Spaces:
Sleeping
Sleeping
fixed by yair
Browse files- config.py +16 -0
- data_loader.py +216 -0
- model_manager.py +25 -0
- model_predictor.py +34 -0
- model_trainer.py +46 -0
config.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
# Directories
|
| 4 |
+
MODEL_DIR = "models"
|
| 5 |
+
|
| 6 |
+
# Model File Paths
|
| 7 |
+
CATBOOST_MODEL_PATH = os.path.join(MODEL_DIR, "catboost_model.cbm")
|
| 8 |
+
XGB_MODEL_PATH = os.path.join(MODEL_DIR, "xgb_model.json")
|
| 9 |
+
RF_MODEL_PATH = os.path.join(MODEL_DIR, "rf_model.pkl")
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Model Parameters
|
| 14 |
+
CATBOOST_PARAMS = {"iterations": 800, "depth": 6, "learning_rate": 0.05, "random_seed": 42, "task_type": "CPU", "verbose": 100}
|
| 15 |
+
XGB_PARAMS = {"n_estimators": 800, "learning_rate": 0.05, "max_depth": 6, "tree_method": "hist", "random_state": 42}
|
| 16 |
+
RF_PARAMS = {"n_estimators": 200, "max_depth": 15, "random_state": 42, "n_jobs": -1}
|
data_loader.py
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import time
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import seaborn as sns
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
from sklearn.preprocessing import LabelEncoder, StandardScaler
|
| 8 |
+
from imblearn.over_sampling import SMOTE
|
| 9 |
+
|
| 10 |
+
# ===========================
|
| 11 |
+
# CONFIGURATION
|
| 12 |
+
# ===========================
|
| 13 |
+
|
| 14 |
+
TRAIN_PATH = "data/train_dataset_full - train_dataset_full.csv"
|
| 15 |
+
# TRAIN_PATH = "data/train_dataset_full - train_dataset_partial_for_testing.csv"
|
| 16 |
+
TEST_PATH = "data/X_test_1st.csv" # Replace with actual test dataset path
|
| 17 |
+
|
| 18 |
+
CATEGORICAL_COLUMNS = ["gender", "product",]
|
| 19 |
+
IDS_COLUMNS = [ "user_id", "session_id", "campaign_id", "webpage_id"]
|
| 20 |
+
TARGET_COLUMN = "is_click"
|
| 21 |
+
FEATURE_COLUMNS = [
|
| 22 |
+
"age_level", "gender", "product",
|
| 23 |
+
"product_category_1", "product_category_2", "user_group_id",
|
| 24 |
+
"user_depth", "city_development_index", "var_1"
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
AGGREGATED_COLUMNS = [
|
| 28 |
+
"click_sum_age_sex_prod", "click_count_age_sex_prod",
|
| 29 |
+
"unique_campaigns_age_sex_prod", "unique_webpages_age_sex_prod",
|
| 30 |
+
"click_sum_city_age_prod", "click_count_city_age_prod",
|
| 31 |
+
"unique_campaigns_city_age_prod", "unique_webpages_city_age_prod"
|
| 32 |
+
]
|
| 33 |
+
|
| 34 |
+
TEMPORAL_COLUMNS = ["year", "month", "day", "hour", "minute", "weekday"]
|
| 35 |
+
# ===========================
|
| 36 |
+
# LOAD DATASETS
|
| 37 |
+
# ===========================
|
| 38 |
+
|
| 39 |
+
def load_data(train_path=TRAIN_PATH, test_path=TEST_PATH):
|
| 40 |
+
"""Load train & test datasets, handling missing values."""
