|
from pathlib import Path |
|
from typing import List |
|
|
|
import cv2 |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
|
|
from models import phc_models |
|
from utils import utils, page_utils |
|
|
|
device = torch.device('cpu') |
|
if torch.cuda.is_available(): |
|
device = torch.device('cuda:0') |
|
|
|
BILATERIAL_WEIGHT = 'weights/phresnet18_cbis2views.pt' |
|
BILATERAL_MODEL = phc_models.PHCResNet18( |
|
channels=2, n=2, num_classes=1, visualize=True) |
|
BILATERAL_MODEL.add_top_blocks(num_classes=1) |
|
BILATERAL_MODEL.load_state_dict(torch.load( |
|
BILATERIAL_WEIGHT, map_location='cpu')) |
|
BILATERAL_MODEL = BILATERAL_MODEL.to(device) |
|
BILATERAL_MODEL.eval() |
|
INPUT_HEIGHT, INPUT_WIDTH = 600, 500 |
|
|
|
SUPPORTED_IMG_EXT = ['.png', '.jpg', '.jpeg'] |
|
EXAMPLE_IMAGES = [ |
|
['examples/f4b2d377f43ba0bd_left_cc.png', |
|
'examples/f4b2d377f43ba0bd_left_mlo.jpg'], |
|
['examples/f4b2d377f43ba0bd_right_cc.png', |
|
'examples/f4b2d377f43ba0bd_right_mlo.jpeg'], |
|
['examples/P_00001_LEFT_cc.jpg', 'examples/P_00001_LEFT_mlo.jpeg'], |
|
] |
|
|
|
|
|
test_images = np.random.randint(0, 255, (2, INPUT_HEIGHT, INPUT_WIDTH)) |
|
test_images = torch.from_numpy(test_images).to(device) |
|
test_images = test_images.unsqueeze(0) |
|
for _ in range(10): |
|
_, _, _ = BILATERAL_MODEL(test_images) |
|
test_images = None |
|
|
|
|
|
def filter_files(files: List) -> List: |
|
"""Filter uploaded files. |
|
|
|
The model requires a pair of CC-MLO view of the breast scan. |
|
This function will filter and ensure the inputs are as expected. |
|
FIlter: |
|
- Not enough number of files |
|
- Unsupported extensions |
|
- Missing required pair or part |
|
|
|
Parameters |
|
---------- |
|
files : List[tempfile._TemporaryFileWrapper] |
|
List of path to downloaded files |
|
|
|
Returns |
|
------- |
|
List[pathlib.Path] |
|
List of path to downloaded files |
|
|
|
Raises |
|
------ |
|
gr.Error |
|
If the files is not equal to 2, |
|
gr.Error |
|
If the extension is unsupported |
|
gr.Error |
|
If specific view or side of mammography is missing. |
|
""" |
|
if len(files) != 2: |
|
raise gr.Error( |
|
f'Need exactly 2 images. Currently have {len(files)} images!') |
|
|
|
file_paths = [Path(file.name) for file in files] |
|
|
|
if not all([path.suffix in SUPPORTED_IMG_EXT for path in file_paths]): |
|
raise gr.Error(f'There is a file with unsupported type. \ |
|
Make sure all files are in {SUPPORTED_IMG_EXT}!') |
|
|
|
|
|
table = np.zeros((2, 2), dtype=bool) |
|
bin_left = 0 |
|
bin_right = 0 |
|
cc_first = False |
|
for idx, file in enumerate(file_paths): |
|
|
|
splits = file.name.split('_') |
|
|
|
|
|
if any(['cc' in part.lower() for part in splits]): |
|
table[0, :] = [True, True] |
|
if idx == 0: |
|
cc_first = True |
|
if any(['mlo' in part.lower() for part in splits]): |
|
table[1, :] = [True, True] |
|
|
|
|
|
if any(['left' in part.lower() for part in splits]): |
|
table[:, 0] &= True |
|
bin_left += 1 |
|
elif any(['right' in part.lower() for part in splits]): |
|
table[:, 1] &= True |
|
bin_right += 1 |
|
|
|
|
|
if not cc_first: |
|
file_paths.reverse() |
|
|
|
|
|
if bin_left < 2: |
|
table[:, 0] &= False |
|
if bin_right < 2: |
|
table[:, 1] &= False |
|
|
|
if not any([all(table[:, 0]), all(table[:, 1])]): |
|
raise gr.Error('Missing bilateral-view pair for Left or Right side.') |
|
|
|
return file_paths |
|
|
|
|
|
def predict_bilateral(cc_file, mlo_file): |
|
"""Predict Bilateral Mammography. |
|
|
|
Parameters |
|
---------- |
|
files : List[tempfile._TemporaryFileWrapper] |
|
TemporaryFile object for the uploaded file |
|
|
|
Returns |
|
------- |
|
List[List, Dict] |
|
List of objects that will be used to display the result |
