dafajudin commited on
Commit
f7701c2
1 Parent(s): c645901

first commit

Browse files
Files changed (3) hide show
  1. app.py +215 -4
  2. img/Model-Architecture.png +0 -0
  3. requirements.txt +10 -0
app.py CHANGED
@@ -1,7 +1,218 @@
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+ from PIL import Image
4
+ import io
5
  import gradio as gr
6
+ from transformers import AutoProcessor, TextIteratorStreamer
7
+ from transformers import Idefics2ForConditionalGeneration
8
+ import torch
9
+ from peft import LoraConfig
10
+ from transformers import AutoProcessor, BitsAndBytesConfig, IdeficsForVisionText2Text
11
 
12
+ # Project description
13
+ description = """
14
+ # Kalbe Farma - Visual Question Answering (VQA) for Medical Imaging
15
 
16
+ ## Overview
17
+ The project addresses the challenge of accurate and efficient medical imaging analysis in healthcare, aiming to reduce human error and workload for radiologists. The proposed solution involves developing advanced AI models for Visual Question Answering (VQA) to assist healthcare professionals in analyzing medical images quickly and accurately. These models will be integrated into a user-friendly web application, providing a practical tool for real-world healthcare settings.
18
+
19
+ ## Dataset
20
+ The model is trained using the [Hugging face](https://huggingface.co/datasets/flaviagiammarino/vqa-rad/viewer).
21
+
22
+ Reference: [ScienceDirect](https://www.sciencedirect.com/science/article/abs/pii/S0933365723001252)
23
+
24
+ ## Model Architecture
25
+
26
+ ![Model Architecture](img/Model-Architecture.png)
27
+
28
+ Reference: [ScienceDirect](https://www.sciencedirect.com/science/article/abs/pii/S0933365723001252)
29
+
30
+ ## Demo
31
+ Please select the example below or upload 4 pairs of mammography exam results.
32
+ """
33
+
34
+ DEVICE = torch.device("cuda")
35
+
36
+ USE_LORA = False
37
+ USE_QLORA = True
38
+
39
+ if USE_QLORA or USE_LORA:
40
+ lora_config = LoraConfig(
41
+ r=8,
42
+ lora_alpha=8,
43
+ lora_dropout=0.1,
44
+ target_modules='.*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$',
45
+ use_dora=False if USE_QLORA else True,
46
+ init_lora_weights="gaussian"
47
+ )
48
+ if USE_QLORA:
49
+ bnb_config = BitsAndBytesConfig(
50
+ load_in_4bit=True,
51
+ bnb_4bit_quant_type="nf4",
52
+ bnb_4bit_compute_dtype=torch.float16
53
+ )
54
+ # Model
55
+ model = Idefics2ForConditionalGeneration.from_pretrained(
56
+ "jihadzakki/idefics2-8b-vqarad-delta",
57
+ torch_dtype=torch.float16,
58
+ quantization_config=bnb_config
59
+ )
60
+
61
+
62
+ processor = AutoProcessor.from_pretrained(
63
+ "HuggingFaceM4/idefics2-8b",
64
+ )
65
+
66
+ def format_answer(image, question, history):
67
+ try:
68
+ messages = [
69
+ {
70
+ "role": "user",
71
+ "content": [
72
+ {"type": "image"},
73
+ {"type": "text", "text": question}
74
+ ]
75
+ }
76
+ ]
77
+
78
+ text = processor.apply_chat_template(messages, add_generation_prompt=True)
79
+ inputs = processor(text=[text.strip()], images=[image], return_tensors="pt", padding=True)
80
+ inputs = {key: value.to(DEVICE) for key, value in inputs.items()}
81
+ generated_ids = model.generate(**inputs, max_new_tokens=64)
82
+ generated_texts = processor.batch_decode(generated_ids[:, inputs["input_ids"].size(1):], skip_special_tokens=True)[0]
83
+
84
+ history.append((image, f"Question: {question} | Answer: {generated_texts}"))
85
+
86
+ # Store the predicted answer in a variable before deleting intermediate variables
87
+ predicted_answer = f"Predicted Answer: {generated_texts}"
88
+
89
+ # Clear the cache and delete unnecessary variables
90
+ del inputs
91
+ del generated_ids
92
+ del generated_texts
93
+ torch.cuda.empty_cache()
94
+
95
+ return predicted_answer, history
96
+ except Exception as e:
97
+ # Clear the cache in case of an error
98
+ torch.cuda.empty_cache()
99
+ return f"Error: {str(e)}", history
100
+
101
+ def clear_history():
102
+ return "", []
103
+
104
+ def undo_last(history):
105
+ if history:
106
+ history.pop()
