PoTaTo721's picture
Update to V1.4
28c720a
raw
history blame
12.5 kB
import base64
import io
import json
import queue
import random
import sys
import traceback
import wave
from argparse import ArgumentParser
from http import HTTPStatus
from pathlib import Path
from typing import Annotated, Any, Literal, Optional
import numpy as np
import ormsgpack
import pyrootutils
import soundfile as sf
import torch
import torchaudio
from baize.datastructures import ContentType
from kui.asgi import (
Body,
FactoryClass,
HTTPException,
HttpRequest,
HttpView,
JSONResponse,
Kui,
OpenAPI,
StreamResponse,
)
from kui.asgi.routing import MultimethodRoutes
from loguru import logger
from pydantic import BaseModel, Field, conint
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
# from fish_speech.models.vqgan.lit_module import VQGAN
from fish_speech.models.vqgan.modules.firefly import FireflyArchitecture
from fish_speech.text.chn_text_norm.text import Text as ChnNormedText
from fish_speech.utils import autocast_exclude_mps
from tools.commons import ServeReferenceAudio, ServeTTSRequest
from tools.file import AUDIO_EXTENSIONS, audio_to_bytes, list_files, read_ref_text
from tools.llama.generate import (
GenerateRequest,
GenerateResponse,
WrappedGenerateResponse,
launch_thread_safe_queue,
)
from tools.vqgan.inference import load_model as load_decoder_model
def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
buffer = io.BytesIO()
with wave.open(buffer, "wb") as wav_file:
wav_file.setnchannels(channels)
wav_file.setsampwidth(bit_depth // 8)
wav_file.setframerate(sample_rate)
wav_header_bytes = buffer.getvalue()
buffer.close()
return wav_header_bytes
# Define utils for web server
async def http_execption_handler(exc: HTTPException):
return JSONResponse(
dict(
statusCode=exc.status_code,
message=exc.content,
error=HTTPStatus(exc.status_code).phrase,
),
exc.status_code,
exc.headers,
)
async def other_exception_handler(exc: "Exception"):
traceback.print_exc()
status = HTTPStatus.INTERNAL_SERVER_ERROR
return JSONResponse(
dict(statusCode=status, message=str(exc), error=status.phrase),
status,
)
def load_audio(reference_audio, sr):
if len(reference_audio) > 255 or not Path(reference_audio).exists():
audio_data = reference_audio
reference_audio = io.BytesIO(audio_data)
waveform, original_sr = torchaudio.load(
reference_audio, backend="sox" if sys.platform == "linux" else "soundfile"
)
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
if original_sr != sr:
resampler = torchaudio.transforms.Resample(orig_freq=original_sr, new_freq=sr)
waveform = resampler(waveform)
audio = waveform.squeeze().numpy()
return audio
def encode_reference(*, decoder_model, reference_audio, enable_reference_audio):
if enable_reference_audio and reference_audio is not None:
# Load audios, and prepare basic info here
reference_audio_content = load_audio(
reference_audio, decoder_model.spec_transform.sample_rate
)
audios = torch.from_numpy(reference_audio_content).to(decoder_model.device)[
None, None, :
]
audio_lengths = torch.tensor(
[audios.shape[2]], device=decoder_model.device, dtype=torch.long
)
logger.info(
f"Loaded audio with {audios.shape[2] / decoder_model.spec_transform.sample_rate:.2f} seconds"
)
# VQ Encoder
if isinstance(decoder_model, FireflyArchitecture):
prompt_tokens = decoder_model.encode(audios, audio_lengths)[0][0]
logger.info(f"Encoded prompt: {prompt_tokens.shape}")
else:
prompt_tokens = None
logger.info("No reference audio provided")
return prompt_tokens
def decode_vq_tokens(
*,
decoder_model,
codes,
):
feature_lengths = torch.tensor([codes.shape[1]], device=decoder_model.device)
logger.info(f"VQ features: {codes.shape}")
if isinstance(decoder_model, FireflyArchitecture):
# VQGAN Inference
return decoder_model.decode(
indices=codes[None],
feature_lengths=feature_lengths,
)[0].squeeze()
raise ValueError(f"Unknown model type: {type(decoder_model)}")
routes = MultimethodRoutes(base_class=HttpView)
def get_content_type(audio_format):
if audio_format == "wav":
return "audio/wav"
elif audio_format == "flac":
return "audio/flac"
elif audio_format == "mp3":
return "audio/mpeg"
else:
return "application/octet-stream"
@torch.inference_mode()
def inference(req: ServeTTSRequest):
idstr: str | None = req.reference_id
if idstr is not None:
ref_folder = Path("references") / idstr
ref_folder.mkdir(parents=True, exist_ok=True)
ref_audios = list_files(
ref_folder, AUDIO_EXTENSIONS, recursive=True, sort=False
)
prompt_tokens = [
encode_reference(
decoder_model=decoder_model,
reference_audio=audio_to_bytes(str(ref_audio)),
enable_reference_audio=True,
)
for ref_audio in ref_audios
]
prompt_texts = [
read_ref_text(str(ref_audio.with_suffix(".lab")))
for ref_audio in ref_audios
]
else:
# Parse reference audio aka prompt
refs = req.references
if refs is None:
refs = []
prompt_tokens = [
encode_reference(
decoder_model=decoder_model,
reference_audio=ref.audio,
enable_reference_audio=True,
)
for ref in refs
]
prompt_texts = [ref.text for ref in refs]
