muchlisinadi
commited on
Commit
·
54f43fd
1
Parent(s):
9cb2b92
init
Browse files- app.py +79 -0
- configs/evaluate.json +38 -0
- configs/inference-Copy1.json +131 -0
- configs/inference.json +131 -0
- configs/logging.conf +21 -0
- configs/metadata.json +119 -0
- configs/multi_gpu_train.json +36 -0
- configs/train.json +525 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import torch
|
3 |
+
from monai.bundle import ConfigParser
|
4 |
+
import gradio as gr
|
5 |
+
import pickle
|
6 |
+
import torchvision.transforms as T
|
7 |
+
import numpy as np
|
8 |
+
import random
|
9 |
+
|
10 |
+
parser = ConfigParser()
|
11 |
+
parser.read_config(f="configs/inference.json")
|
12 |
+
parser.read_meta(f="configs/metadata.json")
|
13 |
+
|
14 |
+
inference = parser.get_parsed_content("inferer")
|
15 |
+
# loader = parser.get_parsed_content("dataloader")
|
16 |
+
network = parser.get_parsed_content("network_def")
|
17 |
+
preprocess = parser.get_parsed_content("preprocessing")
|
18 |
+
postprocess = parser.get_parsed_content("postprocessing")
|
19 |
+
|
20 |
+
state_dict = torch.load("models/model.pt")
|
21 |
+
network.load_state_dict(state_dict, strict=True)
|
22 |
+
|
23 |
+
label2color = {0: (0, 0, 0),
|
24 |
+
1: (225, 24, 69), # RED
|
25 |
+
2: (135, 233, 17), # GREEN
|
26 |
+
3: (0, 87, 233), # BLUE
|
27 |
+
4: (242, 202, 25), # YELLOW
|
28 |
+
5: (137, 49, 239),} # PURPLE
|
29 |
+
|
30 |
+
example_files = list(Path("sample_data").glob("*.png"))
|
31 |
+
|
32 |
+
def visualize_instance_seg_mask(mask):
|
33 |
+
image = np.zeros((mask.shape[0], mask.shape[1], 3))
|
34 |
+
labels = np.unique(mask)
|
35 |
+
for i in range(image.shape[0]):
|
36 |
+
for j in range(image.shape[1]):
|
37 |
+
image[i, j, :] = label2color[mask[i, j]]
|
38 |
+
image = image / 255
|
39 |
+
return image
|
40 |
+
|
41 |
+
def query_image(img, progress=gr.Progress(track_tqdm=True)):
|
42 |
+
data = {"image": img}
|
43 |
+
batch = preprocess(data)
|
44 |
+
|
45 |
+
# with open('filename.pickle', 'rb') as handle:
|
46 |
+
# pred = pickle.load(handle)
|
47 |
+
# batch["pred"] = pred
|
48 |
+
|
49 |
+
network.eval()
|
50 |
+
with torch.no_grad():
|
51 |
+
pred = inference(batch['image'].unsqueeze(dim=0), network)
|
52 |
+
|
53 |
+
batch["pred"] = pred
|
54 |
+
for k,v in batch["pred"].items():
|
55 |
+
batch["pred"][k] = v.squeeze(dim=0)
|
56 |
+
|
57 |
+
batch = postprocess(batch)
|
58 |
+
|
59 |
+
result = visualize_instance_seg_mask(batch["type_map"].squeeze())
|
60 |
+
|
61 |
+
# Combine image
|
62 |
+
result = batch["image"].permute(1, 2, 0).cpu().numpy() * 0.5 + result * 0.5
|
63 |
+
|
64 |
+
# Solve rotating problem
|
65 |
+
result = np.fliplr(result)
|
66 |
+
result = np.rot90(result, k=1)
|
67 |
+
|
68 |
+
return result
|
69 |
+
|
70 |
+
demo = gr.Interface(
|
71 |
+
query_image,
|
72 |
+
inputs=[gr.Image(type="filepath")],
|
73 |
+
outputs="image",
|
74 |
+
title="Medical Image Classification with MONAI - Pathology Nuclei Segmentation Classification",
|
75 |
+
description = "Please upload an image to see segmentation capabilities of this model",
|
76 |
+
examples=example_files
|
77 |
+
)
|
78 |
+
|
79 |
+
demo.queue(concurrency_count=20).launch()
|
configs/evaluate.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"network_def": {
|
3 |
+
"_target_": "HoVerNet",
|
4 |
+
"mode": "@hovernet_mode",
|
5 |
+
"adapt_standard_resnet": true,
|
6 |
+
"in_channels": 3,
|
7 |
+
"out_classes": 5
|
8 |
+
},
|
9 |
+
"validate#handlers": [
|
10 |
+
{
|
11 |
+
"_target_": "CheckpointLoader",
|
12 |
+
"load_path": "$os.path.join(@bundle_root, 'models', 'model.pt')",
|
13 |
+
"load_dict": {
|
14 |
+
"model": "@network"
|
15 |
+
}
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"_target_": "StatsHandler",
|
19 |
+
"iteration_log": false
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"_target_": "MetricsSaver",
|
23 |
+
"save_dir": "@output_dir",
|
24 |
+
"metrics": [
|
25 |
+
"val_mean_dice"
|
26 |
+
],
|
27 |
+
"metric_details": [
|
28 |
+
"val_mean_dice"
|
29 |
+
],
|
30 |
+
"batch_transform": "$monai.handlers.from_engine(['image_meta_dict'])",
|