|
| 41 |
+
train_df = pd.read_csv(train_path)
|
| 42 |
+
y_train = train_df[TARGET_COLUMN]
|
| 43 |
+
train_df = train_df[~y_train.isnull()]
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
test_df = pd.read_csv(test_path)
|
| 47 |
+
|
| 48 |
+
train_df["DateTime"] = pd.to_datetime(train_df["DateTime"])
|
| 49 |
+
test_df["DateTime"] = pd.to_datetime(test_df["DateTime"])
|
| 50 |
+
train_df["DateTime"].fillna(train_df["DateTime"].mode()[0], inplace=True)
|
| 51 |
+
test_df["DateTime"].fillna(test_df["DateTime"].mode()[0], inplace=True)
|
| 52 |
+
|
| 53 |
+
if "DateTime" in train_df.columns:
|
| 54 |
+
train_df["DateTime"] = pd.to_datetime(train_df["DateTime"])
|
| 55 |
+
train_df["year"] = train_df["DateTime"].dt.year
|
| 56 |
+
train_df["month"] = train_df["DateTime"].dt.month
|
| 57 |
+
train_df["day"] = train_df["DateTime"].dt.day
|
| 58 |
+
train_df["hour"] = train_df["DateTime"].dt.hour
|
| 59 |
+
train_df["minute"] = train_df["DateTime"].dt.minute
|
| 60 |
+
train_df["weekday"] = train_df["DateTime"].dt.weekday
|
| 61 |
+
train_df.drop("DateTime", axis=1, inplace=True)
|
| 62 |
+
|
| 63 |
+
if "DateTime" in test_df.columns:
|
| 64 |
+
test_df["DateTime"] = pd.to_datetime(test_df["DateTime"])
|
| 65 |
+
test_df["year"] = test_df["DateTime"].dt.year
|
| 66 |
+
test_df["month"] = test_df["DateTime"].dt.month
|
| 67 |
+
test_df["day"] = test_df["DateTime"].dt.day
|
| 68 |
+
test_df["hour"] = test_df["DateTime"].dt.hour
|
| 69 |
+
test_df["minute"] = test_df["DateTime"].dt.minute
|
| 70 |
+
test_df["weekday"] = test_df["DateTime"].dt.weekday
|
| 71 |
+
test_df.drop("DateTime", axis=1, inplace=True)
|
| 72 |
+
|
| 73 |
+
# Fill missing values
|
| 74 |
+
train_df.fillna(-1, inplace=True)
|
| 75 |
+
test_df.fillna(-1, inplace=True)
|
| 76 |
+
|
| 77 |
+
return train_df, test_df
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# ===========================
|
| 81 |
+
# FEATURE ENGINEERING: AGGREGATIONS
|
| 82 |
+
# ===========================
|
| 83 |
+
|
| 84 |
+
def add_aggregated_features(df, test_df):
|
| 85 |
+
"""Creates aggregated features based on age, gender, and product interactions."""
|
| 86 |
+
|
| 87 |
+
# Aggregate by age & gender vs product
|
| 88 |
+
age_sex_product_agg = df.groupby(["age_level", "gender", "product"]).agg({
|
| 89 |
+
"is_click": ["sum", "count"],
|
| 90 |
+
"campaign_id": "nunique",
|
| 91 |
+
"webpage_id": "nunique"
|
| 92 |
+
}).reset_index()
|
| 93 |
+
|
| 94 |
+
# Rename columns after aggregation
|
| 95 |
+
age_sex_product_agg.columns = ["age_level", "gender", "product",
|
| 96 |
+
"click_sum_age_sex_prod", "click_count_age_sex_prod",
|
| 97 |
+
"unique_campaigns_age_sex_prod", "unique_webpages_age_sex_prod"]
|
| 98 |
+
|
| 99 |
+
# Merge into train & test datasets
|
| 100 |
+
df = df.merge(age_sex_product_agg, on=["age_level", "gender", "product"], how="left")
|
| 101 |
+
test_df = test_df.merge(age_sex_product_agg, on=["age_level", "gender", "product"], how="left")
|
| 102 |
+
|
| 103 |
+
# Aggregate by city, age, product
|
| 104 |
+
city_age_product_agg = df.groupby(["city_development_index", "age_level", "product"]).agg({
|
| 105 |
+
"is_click": ["sum", "count"],
|
| 106 |
+
"campaign_id": "nunique",
|
| 107 |
+
"webpage_id": "nunique"
|
| 108 |
+
}).reset_index()
|
| 109 |
+
|
| 110 |
+
# Rename columns
|
| 111 |
+
city_age_product_agg.columns = ["city_development_index", "age_level", "product",
|
| 112 |
+
"click_sum_city_age_prod", "click_count_city_age_prod",
|
| 113 |
+
"unique_campaigns_city_age_prod", "unique_webpages_city_age_prod"]
|
| 114 |
+
|
| 115 |
+
# Merge into train & test datasets
|
| 116 |
+
df = df.merge(city_age_product_agg, on=["city_development_index", "age_level", "product"], how="left")
|
| 117 |
+
test_df = test_df.merge(city_age_product_agg, on=["city_development_index", "age_level", "product"], how="left")
|
| 118 |
+
|
| 119 |
+
# Fill missing values after merging
|
| 120 |
+
df.fillna(0, inplace=True)
|
| 121 |
+
test_df.fillna(0, inplace=True)
|
| 122 |
+
|
| 123 |
+
return df, test_df
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# ===========================
|
| 127 |
+
# ENCODE & NORMALIZE FEATURES
|
| 128 |
+
# ===========================
|
| 129 |
+
|
| 130 |
+
def preprocess_data(df, test_df, categorical_columns):
|
| 131 |
+
"""Encodes categorical features, normalizes numerical features, and prepares the dataset."""
