+
loop = asyncio.get_running_loop()
|
| 212 |
+
|
| 213 |
+
def llm_call():
|
| 214 |
+
return llm(
|
| 215 |
prompt,
|
| 216 |
+
max_tokens=2048, # β
Restored original token limit
|
| 217 |
stop=["###", "Question:", "Context:", "</s>"],
|
| 218 |
+
temperature=0.05, # β
Restored original temperature
|
|
|
|
|
|
|
| 219 |
echo=False
|
| 220 |
)
|
| 221 |
+
|
| 222 |
+
# β
Use original async executor pattern for efficient CPU usage
|
| 223 |
+
response = await loop.run_in_executor(None, llm_call)
|
| 224 |
+
|
| 225 |
+
if response and "choices" in response and len(response["choices"]) > 0:
|
| 226 |
+
answer = response["choices"][0]["text"].strip()
|
| 227 |
+
if not answer:
|
| 228 |
+
raise ValueError("Empty response from LLM")
|
| 229 |
+
return answer
|
| 230 |
+
else:
|
| 231 |
+
raise ValueError("Invalid response from LLM")
|
| 232 |
|
| 233 |
# -----------------------------
|
| 234 |
+
# β
Endpoints with Lightweight Request Management
|
| 235 |
# -----------------------------
|
| 236 |
def get_logger_adapter(request: Request):
|
| 237 |
return RequestIdAdapter(logger, {'request_id': getattr(request.state, 'request_id', 'N/A')})
|
|
|
|
| 239 |
@app.get("/")
|
| 240 |
async def root():
|
| 241 |
return {
|
| 242 |
+
"status": "β
Server is running efficiently",
|
| 243 |
+
"mode": "CPU optimized for Hugging Face",
|
| 244 |
+
"model_loaded": model_ready,
|
| 245 |
+
"db_ready": db_ready
|
| 246 |
}
|
| 247 |
|
| 248 |
@app.get("/health")
|
|
|
|
| 251 |
"status": "ok",
|
| 252 |
"database_status": "ready" if db_ready else "error",
|
| 253 |
"model_status": "ready" if model_ready else "error",
|
| 254 |
+
"processing_mode": "efficient_cpu_usage"
|
|
|
|
| 255 |
}
|
| 256 |
if not db_ready or not model_ready:
|
| 257 |
raise HTTPException(status_code=503, detail=status)
|
|
|
|
| 259 |
|
| 260 |
@app.post("/chat")
|
| 261 |
async def chat(query: Query, request: Request):
|
| 262 |
+
global request_in_progress
|
| 263 |
+
|
| 264 |
+
# β
Lightweight request management - reject if busy instead of blocking
|
| 265 |
+
async with request_lock:
|
| 266 |
+
if request_in_progress:
|
| 267 |
+
raise HTTPException(status_code=429, detail="Server is busy processing another request. Please try again in a moment.")
|
| 268 |
+
request_in_progress = True
|
| 269 |
+
|
| 270 |
+
try:
|
| 271 |
adapter = get_logger_adapter(request)
|
|
|
|
|
|
|
| 272 |
question_lower = query.question.strip().lower()
|
| 273 |
|
| 274 |
+
# --- GREETING & INTRO HANDLING ---
|
| 275 |
greeting_keywords = ["hello", "hi", "hey", "what can you do", "who are you"]
|
| 276 |
if question_lower in greeting_keywords:
|
| 277 |
adapter.info(f"Handling a greeting or introductory query: '{query.question}'")
|
|
|
|
| 299 |
|
| 300 |
search_results = []
|
| 301 |
|
| 302 |
+
# Enhanced search strategy
|
| 303 |
if query_type == "monetary":
|
| 304 |
amount = extract_monetary_amount(query.question)
|
| 305 |
if amount:
|
| 306 |
adapter.info(f"Extracted monetary amount: βΉ{amount}")
|
| 307 |
+
try:
|
| 308 |
+
monetary_results = db.search_by_amount(amount, comparison=">=", top_k=TOP_K_SEARCH)
|
| 309 |
+
if monetary_results:
|
| 310 |
+
search_results = monetary_results
|
| 311 |
+
adapter.info(f"Found {len(search_results)} results using monetary search")
|
| 312 |
+
except:
|
| 313 |
+
adapter.info("Monetary search not available, falling back to semantic search")
|
| 314 |
|
| 315 |
if not search_results:
|
| 316 |
+
# Use enhanced search if available, otherwise fallback to basic search
|
| 317 |
+
try:
|
| 318 |
+
search_results = db.search_with_context(
|
| 319 |
+
query.question,
|
| 320 |
+
top_k=TOP_K_SEARCH,
|
| 321 |
+
include_related=True
|
| 322 |
+
)
|
| 323 |
+
adapter.info(f"Found {len(search_results)} results using enhanced semantic search")
|
| 324 |
+
except:
|
| 325 |
+
# Fallback to basic search
|
| 326 |
+
search_results = db.search(query.question, top_k=TOP_K_SEARCH)
|
| 327 |
+
adapter.info(f"Found {len(search_results)} results using basic search")
|
| 328 |
|
| 329 |
if not search_results:
|
| 330 |
adapter.warning("No relevant context found in vector DB.")
|
|
|
|
| 335 |
"answer": "Sorry, I could not find a relevant policy to answer that question. Please try rephrasing or ask about specific delegation limits, approval authorities, or procedures."