31 |
+
"summary_ops": "*"
|
32 |
+
}
|
33 |
+
],
|
34 |
+
"evaluating": [
|
35 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)",
|
36 |
+
"$@validate#evaluator.run()"
|
37 |
+
]
|
38 |
+
}
|
configs/inference-Copy1.json
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imports": [
|
3 |
+
"$import glob",
|
4 |
+
"$import os"
|
5 |
+
],
|
6 |
+
"bundle_root": "$os.getcwd()",
|
7 |
+
"output_dir": ".",
|
8 |
+
"dataset_dir": "CoNSeP/Test/Images",
|
9 |
+
"num_cpus": 6,
|
10 |
+
"batch_size": 1,
|
11 |
+
"sw_batch_size": 16,
|
12 |
+
"hovernet_mode": "fast",
|
13 |
+
"patch_size": 256,
|
14 |
+
"out_size": 164,
|
15 |
+
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
16 |
+
"network_def": {
|
17 |
+
"_target_": "HoVerNet",
|
18 |
+
"mode": "@hovernet_mode",
|
19 |
+
"adapt_standard_resnet": true,
|
20 |
+
"in_channels": 3,
|
21 |
+
"out_classes": 5
|
22 |
+
},
|
23 |
+
"network": "$@network_def.to(@device)",
|
24 |
+
"preprocessing": {
|
25 |
+
"_target_": "Compose",
|
26 |
+
"transforms": [
|
27 |
+
{
|
28 |
+
"_target_": "LoadImaged",
|
29 |
+
"keys": "image",
|
30 |
+
"reader": "$monai.data.PILReader",
|
31 |
+
"converter": "$lambda x: x.convert('RGB')"
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"_target_": "EnsureChannelFirstd",
|
35 |
+
"keys": "image"
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"_target_": "CastToTyped",
|
39 |
+
"keys": "image",
|
40 |
+
"dtype": "float32"
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"_target_": "ScaleIntensityRanged",
|
44 |
+
"keys": "image",
|
45 |
+
"a_min": 0.0,
|
46 |
+
"a_max": 255.0,
|
47 |
+
"b_min": 0.0,
|
48 |
+
"b_max": 1.0,
|
49 |
+
"clip": true
|
50 |
+
}
|
51 |
+
]
|
52 |
+
},
|
53 |
+
"data_list": "$[{'image': image} for image in glob.glob(os.path.join(@dataset_dir, '*.png'))]",
|
54 |
+
"dataset": {
|
55 |
+
"_target_": "Dataset",
|
56 |
+
"data": "@data_list",
|
57 |
+
"transform": "@preprocessing"
|
58 |
+
},
|
59 |
+
"dataloader": {
|
60 |
+
"_target_": "DataLoader",
|
61 |
+
"dataset": "@dataset",
|
62 |
+
"batch_size": "@batch_size",
|
63 |
+
"shuffle": false,
|
64 |
+
"num_workers": "@num_cpus",
|
65 |
+
"pin_memory": true
|
66 |
+
},
|
67 |
+
"inferer": {
|
68 |
+
"_target_": "SlidingWindowHoVerNetInferer",
|
69 |
+
"roi_size": "@patch_size",
|
70 |
+
"sw_batch_size": "@sw_batch_size",
|
71 |
+
"overlap": "$1.0 - float(@out_size) / float(@patch_size)",
|
72 |
+
"padding_mode": "constant",
|
73 |
+
"cval": 0,
|
74 |
+
"progress": true,
|
75 |
+
"extra_input_padding": "$((@patch_size - @out_size) // 2,) * 4"
|
76 |
+
},
|
77 |
+
"postprocessing": {
|
78 |
+
"_target_": "Compose",
|
79 |
+
"transforms": [
|
80 |
+
{
|
81 |
+
"_target_": "FlattenSubKeysd",
|
82 |
+
"keys": "pred",
|
83 |
+
"sub_keys": [
|
84 |
+
"horizontal_vertical",
|
85 |
+
"nucleus_prediction",
|
86 |
+
"type_prediction"
|
87 |
+
],
|
88 |
+
"delete_keys": true
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"_target_": "HoVerNetInstanceMapPostProcessingd",
|
92 |
+
"sobel_kernel_size": 21,
|
93 |
+
"marker_threshold": 0.4,
|
94 |
+
"marker_radius": 2
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"_target_": "HoVerNetNuclearTypePostProcessingd"
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"_target_": "FromMetaTensord",
|
101 |
+
"keys": [
|
102 |
+
"image"
|
103 |
+
]
|
104 |
+
}
|
105 |
+
]
|
106 |
+
},
|
107 |
+
"handlers": [
|
108 |
+
{
|
109 |
+
"_target_": "CheckpointLoader",
|
110 |
+
"load_path": "$os.path.join(@bundle_root, 'models', 'model.pt')",
|
111 |
+
"map_location": "@device",
|
112 |
+
"load_dict": {
|
113 |
+
"model": "@network"
|
114 |
+
}
|
115 |
+
}
|
116 |
+
],
|
117 |
+
"evaluator": {
|
118 |
+
"_target_": "SupervisedEvaluator",
|
119 |
+
"device": "@device",
|
120 |
+
"val_data_loader": "@dataloader",
|
121 |
+
"val_handlers": "@handlers",
|
122 |
+
"network": "@network",
|
123 |
+
"postprocessing": "@postprocessing",
|
124 |
+
"inferer": "@inferer",
|
125 |
+
"amp": true
|
126 |
+
},
|
127 |
+
"evaluating": [
|
128 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)",
|
129 |
+
"$@evaluator.run()"
|