|
| 132 |
+
|
| 133 |
+
label_encoders = {}
|
| 134 |
+
for col in categorical_columns:
|
| 135 |
+
le = LabelEncoder()
|
| 136 |
+
df[col] = le.fit_transform(df[col].astype(str))
|
| 137 |
+
test_df[col] = test_df[col].astype(str).map(lambda s: le.transform([s])[0] if s in le.classes_ else -1)
|
| 138 |
+
label_encoders[col] = le # Store encoders for later use
|
| 139 |
+
|
| 140 |
+
numerical_columns = [col for col in FEATURE_COLUMNS + AGGREGATED_COLUMNS if col not in categorical_columns]
|
| 141 |
+
|
| 142 |
+
# scaler = StandardScaler()
|
| 143 |
+
# df[numerical_columns] = scaler.fit_transform(df[numerical_columns])
|
| 144 |
+
# test_df[numerical_columns] = scaler.transform(test_df[numerical_columns])
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
return df, test_df, label_encoders,# scaler
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
# ===========================
|
| 151 |
+
# SPLIT DATA & HANDLE IMBALANCE
|
| 152 |
+
# ===========================
|
| 153 |
+
|
| 154 |
+
def split_and_balance_data(df, target_column):
|
| 155 |
+
"""Splits data into training and validation sets, applies SMOTE to balance classes."""
|
| 156 |
+
|
| 157 |
+
X = df[IDS_COLUMNS + FEATURE_COLUMNS + AGGREGATED_COLUMNS + TEMPORAL_COLUMNS]
|
| 158 |
+
y = df[target_column]
|
| 159 |
+
|
| 160 |
+
# Handle class imbalance using SMOTE
|
| 161 |
+
smote = SMOTE(sampling_strategy="auto", random_state=42)
|
| 162 |
+
X_resampled, y_resampled = smote.fit_resample(X, y)
|
| 163 |
+
|
| 164 |
+
# Split into training & validation sets
|
| 165 |
+
X_train, X_val, y_train, y_val = train_test_split(
|
| 166 |
+
X_resampled, y_resampled, test_size=0.2, random_state=42, stratify=y_resampled
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
return X_train, X_val, y_train, y_val
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
# ===========================
|
| 173 |
+
# VISUALIZE FEATURES
|
| 174 |
+
# ===========================
|
| 175 |
+
|
| 176 |
+
def visualize_features():
|
| 177 |
+
"""Generates visualizations for aggregated features."""
|
| 178 |
+
|
| 179 |
+
df, _ = load_data()
|
| 180 |
+
df, _ = add_aggregated_features(df, df)
|
| 181 |
+
|
| 182 |
+
sns.set_style("whitegrid")
|
| 183 |
+
|
| 184 |
+
fig, axes = plt.subplots(1, 2, figsize=(14, 6))
|
| 185 |
+
|
| 186 |
+
sns.barplot(x="age_level", y="click_sum_age_sex_prod", hue="gender",
|
| 187 |
+
data=df, ax=axes[0], palette="coolwarm")
|
| 188 |
+
axes[0].set_title("Total Clicks by Age & Gender vs Product")
|
| 189 |
+
|
| 190 |
+
sns.barplot(x="city_development_index", y="click_sum_city_age_prod", hue="age_level",
|
| 191 |
+
data=df, ax=axes[1], palette="viridis")
|
| 192 |
+
axes[1].set_title("Total Clicks by City Development Index & Age")
|
| 193 |
+
|
| 194 |
+
plt.tight_layout()
|
| 195 |
+
plt.show()
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
# ===========================
|
| 199 |
+
# RUN FULL DATA PROCESSING PIPELINE
|
| 200 |
+
# ===========================
|
| 201 |
+
|
| 202 |
+
def load_and_process_data():
|
| 203 |
+
"""Runs the full data processing pipeline and returns preprocessed training & test data."""