# LLAMA Inference
request = dict(
device=decoder_model.device,
max_new_tokens=req.max_new_tokens,
text=(
req.text
if not req.normalize
else ChnNormedText(raw_text=req.text).normalize()
),
top_p=req.top_p,
repetition_penalty=req.repetition_penalty,
temperature=req.temperature,
compile=args.compile,
iterative_prompt=req.chunk_length > 0,
chunk_length=req.chunk_length,
max_length=2048,
prompt_tokens=prompt_tokens,
prompt_text=prompt_texts,
)
response_queue = queue.Queue()
llama_queue.put(
GenerateRequest(
request=request,
response_queue=response_queue,
)
)
if req.streaming:
yield wav_chunk_header()
segments = []
while True:
result: WrappedGenerateResponse = response_queue.get()
if result.status == "error":
raise result.response
break
result: GenerateResponse = result.response
if result.action == "next":
break
with autocast_exclude_mps(
device_type=decoder_model.device.type, dtype=args.precision
):
fake_audios = decode_vq_tokens(
decoder_model=decoder_model,
codes=result.codes,
)
fake_audios = fake_audios.float().cpu().numpy()
if req.streaming:
yield (fake_audios * 32768).astype(np.int16).tobytes()
else:
segments.append(fake_audios)
if req.streaming:
return
if len(segments) == 0:
raise HTTPException(
HTTPStatus.INTERNAL_SERVER_ERROR,
content="No audio generated, please check the input text.",
)
fake_audios = np.concatenate(segments, axis=0)
yield fake_audios
async def inference_async(req: ServeTTSRequest):
for chunk in inference(req):
yield chunk
async def buffer_to_async_generator(buffer):
yield buffer
@routes.http.post("/v1/tts")
async def api_invoke_model(
req: Annotated[ServeTTSRequest, Body(exclusive=True)],
):
"""
Invoke model and generate audio
"""
if args.max_text_length > 0 and len(req.text) > args.max_text_length:
raise HTTPException(
HTTPStatus.BAD_REQUEST,
content=f"Text is too long, max length is {args.max_text_length}",
)
if req.streaming and req.format != "wav":
raise HTTPException(
HTTPStatus.BAD_REQUEST,
content="Streaming only supports WAV format",
)
if req.streaming:
return StreamResponse(
iterable=inference_async(req),
headers={
"Content-Disposition": f"attachment; filename=audio.{req.format}",
},
content_type=get_content_type(req.format),
)
else:
fake_audios = next(inference(req))
buffer = io.BytesIO()
sf.write(
buffer,
fake_audios,
decoder_model.spec_transform.sample_rate,
format=req.format,
)
return StreamResponse(
iterable=buffer_to_async_generator(buffer.getvalue()),
headers={
"Content-Disposition": f"attachment; filename=audio.{req.format}",
},
content_type=get_content_type(req.format),
)
@routes.http.post("/v1/health")
async def api_health():
"""
Health check
"""
return JSONResponse({"status": "ok"})
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--llama-checkpoint-path",
type=str,
default="checkpoints/fish-speech-1.4",
)
parser.add_argument(
"--decoder-checkpoint-path",
type=str,
default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth",
)
parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--half", action="store_true")
parser.add_argument("--compile", action="store_true")
parser.add_argument("--max-text-length", type=int, default=0)
parser.add_argument("--listen", type=str, default="127.0.0.1:8080")
parser.add_argument("--workers", type=int, default=1)
parser.add_argument("--use-auto-rerank", type=bool, default=True)
return parser.parse_args()
# Define Kui app
openapi = OpenAPI(
{
"title": "Fish Speech API",
},
).routes
class MsgPackRequest(HttpRequest):
async def data(self) -> Annotated[Any, ContentType("application/msgpack")]:
if self.content_type == "application/msgpack":
return ormsgpack.unpackb(await self.body)
raise HTTPException(
HTTPStatus.UNSUPPORTED_MEDIA_TYPE,
headers={"Accept": "application/msgpack"},
)
app = Kui(
routes=routes + openapi[1:], # Remove the default route
exception_handlers={
HTTPException: http_execption_handler,
Exception: other_exception_handler,
},
factory_class=FactoryClass(http=MsgPackRequest),
cors_config={},
)
if __name__ == "__main__":
import uvicorn
args = parse_args()
args.precision = torch.half if args.half else torch.bfloat16
logger.info("Loading Llama model...")
llama_queue = launch_thread_safe_queue(
checkpoint_path=args.llama_checkpoint_path,
device=args.device,
precision=args.precision,
compile=args.compile,
)
logger.info("Llama model loaded, loading VQ-GAN model...")
decoder_model = load_decoder_model(
config_name=args.decoder_config_name,
checkpoint_path=args.decoder_checkpoint_path,
device=args.device,
)
logger.info("VQ-GAN model loaded, warming up...")
# Dry run to check if the model is loaded correctly and avoid the first-time latency
list(
inference(
ServeTTSRequest(
text="Hello world.",
references=[],
reference_id=None,
max_new_tokens=0,
top_p=0.7,
repetition_penalty=1.2,
temperature=0.7,
emotion=None,
format="wav",
)
)
)
logger.info(f"Warming up done, starting server at http://{args.listen}")
host, port = args.listen.split(":")
uvicorn.run(app, host=host, port=int(port), workers=args.workers, log_level="info")