130 |
+
]
|
131 |
+
}
|
configs/inference.json
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imports": [
|
3 |
+
"$import glob",
|
4 |
+
"$import os"
|
5 |
+
],
|
6 |
+
"bundle_root": "$os.getcwd()",
|
7 |
+
"output_dir": ".",
|
8 |
+
"dataset_dir": "CoNSeP/Test/Images",
|
9 |
+
"num_cpus": 2,
|
10 |
+
"batch_size": 1,
|
11 |
+
"sw_batch_size": 16,
|
12 |
+
"hovernet_mode": "fast",
|
13 |
+
"patch_size": 256,
|
14 |
+
"out_size": 164,
|
15 |
+
"device": "cpu",
|
16 |
+
"network_def": {
|
17 |
+
"_target_": "HoVerNet",
|
18 |
+
"mode": "@hovernet_mode",
|
19 |
+
"adapt_standard_resnet": true,
|
20 |
+
"in_channels": 3,
|
21 |
+
"out_classes": 5
|
22 |
+
},
|
23 |
+
"network": "$@network_def.to(@device)",
|
24 |
+
"preprocessing": {
|
25 |
+
"_target_": "Compose",
|
26 |
+
"transforms": [
|
27 |
+
{
|
28 |
+
"_target_": "LoadImaged",
|
29 |
+
"keys": "image",
|
30 |
+
"reader": "$monai.data.PILReader",
|
31 |
+
"converter": "$lambda x: x.convert('RGB')"
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"_target_": "EnsureChannelFirstd",
|
35 |
+
"keys": "image"
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"_target_": "CastToTyped",
|
39 |
+
"keys": "image",
|
40 |
+
"dtype": "float32"
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"_target_": "ScaleIntensityRanged",
|
44 |
+
"keys": "image",
|
45 |
+
"a_min": 0.0,
|
46 |
+
"a_max": 255.0,
|
47 |
+
"b_min": 0.0,
|
48 |
+
"b_max": 1.0,
|
49 |
+
"clip": true
|
50 |
+
}
|
51 |
+
]
|
52 |
+
},
|
53 |
+
"data_list": "$[{'image': image} for image in glob.glob(os.path.join(@dataset_dir, '*.png'))]",
|
54 |
+
"dataset": {
|
55 |
+
"_target_": "Dataset",
|
56 |
+
"data": "@data_list",
|
57 |
+
"transform": "@preprocessing"
|
58 |
+
},
|
59 |
+
"dataloader": {
|
60 |
+
"_target_": "DataLoader",
|
61 |
+
"dataset": "@dataset",
|
62 |
+
"batch_size": "@batch_size",
|
63 |
+
"shuffle": false,
|
64 |
+
"num_workers": "@num_cpus",
|
65 |
+
"pin_memory": true
|
66 |
+
},
|
67 |
+
"inferer": {
|
68 |
+
"_target_": "SlidingWindowHoVerNetInferer",
|
69 |
+
"roi_size": "@patch_size",
|
70 |
+
"sw_batch_size": "@sw_batch_size",
|
71 |
+
"overlap": "$1.0 - float(@out_size) / float(@patch_size)",
|
72 |
+
"padding_mode": "constant",
|
73 |
+
"cval": 0,
|
74 |
+
"progress": true,
|
75 |
+
"extra_input_padding": "$((@patch_size - @out_size) // 2,) * 4"
|
76 |
+
},
|
77 |
+
"postprocessing": {
|
78 |
+
"_target_": "Compose",
|
79 |
+
"transforms": [
|
80 |
+
{
|
81 |
+
"_target_": "FlattenSubKeysd",
|
82 |
+
"keys": "pred",
|
83 |
+
"sub_keys": [
|
84 |
+
"horizontal_vertical",
|
85 |
+
"nucleus_prediction",
|
86 |
+
"type_prediction"
|
87 |
+
],
|
88 |
+
"delete_keys": true
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"_target_": "HoVerNetInstanceMapPostProcessingd",
|
92 |
+
"sobel_kernel_size": 21,
|
93 |
+
"marker_threshold": 0.4,
|
94 |
+
"marker_radius": 2
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"_target_": "HoVerNetNuclearTypePostProcessingd"
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"_target_": "FromMetaTensord",
|
101 |
+
"keys": [
|
102 |
+
"image"
|
103 |
+
]
|
104 |
+
}
|
105 |
+
]
|
106 |
+
},
|
107 |
+
"handlers": [
|
108 |
+
{
|
109 |
+
"_target_": "CheckpointLoader",
|
110 |
+
"load_path": "$os.path.join(@bundle_root, 'models', 'model.pt')",
|
111 |
+
"map_location": "@device",
|
112 |
+
"load_dict": {
|
113 |
+
"model": "@network"
|
114 |
+
}
|
115 |
+
}
|
116 |
+
],
|
117 |
+
"evaluator": {
|
118 |
+
"_target_": "SupervisedEvaluator",
|
119 |
+
"device": "@device",
|
120 |
+
"val_data_loader": "@dataloader",
|
121 |
+
"val_handlers": "@handlers",
|
122 |
+
"network": "@network",
|
123 |
+
"postprocessing": "@postprocessing",
|
124 |
+
"inferer": "@inferer",
|
125 |
+
"amp": true
|
126 |
+
},
|
127 |
+
"evaluating": [
|
128 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)",
|
129 |
+
"$@evaluator.run()"
|
130 |
+
]
|
131 |
+
}
|
configs/logging.conf
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[loggers]
|
2 |
+
keys=root
|
3 |
+
|
4 |
+
[handlers]
|
5 |
+
keys=consoleHandler
|
6 |
+
|
7 |
+
[formatters]
|
8 |
