Spaces:
Sleeping
Sleeping
import base64 | |
import io | |
import json | |
import queue | |
import random | |
import sys | |
import traceback | |
import wave | |
from argparse import ArgumentParser | |
from http import HTTPStatus | |
from pathlib import Path | |
from typing import Annotated, Any, Literal, Optional | |
import numpy as np | |
import ormsgpack | |
import pyrootutils | |
import soundfile as sf | |
import torch | |
import torchaudio | |
from baize.datastructures import ContentType | |
from kui.asgi import ( | |
Body, | |
FactoryClass, | |
HTTPException, | |
HttpRequest, | |
HttpView, | |
JSONResponse, | |
Kui, | |
OpenAPI, | |
StreamResponse, | |
) | |
from kui.asgi.routing import MultimethodRoutes | |
from loguru import logger | |
from pydantic import BaseModel, Field, conint | |
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) | |
# from fish_speech.models.vqgan.lit_module import VQGAN | |
from fish_speech.models.vqgan.modules.firefly import FireflyArchitecture | |
from fish_speech.text.chn_text_norm.text import Text as ChnNormedText | |
from fish_speech.utils import autocast_exclude_mps | |
from tools.commons import ServeReferenceAudio, ServeTTSRequest | |
from tools.file import AUDIO_EXTENSIONS, audio_to_bytes, list_files, read_ref_text | |
from tools.llama.generate import ( | |
GenerateRequest, | |
GenerateResponse, | |
WrappedGenerateResponse, | |
launch_thread_safe_queue, | |
) | |
from tools.vqgan.inference import load_model as load_decoder_model | |
def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1): | |
buffer = io.BytesIO() | |
with wave.open(buffer, "wb") as wav_file: | |
wav_file.setnchannels(channels) | |
wav_file.setsampwidth(bit_depth // 8) | |
wav_file.setframerate(sample_rate) | |
wav_header_bytes = buffer.getvalue() | |
buffer.close() | |
return wav_header_bytes | |
# Define utils for web server | |
async def http_execption_handler(exc: HTTPException): | |
return JSONResponse( | |
dict( | |
statusCode=exc.status_code, | |
message=exc.content, | |
error=HTTPStatus(exc.status_code).phrase, | |
), | |
exc.status_code, | |
exc.headers, | |
) | |
async def other_exception_handler(exc: "Exception"): | |
traceback.print_exc() | |
status = HTTPStatus.INTERNAL_SERVER_ERROR | |
return JSONResponse( | |
dict(statusCode=status, message=str(exc), error=status.phrase), | |
status, | |
) | |
def load_audio(reference_audio, sr): | |
if len(reference_audio) > 255 or not Path(reference_audio).exists(): | |
audio_data = reference_audio | |
reference_audio = io.BytesIO(audio_data) | |
waveform, original_sr = torchaudio.load( | |
reference_audio, backend="sox" if sys.platform == "linux" else "soundfile" | |
) | |
if waveform.shape[0] > 1: | |
waveform = torch.mean(waveform, dim=0, keepdim=True) | |
if original_sr != sr: | |
resampler = torchaudio.transforms.Resample(orig_freq=original_sr, new_freq=sr) | |
waveform = resampler(waveform) | |
audio = waveform.squeeze().numpy() | |
return audio | |
def encode_reference(*, decoder_model, reference_audio, enable_reference_audio): | |
if enable_reference_audio and reference_audio is not None: | |
# Load audios, and prepare basic info here | |
reference_audio_content = load_audio( | |
reference_audio, decoder_model.spec_transform.sample_rate | |
) | |
audios = torch.from_numpy(reference_audio_content).to(decoder_model.device)[ | |
None, None, : | |
] | |
audio_lengths = torch.tensor( | |
[audios.shape[2]], device=decoder_model.device, dtype=torch.long | |
) | |
logger.info( | |
f"Loaded audio with {audios.shape[2] / decoder_model.spec_transform.sample_rate:.2f} seconds" | |
) | |
# VQ Encoder | |
if isinstance(decoder_model, FireflyArchitecture): | |
prompt_tokens = decoder_model.encode(audios, audio_lengths)[0][0] | |
logger.info(f"Encoded prompt: {prompt_tokens.shape}") | |