|
""" |
|
|
|
filtered_files = filter_files([cc_file, mlo_file]) |
|
|
|
displays_imgs = [] |
|
images = [] |
|
|
|
for path in filtered_files: |
|
image = np.array(Image.open(str(path))) |
|
image = cv2.normalize( |
|
image, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U) |
|
image = cv2.resize( |
|
image, (INPUT_WIDTH, INPUT_HEIGHT), interpolation=cv2.INTER_LINEAR) |
|
|
|
images.append(image) |
|
|
|
images = np.asarray(images).astype(np.float32) |
|
im_h, im_w = images[0].shape[:2] |
|
|
|
images_t = torch.from_numpy(images) |
|
images_t = images_t.unsqueeze(0) |
|
images_t = images_t.to(device) |
|
|
|
out, _, out_refiner = BILATERAL_MODEL(images_t) |
|
|
|
out_refiner = utils.mean_activations(out_refiner).numpy() |
|
|
|
probability = torch.sigmoid(out).detach().cpu().item() |
|
label_name = 'Malignant' if probability > 0.5 else 'Normal/Benign' |
|
lebels_dict = {label_name: probability} |
|
|
|
refined_view_norm = cv2.normalize( |
|
out_refiner, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U) |
|
refined_view = cv2.applyColorMap(refined_view_norm, cv2.COLORMAP_JET) |
|
refined_view = cv2.resize( |
|
refined_view, (im_w, im_h), interpolation=cv2.INTER_LINEAR) |
|
|
|
image0_colored = cv2.normalize( |
|
images[0], None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U) |
|
image0_colored = cv2.cvtColor(image0_colored, cv2.COLOR_GRAY2RGB) |
|
image1_colored = cv2.normalize( |
|
images[1], None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U) |
|
image1_colored = cv2.cvtColor(image1_colored, cv2.COLOR_GRAY2RGB) |
|
|
|
heatmap0_overlay = cv2.addWeighted( |
|
image0_colored, 1.0, refined_view, 0.5, 0) |
|
heatmap1_overlay = cv2.addWeighted( |
|
image1_colored, 1.0, refined_view, 0.5, 0) |
|
|
|
displays_imgs += [(image0_colored, 'CC'), (image1_colored, 'MLO')] |
|
|
|
displays_imgs.append((heatmap0_overlay, 'CC Interest Area')) |
|
displays_imgs.append((heatmap1_overlay, 'MLO Interest Area')) |
|
|
|
return displays_imgs, lebels_dict |
|
|
|
|
|
def run(): |
|
"""Run Gradio App.""" |
|
with open('index.html', encoding='utf-8') as f: |
|
html_content = f.read() |
|
|
|
with gr.Blocks(theme=gr.themes.Default(primary_hue=page_utils.KALBE_THEME_COLOR, secondary_hue=page_utils.KALBE_THEME_COLOR).set( |
|
button_primary_background_fill='*primary_600', |
|
button_primary_background_fill_hover='*primary_500', |
|
button_primary_text_color='white', |
|
)) as demo: |
|
with gr.Column(): |
|
gr.HTML(html_content) |
|
with gr.Row(): |
|
with gr.Column(): |
|
cc_file = gr.File(file_count='single', |
|
file_types=SUPPORTED_IMG_EXT, label='CC View') |
|
mlo_file = gr.File(file_count='single', |
|
file_types=SUPPORTED_IMG_EXT, label='MLO View') |
|
with gr.Row(): |
|
clear_btn = gr.Button('Clear') |
|
process_btn = gr.Button('Process', variant="primary") |
|
with gr.Column(): |
|
output_gallery = gr.Gallery( |
|
label='Highlighted Area').style(grid=[2], height='auto') |
|
cancer_type = gr.Label(label='Cancer Type') |
|
gr.Examples( |
|
examples=EXAMPLE_IMAGES, |
|
inputs=[cc_file, mlo_file], |
|
) |
|
gr.Markdown('Note that this method is sensitive to input image types.\ |
|
Current pipeline expect the values between 0.0-255.0') |
|
|
|
process_btn.click( |
|
fn=predict_bilateral, |
|
inputs=[cc_file, mlo_file], |
|
outputs=[output_gallery, cancer_type] |
|
) |
|
|
|
clear_btn.click( |
|
lambda _: ( |
|
gr.update(value=None), |
|
gr.update(value=None), |
|
gr.update(value=None), |
|
gr.update(value=None), |
|
), |
|
inputs=None, |
|
outputs=[ |
|
cc_file, |
|
mlo_file, |
|
output_gallery, |
|
cancer_type, |
|
], |
|
) |
|
|
|
demo.launch(server_name='0.0.0.0', server_port=7860) |
|
|
|
|
|
if __name__ == '__main__': |
|
run() |
|
|