+
keys=fullFormatter
|
9 |
+
|
10 |
+
[logger_root]
|
11 |
+
level=INFO
|
12 |
+
handlers=consoleHandler
|
13 |
+
|
14 |
+
[handler_consoleHandler]
|
15 |
+
class=StreamHandler
|
16 |
+
level=INFO
|
17 |
+
formatter=fullFormatter
|
18 |
+
args=(sys.stdout,)
|
19 |
+
|
20 |
+
[formatter_fullFormatter]
|
21 |
+
format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
|
configs/metadata.json
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_hovernet_20221124.json",
|
3 |
+
"version": "0.1.3",
|
4 |
+
"changelog": {
|
5 |
+
"0.1.3": "add name tag",
|
6 |
+
"0.1.2": "update the workflow figure",
|
7 |
+
"0.1.1": "update to use monai 1.1.0",
|
8 |
+
"0.1.0": "complete the model package"
|
9 |
+
},
|
10 |
+
"monai_version": "1.1.0",
|
11 |
+
"pytorch_version": "1.13.0",
|
12 |
+
"numpy_version": "1.22.2",
|
13 |
+
"optional_packages_version": {
|
14 |
+
"scikit-image": "0.19.3",
|
15 |
+
"scipy": "1.8.1",
|
16 |
+
"tqdm": "4.64.1",
|
17 |
+
"pillow": "9.0.1"
|
18 |
+
},
|
19 |
+
"name": "Nuclear segmentation and classification",
|
20 |
+
"task": "Nuclear segmentation and classification",
|
21 |
+
"description": "A simultaneous segmentation and classification of nuclei within multitissue histology images based on CoNSeP data",
|
22 |
+
"authors": "MONAI team",
|
23 |
+
"copyright": "Copyright (c) MONAI Consortium",
|
24 |
+
"data_source": "https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/",
|
25 |
+
"data_type": "numpy",
|
26 |
+
"image_classes": "RGB image with intensity between 0 and 255",
|
27 |
+
"label_classes": "a dictionary contains binary nuclear segmentation, hover map and pixel-level classification",
|
28 |
+
"pred_classes": "a dictionary contains scalar probability for binary nuclear segmentation, hover map and pixel-level classification",
|
29 |
+
"eval_metrics": {
|
30 |
+
"Binary Dice": 0.8293,
|
31 |
+
"PQ": 0.4936,
|
32 |
+
"F1d": 0.748
|
33 |
+
},
|
34 |
+
"intended_use": "This is an example, not to be used for diagnostic purposes",
|
35 |
+
"references": [
|
36 |
+
"Simon Graham. 'HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images.' Medical Image Analysis, 2019. https://arxiv.org/abs/1812.06499"
|
37 |
+
],
|
38 |
+
"network_data_format": {
|
39 |
+
"inputs": {
|
40 |
+
"image": {
|
41 |
+
"type": "image",
|
42 |
+
"format": "magnitude",
|
43 |
+
"num_channels": 3,
|
44 |
+
"spatial_shape": [
|
45 |
+
"256",
|
46 |
+
"256"
|
47 |
+
],
|
48 |
+
"dtype": "float32",
|
49 |
+
"value_range": [
|
50 |
+
0,
|
51 |
+
255
|
52 |
+
],
|
53 |
+
"is_patch_data": true,
|
54 |
+
"channel_def": {
|
55 |
+
"0": "image"
|
56 |
+
}
|
57 |
+
}
|
58 |
+
},
|
59 |
+
"outputs": {
|
60 |
+
"nucleus_prediction": {
|
61 |
+
"type": "probability",
|
62 |
+
"format": "segmentation",
|
63 |
+
"num_channels": 3,
|
64 |
+
"spatial_shape": [
|
65 |
+
"164",
|
66 |
+
"164"
|
67 |
+
],
|
68 |
+
"dtype": "float32",
|
69 |
+
"value_range": [
|
70 |
+
0,
|
71 |
+
1
|
72 |
+
],
|
73 |
+
"is_patch_data": true,
|
74 |
+
"channel_def": {
|
75 |
+
"0": "background",
|
76 |
+
"1": "nuclei"
|
77 |
+
}
|
78 |
+
},
|
79 |
+
"horizontal_vertical": {
|
80 |
+
"type": "probability",
|
81 |
+
"format": "regression",
|
82 |
+
"num_channels": 2,
|
83 |
+
"spatial_shape": [
|
84 |
+
"164",
|
85 |
+
"164"
|
86 |
+
],
|
87 |
+
"dtype": "float32",
|
88 |
+
"value_range": [
|
89 |
+
0,
|
90 |
+
1
|
91 |
+
],
|
92 |
+
"is_patch_data": true,
|
93 |
+
"channel_def": {
|
94 |
+
"0": "horizontal distances map",
|
95 |
+
"1": "vertical distances map"
|
96 |
+
}
|
97 |
+
},
|
98 |
+
"type_prediction": {
|
99 |
+
"type": "probability",
|
100 |
+
"format": "classification",
|
101 |
+
"num_channels": 2,
|
102 |
+
"spatial_shape": [
|
103 |
+
"164",
|
104 |
+
"164"
|
105 |
+
],
|
106 |
+
"dtype": "float32",
|
107 |
+
"value_range": [
|
108 |
+
0,
|
109 |
+
1
|
110 |
+
],
|
111 |
+
"is_patch_data": true,
|
112 |
+
"channel_def": {
|
113 |
+
"0": "background",
|
114 |
+
"1": "type of nucleus for each pixel"
|
115 |
+
}
|
116 |
+
}
|
117 |
+
}
|
118 |
+
}
|
119 |
+
}
|
configs/multi_gpu_train.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"device": "$torch.device(f'cuda:{dist.get_rank()}')",