107
+ return "", history
108
+
109
+ def retry_last(image, question, history):
110
+ if history:
111
+ last_image, last_entry = history[-1]
112
+ return format_answer(last_image, question, history[:-1])
113
+ return "No previous analysis to retry.", history
114
+
115
+ def switch_theme(mode):
116
+ if mode == "Light Mode":
117
+ return gr.themes.Default()
118
+ else:
119
+ return gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.orange)
120
+
121
+ def save_feedback(feedback):
122
+ return "Thank you for your feedback!"
123
+
124
+ def display_history(history):
125
+ log_entries = []
126
+ for img, text in history:
127
+ log_entries.append((img, text))
128
+ return log_entries
129
+
130
+ # Build the Visual QA application using Gradio with improvements
131
+ with gr.Blocks(
132
+ theme=gr.themes.Soft(
133
+ font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"],
134
+ primary_hue=gr.themes.colors.blue,
135
+ secondary_hue=gr.themes.colors.red,
136
+ )
137
+ ) as VisualQAApp:
138
+ gr.Markdown(description, elem_classes="title") # Display the project description
139
+
140
+ gr.Markdown("## Demo")
141
+
142
+ with gr.Row():
143
+ with gr.Column():
144
+ image_input = gr.Image(label="Upload image", type="pil")
145
+ question_input = gr.Textbox(show_label=False, placeholder="Enter your question here...")
146
+ submit_button = gr.Button("Submit", variant="primary")
147
+
148
+ with gr.Column():
149
+ answer_output = gr.Textbox(label="Result Prediction")
150
+
151
+ history_state = gr.State([]) # Initialize the history state
152
+
153
+ submit_button.click(
154
+ format_answer,
155
+ inputs=[image_input, question_input, history_state],
156
+ outputs=[answer_output, history_state],
157
+ show_progress=True
158
+ )
159
+
160
+ with gr.Row():
161
+ retry_button = gr.Button("Retry")
162
+ undo_button = gr.Button("Undo")
163
+ clear_button = gr.Button("Clear")
164
+
165
+ retry_button.click(
166
+ retry_last,
167
+ inputs=[image_input, question_input, history_state],
168
+ outputs=[answer_output, history_state]
169
+ )
170
+
171
+ undo_button.click(
172
+ undo_last,
173
+ inputs=[history_state],
174
+ outputs=[answer_output, history_state]
175
+ )
176
+
177
+ clear_button.click(
178
+ clear_history,
179
+ inputs=[],
180
+ outputs=[answer_output, history_state]
181
+ )
182
+
183
+ with gr.Row():
184
+ history_gallery = gr.Gallery(label="History Log", elem_id="history_log")
185
+ submit_button.click(
186
+ display_history,
187
+ inputs=[history_state],
188
+ outputs=[history_gallery]
189
+ )
190
+
191
+ with gr.Accordion("Help", open=False):
192
+ gr.Markdown("**Upload image**: Select the chest X-ray image you want to analyze.")
193
+ gr.Markdown("**Enter your question**: Type the question you have about the image, such as 'Is there any sign of pneumonia?'")
194
+ gr.Markdown("**Submit**: Click the submit button to get the prediction from the model.")
195
+
196
+ with gr.Accordion("User Preferences", open=False):
197
+ gr.Markdown("**Mode**: Choose between light and dark mode for your comfort.")
198
+ mode_selector = gr.Radio(choices=["Light Mode", "Dark Mode"], label="Select Mode")
199
+ apply_theme_button = gr.Button("Apply Theme")
200
+
201
+ apply_theme_button.click(
202
+ switch_theme,
203
+ inputs=[mode_selector],
204
+ outputs=[],
205
+ )
206
+
207
+ with gr.Accordion("Feedback", open=False):
208
+ gr.Markdown("**We value your feedback!** Please provide any feedback you have about this application.")
209
+ feedback_input = gr.Textbox(label="Feedback", lines=4)
210
+ submit_feedback_button = gr.Button("Submit Feedback")
211
+
212
+ submit_feedback_button.click(
213
+ save_feedback,
214
+ inputs=[feedback_input],
215
+ outputs=[feedback_input]
216
+ )
217
+
218
+ VisualQAApp.launch(share=True, debug=True)
img/Model-Architecture.png ADDED
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ transformers
2
+ gradio
3
+ plotly
4
+ torch
5
+ tensorflow
6
+ tf-keras
7
+ peft
8
+ bitsandbytes
9
+ accelerate
10
+ pillow