else: | |
prompt_tokens = None | |
logger.info("No reference audio provided") | |
return prompt_tokens | |
def decode_vq_tokens( | |
*, | |
decoder_model, | |
codes, | |
): | |
feature_lengths = torch.tensor([codes.shape[1]], device=decoder_model.device) | |
logger.info(f"VQ features: {codes.shape}") | |
if isinstance(decoder_model, FireflyArchitecture): | |
# VQGAN Inference | |
return decoder_model.decode( | |
indices=codes[None], | |
feature_lengths=feature_lengths, | |
)[0].squeeze() | |
raise ValueError(f"Unknown model type: {type(decoder_model)}") | |
routes = MultimethodRoutes(base_class=HttpView) | |
def get_content_type(audio_format): | |
if audio_format == "wav": | |
return "audio/wav" | |
elif audio_format == "flac": | |
return "audio/flac" | |
elif audio_format == "mp3": | |
return "audio/mpeg" | |
else: | |
return "application/octet-stream" | |
def inference(req: ServeTTSRequest): | |
idstr: str | None = req.reference_id | |
if idstr is not None: | |
ref_folder = Path("references") / idstr | |
ref_folder.mkdir(parents=True, exist_ok=True) | |
ref_audios = list_files( | |
ref_folder, AUDIO_EXTENSIONS, recursive=True, sort=False | |
) | |
prompt_tokens = [ | |
encode_reference( | |
decoder_model=decoder_model, | |
reference_audio=audio_to_bytes(str(ref_audio)), | |
enable_reference_audio=True, | |
) | |
for ref_audio in ref_audios | |
] | |
prompt_texts = [ | |
read_ref_text(str(ref_audio.with_suffix(".lab"))) | |
for ref_audio in ref_audios | |
] | |
else: | |
# Parse reference audio aka prompt | |
refs = req.references | |
if refs is None: | |
refs = [] | |
prompt_tokens = [ | |
encode_reference( | |
decoder_model=decoder_model, | |
reference_audio=ref.audio, | |
enable_reference_audio=True, | |
) | |
for ref in refs | |
] | |
prompt_texts = [ref.text for ref in refs] | |
# LLAMA Inference | |
request = dict( | |
device=decoder_model.device, | |
max_new_tokens=req.max_new_tokens, | |
text=( | |
req.text | |
if not req.normalize | |
else ChnNormedText(raw_text=req.text).normalize() | |
), | |
top_p=req.top_p, | |
repetition_penalty=req.repetition_penalty, | |
temperature=req.temperature, | |
compile=args.compile, | |
iterative_prompt=req.chunk_length > 0, | |
chunk_length=req.chunk_length, | |
max_length=2048, | |
prompt_tokens=prompt_tokens, | |
prompt_text=prompt_texts, | |
) | |
response_queue = queue.Queue() | |
llama_queue.put( | |
GenerateRequest( | |
request=request, | |
response_queue=response_queue, | |
) | |
) | |
if req.streaming: | |
yield wav_chunk_header() | |
segments = [] | |
while True: | |
result: WrappedGenerateResponse = response_queue.get() | |
if result.status == "error": | |
raise result.response | |
break | |
result: GenerateResponse = result.response | |
if result.action == "next": | |
break | |
with autocast_exclude_mps( | |
device_type=decoder_model.device.type, dtype=args.precision | |
): | |
fake_audios = decode_vq_tokens( | |
decoder_model=decoder_model, | |
codes=result.codes, | |
) | |
fake_audios = fake_audios.float().cpu().numpy() | |
if req.streaming: | |
yield (fake_audios * 32768).astype(np.int16).tobytes() | |
else: | |
segments.append(fake_audios) | |
if req.streaming: | |
return | |
if len(segments) == 0: | |
raise HTTPException( | |
HTTPStatus.INTERNAL_SERVER_ERROR, | |
content="No audio generated, please check the input text.", | |
) | |
fake_audios = np.concatenate(segments, axis=0) | |
yield fake_audios | |
async def inference_async(req: ServeTTSRequest): | |
for chunk in inference(req): | |
yield chunk | |
async def buffer_to_async_generator(buffer): | |
yield buffer | |
async def api_invoke_model( | |
req: Annotated[ServeTTSRequest, Body(exclusive=True)], | |
): | |
""" | |
Invoke model and generate audio | |
""" | |
if args.max_text_length > 0 and len(req.text) > args.max_text_length: | |