|
3 |
+
"network": {
|
4 |
+
"_target_": "torch.nn.parallel.DistributedDataParallel",
|
5 |
+
"module": "$@network_def.to(@device)",
|
6 |
+
"device_ids": [
|
7 |
+
"@device"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
"train#sampler": {
|
11 |
+
"_target_": "DistributedSampler",
|
12 |
+
"dataset": "@train#dataset",
|
13 |
+
"even_divisible": true,
|
14 |
+
"shuffle": true
|
15 |
+
},
|
16 |
+
"train#dataloader#sampler": "@train#sampler",
|
17 |
+
"train#dataloader#shuffle": false,
|
18 |
+
"train#trainer#train_handlers": "$@train#train_handlers[: -2 if dist.get_rank() > 0 else None]",
|
19 |
+
"validate#sampler": {
|
20 |
+
"_target_": "DistributedSampler",
|
21 |
+
"dataset": "@validate#dataset",
|
22 |
+
"even_divisible": false,
|
23 |
+
"shuffle": false
|
24 |
+
},
|
25 |
+
"validate#dataloader#sampler": "@validate#sampler",
|
26 |
+
"validate#evaluator#val_handlers": "$None if dist.get_rank() > 0 else @validate#handlers",
|
27 |
+
"training": [
|
28 |
+
"$import torch.distributed as dist",
|
29 |
+
"$dist.init_process_group(backend='nccl')",
|
30 |
+
"$torch.cuda.set_device(@device)",
|
31 |
+
"$monai.utils.set_determinism(seed=321)",
|
32 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)",
|
33 |
+
"$@train#trainer.run()",
|
34 |
+
"$dist.destroy_process_group()"
|
35 |
+
]
|
36 |
+
}
|
configs/train.json
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imports": [
|
3 |
+
"$import glob",
|
4 |
+
"$import os",
|
5 |
+
"$import skimage"
|
6 |
+
],
|
7 |
+
"bundle_root": "$os.getcwd()",
|
8 |
+
"ckpt_dir_stage0": "$os.path.join(@bundle_root, 'models', 'stage0')",
|
9 |
+
"ckpt_dir_stage1": "$os.path.join(@bundle_root, 'models')",
|
10 |
+
"ckpt_path_stage0": "$os.path.join(@ckpt_dir_stage0, 'model.pt')",
|
11 |
+
"output_dir": "$os.path.join(@bundle_root, 'eval')",
|
12 |
+
"dataset_dir": "/workspace/Data/Pathology/CoNSeP/Prepared/",
|
13 |
+
"train_images": "$list(sorted(glob.glob(@dataset_dir + '/Train/*image.npy')))",
|
14 |
+
"val_images": "$list(sorted(glob.glob(@dataset_dir + '/Test/*image.npy')))",
|
15 |
+
"train_inst_map": "$list(sorted(glob.glob(@dataset_dir + '/Train/*inst_map.npy')))",
|
16 |
+
"val_inst_map": "$list(sorted(glob.glob(@dataset_dir + '/Test/*inst_map.npy')))",
|
17 |
+
"train_type_map": "$list(sorted(glob.glob(@dataset_dir + '/Train/*type_map.npy')))",
|
18 |
+
"val_type_map": "$list(sorted(glob.glob(@dataset_dir + '/Test/*type_map.npy')))",
|
19 |
+
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
20 |
+
"stage": 0,
|
21 |
+
"epochs": 50,
|
22 |
+
"val_interval": 1,
|
23 |
+
"learning_rate": 0.0001,
|
24 |
+
"amp": true,
|
25 |
+
"hovernet_mode": "fast",
|
26 |
+
"patch_size": 256,
|
27 |
+
"out_size": 164,
|
28 |
+
"ckpt_dir": "$@ckpt_dir_stage0 if @stage == 0 else @ckpt_dir_stage1",
|
29 |
+
"network_def": {
|
30 |
+
"_target_": "HoVerNet",
|
31 |
+
"mode": "@hovernet_mode",
|
32 |
+
"in_channels": 3,
|
33 |
+
"out_classes": 5,
|
34 |
+
"adapt_standard_resnet": true,
|
35 |
+
"pretrained_url": "$None",
|
36 |
+
"freeze_encoder": true
|
37 |
+
},
|
38 |
+
"network": "$@network_def.to(@device)",
|
39 |
+
"loss": {
|
40 |
+
"_target_": "HoVerNetLoss",
|
41 |
+
"lambda_hv_mse": 1.0
|
42 |
+
},
|
43 |
+
"optimizer": {
|
44 |
+
"_target_": "torch.optim.Adam",
|
45 |
+
"params": "$filter(lambda p: p.requires_grad, @network.parameters())",
|
46 |
+
"lr": "@learning_rate",
|
47 |
+
"weight_decay": 1e-05
|
48 |
+
},
|
49 |
+
"lr_scheduler": {
|
50 |
+
"_target_": "torch.optim.lr_scheduler.StepLR",
|
51 |
+
"optimizer": "@optimizer",
|
52 |
+
"step_size": 25
|
53 |
+
},
|
54 |
+
"train": {
|
55 |
+
"preprocessing_transforms": [
|
56 |
+
{
|
57 |
+
"_target_": "LoadImaged",
|
58 |
+
"keys": [
|
59 |
+
"image",
|
60 |
+
"label_inst",
|
61 |
+
"label_type"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"_target_": "EnsureChannelFirstd",
|
66 |
+
"keys": [
|
67 |
+
"image",
|
68 |
+
"label_inst",
|
69 |
+
"label_type"
|
70 |
+
],
|
71 |
+
"channel_dim": -1
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"_target_": "Lambdad",