|
| 336 |
}
|
| 337 |
|
| 338 |
+
# Log search results
|
| 339 |
+
scores = [f"{result.get('relevance_score', 0):.4f}" for result in search_results]
|
| 340 |
+
adapter.info(f"Found {len(search_results)} relevant chunks with scores: {scores}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
|
| 342 |
+
# Prepare context with metadata if available
|
| 343 |
context_chunks = []
|
| 344 |
for result in search_results[:TOP_K_CONTEXT]:
|
| 345 |
chunk_text = result['text']
|
| 346 |
metadata = result.get('metadata', {})
|
| 347 |
|
| 348 |
+
if metadata and (metadata.get('section') or metadata.get('role')):
|
| 349 |
metadata_prefix = f"[Section: {metadata.get('section', 'N/A')}, Role: {metadata.get('role', 'N/A')}] "
|
| 350 |
chunk_text = metadata_prefix + chunk_text
|
| 351 |
|
| 352 |
context_chunks.append(chunk_text)
|
| 353 |
|
| 354 |
context = "\n---\n".join(context_chunks)
|
|
|
|
| 355 |
|
| 356 |
+
# Build prompt - use enhanced if search results have metadata, otherwise simple
|
| 357 |
+
if any(result.get('metadata') for result in search_results):
|
| 358 |
+
prompt = build_enhanced_prompt(query.question, context, query_type, search_results)
|
| 359 |
+
adapter.info(f"Using enhanced prompt for {query_type} query")
|
| 360 |
+
else:
|
| 361 |
+
# Fallback to original simple prompt
|
| 362 |
+
prompt = f"""<|system|>
|
| 363 |
+
You are a precise and factual assistant for NEEPCO's Delegation of Powers (DoP) policy.
|
| 364 |
+
Your task is to answer the user's question based ONLY on the provided context.
|
| 365 |
+
|
| 366 |
+
- **Formatting Rule:** If the answer contains a list of items or steps, you **MUST** separate each item with a pipe symbol (`|`). For example: `First item|Second item|Third item`.
|
| 367 |
+
- **Content Rule:** If the information is not in the provided context, you **MUST** reply with the exact phrase: "The provided policy context does not contain information on this topic."
|
| 368 |
+
</s>
|
| 369 |
+
<|user|>
|
| 370 |
+
### Relevant Context:
|
| 371 |
+
```
|
| 372 |
+
{context}
|
| 373 |
+
```
|
| 374 |
+
|
| 375 |
+
### Question:
|
| 376 |
+
{query.question}
|
| 377 |
+
</s>
|
| 378 |
+
<|assistant|>
|
| 379 |
+
### Detailed Answer:
|
| 380 |
+
"""
|
| 381 |
+
adapter.info("Using original simple prompt")
|
| 382 |
+
|
| 383 |
+
# Generate response using original efficient async pattern
|
| 384 |
answer = "An error occurred while processing your request."
|
| 385 |
try:
|
| 386 |
+
adapter.info("Sending prompt to LLM for generation...")
|
| 387 |
+
raw_answer = await asyncio.wait_for(
|
| 388 |
+
generate_llm_response(prompt, request.state.request_id),
|
| 389 |
+
timeout=LLM_TIMEOUT_SECONDS
|
| 390 |
+
)
|
| 391 |
adapter.info(f"LLM generation successful. Raw response: {raw_answer[:250]}...")
|
| 392 |
|
| 393 |
+
# Post-processing logic
|
| 394 |
if '|' in raw_answer:
|
| 395 |
adapter.info("Pipe separator found. Formatting response as a bulleted list.")
|
| 396 |
items = raw_answer.split('|')
|
|
|
|
| 399 |
else:
|
| 400 |
answer = raw_answer.strip()
|
| 401 |
|
| 402 |
+
# Add monetary context if needed
|
| 403 |
if query_type == "monetary" and "βΉ" not in answer and extract_monetary_amount(query.question):
|
| 404 |
amount = extract_monetary_amount(query.question)
|
| 405 |
answer = f"For amounts of βΉ{amount:,.0f}:\n\n{answer}"
|
| 406 |
|
| 407 |
+
except asyncio.TimeoutError:
|
| 408 |
+
adapter.warning(f"LLM generation timed out after {LLM_TIMEOUT_SECONDS} seconds.")
|
| 409 |
+
answer = "Sorry, the request took too long to process. Please try again with a simpler question."
|
| 410 |
except Exception as e:
|
| 411 |
adapter.error(f"An unexpected error occurred during LLM generation: {e}", exc_info=True)
|
| 412 |
answer = "Sorry, an unexpected error occurred while generating a response."
|
|
|
|
| 417 |
"question": query.question,
|
| 418 |
"context_used": context,
|
| 419 |
"answer": answer,
|
| 420 |
+
"query_type": query_type if 'query_type' in locals() else "general"
|
|
|
|
|
|
|
| 421 |
}
|
| 422 |
+
|
| 423 |
+
finally:
|
| 424 |
+
# β
Always release the lock
|
| 425 |
+
async with request_lock:
|
| 426 |
+
request_in_progress = False
|
| 427 |
|
| 428 |
@app.post("/feedback")
|
| 429 |
async def collect_feedback(feedback: Feedback, request: Request):
|
|
|
|
| 440 |
adapter.info(json.dumps(feedback_log))
|
| 441 |
return {"status": "β
Feedback recorded. Thank you!"}
|
| 442 |
|
|
|
|
| 443 |
@app.on_event("shutdown")
|
| 444 |
async def shutdown_event():
|
| 445 |
+
logger.info("Application shutting down.")
|