raise HTTPException( | |
HTTPStatus.BAD_REQUEST, | |
content=f"Text is too long, max length is {args.max_text_length}", | |
) | |
if req.streaming and req.format != "wav": | |
raise HTTPException( | |
HTTPStatus.BAD_REQUEST, | |
content="Streaming only supports WAV format", | |
) | |
if req.streaming: | |
return StreamResponse( | |
iterable=inference_async(req), | |
headers={ | |
"Content-Disposition": f"attachment; filename=audio.{req.format}", | |
}, | |
content_type=get_content_type(req.format), | |
) | |
else: | |
fake_audios = next(inference(req)) | |
buffer = io.BytesIO() | |
sf.write( | |
buffer, | |
fake_audios, | |
decoder_model.spec_transform.sample_rate, | |
format=req.format, | |
) | |
return StreamResponse( | |
iterable=buffer_to_async_generator(buffer.getvalue()), | |
headers={ | |
"Content-Disposition": f"attachment; filename=audio.{req.format}", | |
}, | |
content_type=get_content_type(req.format), | |
) | |
async def api_health(): | |
""" | |
Health check | |
""" | |
return JSONResponse({"status": "ok"}) | |
def parse_args(): | |
parser = ArgumentParser() | |
parser.add_argument( | |
"--llama-checkpoint-path", | |
type=str, | |
default="checkpoints/fish-speech-1.4", | |
) | |
parser.add_argument( | |
"--decoder-checkpoint-path", | |
type=str, | |
default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth", | |
) | |
parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq") | |
parser.add_argument("--device", type=str, default="cuda") | |
parser.add_argument("--half", action="store_true") | |
parser.add_argument("--compile", action="store_true") | |
parser.add_argument("--max-text-length", type=int, default=0) | |
parser.add_argument("--listen", type=str, default="127.0.0.1:8080") | |
parser.add_argument("--workers", type=int, default=1) | |
parser.add_argument("--use-auto-rerank", type=bool, default=True) | |
return parser.parse_args() | |
# Define Kui app | |
openapi = OpenAPI( | |
{ | |
"title": "Fish Speech API", | |
}, | |
).routes | |
class MsgPackRequest(HttpRequest): | |
async def data(self) -> Annotated[Any, ContentType("application/msgpack")]: | |
if self.content_type == "application/msgpack": | |
return ormsgpack.unpackb(await self.body) | |
raise HTTPException( | |
HTTPStatus.UNSUPPORTED_MEDIA_TYPE, | |
headers={"Accept": "application/msgpack"}, | |
) | |
app = Kui( | |
routes=routes + openapi[1:], # Remove the default route | |
exception_handlers={ | |
HTTPException: http_execption_handler, | |
Exception: other_exception_handler, | |
}, | |
factory_class=FactoryClass(http=MsgPackRequest), | |
cors_config={}, | |
) | |
if __name__ == "__main__": | |
import uvicorn | |
args = parse_args() | |
args.precision = torch.half if args.half else torch.bfloat16 | |
logger.info("Loading Llama model...") | |
llama_queue = launch_thread_safe_queue( | |
checkpoint_path=args.llama_checkpoint_path, | |
device=args.device, | |
precision=args.precision, | |
compile=args.compile, | |
) | |
logger.info("Llama model loaded, loading VQ-GAN model...") | |
decoder_model = load_decoder_model( | |
config_name=args.decoder_config_name, | |
checkpoint_path=args.decoder_checkpoint_path, | |
device=args.device, | |
) | |
logger.info("VQ-GAN model loaded, warming up...") | |
# Dry run to check if the model is loaded correctly and avoid the first-time latency | |
list( | |
inference( | |
ServeTTSRequest( | |
text="Hello world.", | |
references=[], | |
reference_id=None, | |
max_new_tokens=0, | |
top_p=0.7, | |
repetition_penalty=1.2, | |
temperature=0.7, | |
emotion=None, | |
format="wav", | |
) | |
) | |
) | |
logger.info(f"Warming up done, starting server at http://{args.listen}") | |
host, port = args.listen.split(":") | |
uvicorn.run(app, host=host, port=int(port), workers=args.workers, log_level="info") | |