|
75 |
+
"keys": "label_inst",
|
76 |
+
"func": "$lambda x: skimage.measure.label(x)"
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"_target_": "RandAffined",
|
80 |
+
"keys": [
|
81 |
+
"image",
|
82 |
+
"label_inst",
|
83 |
+
"label_type"
|
84 |
+
],
|
85 |
+
"prob": 1.0,
|
86 |
+
"rotate_range": [
|
87 |
+
"$np.pi"
|
88 |
+
],
|
89 |
+
"scale_range": [
|
90 |
+
[
|
91 |
+
-0.2,
|
92 |
+
0.2
|
93 |
+
],
|
94 |
+
[
|
95 |
+
-0.2,
|
96 |
+
0.2
|
97 |
+
]
|
98 |
+
],
|
99 |
+
"shear_range": [
|
100 |
+
[
|
101 |
+
-0.05,
|
102 |
+
0.05
|
103 |
+
],
|
104 |
+
[
|
105 |
+
-0.05,
|
106 |
+
0.05
|
107 |
+
]
|
108 |
+
],
|
109 |
+
"translate_range": [
|
110 |
+
[
|
111 |
+
-6,
|
112 |
+
6
|
113 |
+
],
|
114 |
+
[
|
115 |
+
-6,
|
116 |
+
6
|
117 |
+
]
|
118 |
+
],
|
119 |
+
"padding_mode": "zeros",
|
120 |
+
"mode": "nearest"
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"_target_": "CenterSpatialCropd",
|
124 |
+
"keys": [
|
125 |
+
"image"
|
126 |
+
],
|
127 |
+
"roi_size": [
|
128 |
+
"@patch_size",
|
129 |
+
"@patch_size"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"_target_": "RandFlipd",
|
134 |
+
"keys": [
|
135 |
+
"image",
|
136 |
+
"label_inst",
|
137 |
+
"label_type"
|
138 |
+
],
|
139 |
+
"prob": 0.5,
|
140 |
+
"spatial_axis": 0
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"_target_": "RandFlipd",
|
144 |
+
"keys": [
|
145 |
+
"image",
|
146 |
+
"label_inst",
|
147 |
+
"label_type"
|
148 |
+
],
|
149 |
+
"prob": 0.5,
|
150 |
+
"spatial_axis": 1
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"_target_": "OneOf",
|
154 |
+
"transforms": [
|
155 |
+
{
|
156 |
+
"_target_": "RandGaussianSmoothd",
|
157 |
+
"keys": [
|
158 |
+
"image"
|
159 |
+
],
|
160 |
+
"sigma_x": [
|
161 |
+
0.1,
|
162 |
+
1.1
|
163 |
+
],
|
164 |
+
"sigma_y": [
|
165 |
+
0.1,
|
166 |
+
1.1
|
167 |
+
],
|
168 |
+
"prob": 1.0
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"_target_": "MedianSmoothd",
|
172 |
+
"keys": [
|
173 |
+
"image"
|
174 |
+
],
|
175 |
+
"radius": 1
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"_target_": "RandGaussianNoised",
|
179 |
+
"keys": [
|
180 |
+
"image"
|
181 |
+
],
|
182 |
+
"std": 0.05,
|
183 |
+
"prob": 1.0
|
184 |
+
}
|
185 |
+
]
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"_target_": "CastToTyped",
|
189 |
+
"keys": "image",
|
190 |
+
"dtype": "$np.uint8"
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"_target_": "TorchVisiond",
|
194 |
+
"keys": "image",
|
195 |
+
"name": "ColorJitter",
|
196 |
+
"brightness": [
|
197 |
+
0.9,
|
198 |
+
1.0
|
199 |
+
],
|
200 |
+
"contrast": [
|
201 |
+
0.95,
|
202 |
+
1.1
|
203 |
+
],
|
204 |
+
"saturation": [
|
205 |
+
0.8,
|
206 |
+
1.2
|
207 |
+
],
|
208 |
+
"hue": [
|
209 |
+
-0.04,
|
210 |
+
0.04
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"_target_": "AsDiscreted",
|
215 |
+
"keys": "label_type",
|
216 |
+
"to_onehot": 5
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"_target_": "ScaleIntensityRanged",
|
220 |
+
"keys": "image",
|
221 |
+
"a_min": 0.0,
|
222 |
+
"a_max": 255.0,
|
223 |
+
"b_min": 0.0,
|
224 |
+
"b_max": 1.0,
|
225 |
+
"clip": true
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"_target_": "CastToTyped",
|
229 |
+
"keys": "label_inst",
|
230 |
+
"dtype": "$torch.int"
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"_target_": "ComputeHoVerMapsd",
|
234 |
+
"keys": "label_inst"
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"_target_": "Lambdad",
|
238 |
+
"keys": "label_inst",
|
239 |
+
"func": "$lambda x: x > 0",
|
240 |
+
"overwrite": "label"
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"_target_": "CenterSpatialCropd",
|
244 |
+
"keys": [
|
245 |
+
"label",
|
246 |
+
"hover_label_inst",
|
247 |
+
"label_inst",
|
248 |
+
"label_type"
|
249 |
+
],
|
250 |
+
"roi_size": [
|
251 |
+
"@out_size",
|
252 |
+
"@out_size"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"_target_": "AsDiscreted",
|
257 |
+
"keys": "label",
|
258 |
+
"to_onehot": 2
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"_target_": "CastToTyped",
|
262 |
+
"keys": [
|
263 |
+
"image",
|
264 |
+
"label_inst",
|
265 |
+
"label_type"
|
266 |
+
],
|
267 |
+
"dtype": "$torch.float32"
|
268 |
+
}
|
269 |
+
],
|
270 |
+
"preprocessing": {
|
271 |
+
"_target_": "Compose",
|
272 |
+
"transforms": "$@train#preprocessing_transforms"
|
273 |
+
},
|
274 |
+
"dataset": {
|
275 |
+
"_target_": "Dataset",
|
276 |
+
"data": "$[{'image': i, 'label_inst': j, 'label_type': k} for i, j, k in zip(@train_images, @train_inst_map, @train_type_map)]",
|
277 |
+
"transform": "@train#preprocessing"
|
278 |
+
},
|
279 |
+
"dataloader": {
|
280 |
+
"_target_": "DataLoader",
|
281 |
+
"dataset": "@train#dataset",
|
282 |
+
"batch_size": 16,
|
283 |
+
"shuffle": true,
|
284 |
+
"num_workers": 4
|
285 |
+
},
|
286 |
+
"inferer": {
|
287 |
+
"_target_": "SimpleInferer"
|
288 |
+
},
|
289 |
+
"postprocessing_np": {
|
290 |
+
"_target_": "Compose",
|
291 |
+
"transforms": [
|
292 |
+
{
|
293 |
+
"_target_": "Activationsd",
|
294 |
+
"keys": "nucleus_prediction",
|
295 |
+
"softmax": true
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"_target_": "AsDiscreted",
|
299 |
+
"keys": "nucleus_prediction",
|
300 |
+
"argmax": true
|
301 |
+
}
|
302 |
+
]
|
303 |
+
},
|
304 |
+
"postprocessing": {
|
305 |
+
"_target_": "Lambdad",
|
306 |
+
"keys": "pred",
|
307 |
+
"func": "$@train#postprocessing_np"
|
308 |
+
},
|
309 |
+
"handlers": [
|
310 |
+
{
|
311 |
+
"_target_": "LrScheduleHandler",
|
312 |
+
"lr_scheduler": "@lr_scheduler",
|
313 |
+
"print_lr": true
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"_target_": "ValidationHandler",
|
317 |
+
"validator": "@validate#evaluator",
|
318 |
+
"epoch_level": true,
|
319 |
+
"interval": "@val_interval"
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"_target_": "CheckpointSaver",
|
323 |
+
"save_dir": "@ckpt_dir",
|
324 |
+
"save_dict": {
|
325 |
+
"model": "@network"
|
326 |
+
},
|
327 |
+
"save_interval": 10,
|
328 |
+
"epoch_level": true,
|
329 |
+
"save_final": true,
|
330 |
+
"final_filename": "model.pt"
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"_target_": "StatsHandler",
|
334 |
+
"tag_name": "train_loss",
|
335 |
+
"output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"_target_": "TensorBoardStatsHandler",
|
339 |
+
"log_dir": "@output_dir",
|
340 |
+
"tag_name": "train_loss",
|
341 |
+
"output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
|
342 |
+
}
|
343 |
+
],
|
344 |
+
"extra_handlers": [
|
345 |
+
{
|
346 |
+
"_target_": "CheckpointLoader",
|
347 |
+
"load_path": "$os.path.join(@ckpt_dir_stage0, 'model.pt')",
|
348 |
+
"load_dict": {
|
349 |
+
"model": "@network"
|
350 |
+
}
|
351 |
+
}
|
352 |
+
],
|
353 |
+
"train_handlers": "$@train#extra_handlers + @train#handlers if @stage==1 else @train#handlers",
|
354 |
+
"key_metric": {
|
355 |
+
"train_mean_dice": {
|
356 |
+
"_target_": "MeanDice",
|
357 |
+
"include_background": false,
|
358 |
+
"output_transform": "$monai.apps.pathology.handlers.utils.from_engine_hovernet(keys=['pred', 'label'], nested_key='nucleus_prediction')"
|
359 |
+
}
|
360 |
+
},
|
361 |
+
"trainer": {
|
362 |
+
"_target_": "SupervisedTrainer",
|
363 |
+
"max_epochs": "@epochs",
|
364 |
+
"device": "@device",
|
365 |
+
"train_data_loader": "@train#dataloader",
|
366 |
+
"prepare_batch": "$monai.apps.pathology.engines.utils.PrepareBatchHoVerNet(extra_keys=['label_type', 'hover_label_inst'])",
|
367 |
+
"network": "@network",
|
368 |
+
"loss_function": "@loss",
|
369 |
+
"optimizer": "@optimizer",
|
370 |
+
"inferer": "@train#inferer",
|
371 |
+
"postprocessing": "@train#postprocessing",
|
372 |
+
"key_train_metric": "@train#key_metric",
|
373 |
+
"train_handlers": "@train#train_handlers",
|
374 |
+
"amp": "@amp"
|
375 |
+
}
|
376 |
+
},
|
377 |
+
"validate": {
|
378 |
+
"preprocessing_transforms": [
|
379 |
+
{
|
380 |
+
"_target_": "LoadImaged",
|
381 |
+
"keys": [
|
382 |
+
"image",
|
383 |
+
"label_inst",
|
384 |
+
"label_type"
|
385 |
+
]
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"_target_": "EnsureChannelFirstd",
|
389 |
+
"keys": [
|
390 |
+
"image",
|
391 |
+
"label_inst",
|
392 |
+
"label_type"
|
393 |
+
],
|
394 |
+
"channel_dim": -1
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"_target_": "Lambdad",
|
398 |
+
"keys": "label_inst",
|
399 |
+
"func": "$lambda x: skimage.measure.label(x)"
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"_target_": "CastToTyped",
|
403 |
+
"keys": [
|
404 |
+
"image",
|
405 |
+
"label_inst"
|
406 |
+
],
|
407 |
+
"dtype": "$torch.int"
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"_target_": "CenterSpatialCropd",
|
411 |
+
"keys": [
|
412 |
+
"image"
|
413 |
+
],
|
414 |
+
"roi_size": [
|
415 |
+
"@patch_size",
|
416 |
+
"@patch_size"
|
417 |
+
]
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"_target_": "ScaleIntensityRanged",
|
421 |
+
"keys": "image",
|
422 |
+
"a_min": 0.0,
|
423 |
+
"a_max": 255.0,
|
424 |
+
"b_min": 0.0,
|
425 |
+
"b_max": 1.0,
|
426 |
+
"clip": true
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"_target_": "ComputeHoVerMapsd",
|
430 |
+
"keys": "label_inst"
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"_target_": "Lambdad",
|
434 |
+
"keys": "label_inst",
|
435 |
+
"func": "$lambda x: x > 0",
|
436 |
+
"overwrite": "label"
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"_target_": "CenterSpatialCropd",
|
440 |
+
"keys": [
|
441 |
+
"label",
|
442 |
+
"hover_label_inst",
|
443 |
+
"label_inst",
|
444 |
+
"label_type"
|
445 |
+
],
|
446 |
+
"roi_size": [
|
447 |
+
"@out_size",
|
448 |
+
"@out_size"
|
449 |
+
]
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"_target_": "CastToTyped",
|
453 |
+
"keys": [
|
454 |
+
"image",
|
455 |
+
"label_inst",
|
456 |
+
"label_type"
|
457 |
+
],
|
458 |
+
"dtype": "$torch.float32"
|
459 |
+
}
|
460 |
+
],
|
461 |
+
"preprocessing": {
|
462 |
+
"_target_": "Compose",
|
463 |
+
"transforms": "$@validate#preprocessing_transforms"
|
464 |
+
},
|
465 |
+
"dataset": {
|
466 |
+
"_target_": "Dataset",
|
467 |
+
"data": "$[{'image': i, 'label_inst': j, 'label_type': k} for i, j, k in zip(@val_images, @val_inst_map, @val_type_map)]",
|
468 |
+
"transform": "@validate#preprocessing"
|
469 |
+
},
|
470 |
+
"dataloader": {
|
471 |
+
"_target_": "DataLoader",
|
472 |
+
"dataset": "@validate#dataset",
|
473 |
+
"batch_size": 16,
|
474 |
+
"shuffle": false,
|
475 |
+
"num_workers": 4
|
476 |
+
},
|
477 |
+
"inferer": {
|
478 |
+
"_target_": "SimpleInferer"
|
479 |
+
},
|
480 |
+
"postprocessing": "$@train#postprocessing",
|
481 |
+
"handlers": [
|
482 |
+
{
|
483 |
+
"_target_": "StatsHandler",
|
484 |
+
"iteration_log": false
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"_target_": "TensorBoardStatsHandler",
|
488 |
+
"log_dir": "@output_dir",
|
489 |
+
"iteration_log": false
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"_target_": "CheckpointSaver",
|
493 |
+
"save_dir": "@ckpt_dir",
|
494 |
+
"save_dict": {
|
495 |
+
"model": "@network"
|
496 |
+
},
|
497 |
+
"save_key_metric": true
|
498 |
+
}
|
499 |
+
],
|
500 |
+
"key_metric": {
|
501 |
+
"val_mean_dice": {
|
502 |
+
"_target_": "MeanDice",
|
503 |
+
"include_background": false,
|
504 |
+
"output_transform": "$monai.apps.pathology.handlers.utils.from_engine_hovernet(keys=['pred', 'label'], nested_key='nucleus_prediction')"
|
505 |
+
}
|
506 |
+
},
|
507 |
+
"evaluator": {
|
508 |
+
"_target_": "SupervisedEvaluator",
|
509 |
+
"device": "@device",
|
510 |
+
"val_data_loader": "@validate#dataloader",
|
511 |
+
"prepare_batch": "$monai.apps.pathology.engines.utils.PrepareBatchHoVerNet(extra_keys=['label_type', 'hover_label_inst'])",
|
512 |
+
"network": "@network",
|
513 |
+
"inferer": "@validate#inferer",
|
514 |
+
"postprocessing": "@validate#postprocessing",
|
515 |
+
"key_val_metric": "@validate#key_metric",
|
516 |
+
"val_handlers": "@validate#handlers",
|
517 |
+
"amp": "@amp"
|
518 |
+
}
|
519 |
+
},
|
520 |
+
"training": [
|
521 |
+
"$monai.utils.set_determinism(seed=321)",
|
522 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)",
|
523 |
+
"$@train#trainer.run()"
|
524 |
+
]
|
525 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
monai==1.1.0
|
2 |
+
scikit-image==0.20.0
|