|
| 204 |
+
|
| 205 |
+
df, test_df = load_data()
|
| 206 |
+
df, test_df = add_aggregated_features(df, test_df)
|
| 207 |
+
df, test_df, label_encoders = preprocess_data(df, test_df, CATEGORICAL_COLUMNS)
|
| 208 |
+
X_train, X_val, y_train, y_val = split_and_balance_data(df, TARGET_COLUMN)
|
| 209 |
+
|
| 210 |
+
return X_train, X_val, y_train, y_val, test_df
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
if __name__ == "__main__":
|
| 214 |
+
print("🔹 Loading and processing data...")
|
| 215 |
+
X_train, X_val, y_train, y_val, test_df = load_and_process_data()
|
| 216 |
+
print("✅ Data successfully loaded and processed!")
|
model_manager.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import joblib
|
| 2 |
+
from catboost import CatBoostClassifier
|
| 3 |
+
from xgboost import XGBClassifier
|
| 4 |
+
from config import CATBOOST_MODEL_PATH, XGB_MODEL_PATH, RF_MODEL_PATH
|
| 5 |
+
|
| 6 |
+
def save_models(models):
|
| 7 |
+
""" Save trained models """
|
| 8 |
+
models["CatBoost"].save_model(CATBOOST_MODEL_PATH)
|
| 9 |
+
if models["XGBoost"] is not None:
|
| 10 |
+
# Save XGBoost model in binary format to reduce memory usage
|
| 11 |
+
models["XGBoost"].get_booster().save_model(XGB_MODEL_PATH)
|
| 12 |
+
joblib.dump(models["RandomForest"], RF_MODEL_PATH)
|
| 13 |
+
print("✅ Models saved successfully!")
|
| 14 |
+
|
| 15 |
+
def load_models():
|
| 16 |
+
""" Load trained models """
|
| 17 |
+
catboost = CatBoostClassifier()
|
| 18 |
+
catboost.load_model(CATBOOST_MODEL_PATH)
|
| 19 |
+
|
| 20 |
+
xgb = XGBClassifier() # Load XGBoost model in binary format
|
| 21 |
+
xgb.load_model(XGB_MODEL_PATH)
|
| 22 |
+
|
| 23 |
+
rf = joblib.load(RF_MODEL_PATH)
|
| 24 |
+
|
| 25 |
+
return {"CatBoost": catboost, "XGBoost": xgb, "RandomForest": rf}
|
model_predictor.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from catboost import Pool
|
| 4 |
+
|
| 5 |
+
from data_loader import CATEGORICAL_COLUMNS, IDS_COLUMNS, TARGET_COLUMN, FEATURE_COLUMNS, AGGREGATED_COLUMNS, TEMPORAL_COLUMNS
|
| 6 |
+
|
| 7 |
+
def predict(models, X_test):
|
| 8 |
+
""" Make predictions using trained models """
|
| 9 |
+
# Ensure categorical features are properly handled
|
| 10 |
+
cat_features = CATEGORICAL_COLUMNS
|
| 11 |
+
test_predictions = {}
|
| 12 |
+
#
|
| 13 |
+
# test_predictions = {name: np.array(model.predict(X_test)).squeeze() for name, model in models.items()}
|
| 14 |
+
for name, model in models.items():
|
| 15 |
+
if "CatBoost" in name: # Handle CatBoost models
|
| 16 |
+
pool = Pool(data=X_test, cat_features=cat_features)
|
| 17 |
+
test_predictions[name] = model.predict(pool)
|
| 18 |
+
else: # Other models
|
| 19 |
+
# reordering columns to match the order of columns in the model
|
| 20 |
+
new_X_test = X_test[IDS_COLUMNS + FEATURE_COLUMNS + AGGREGATED_COLUMNS + TEMPORAL_COLUMNS]
|
| 21 |
+
test_predictions[name] = np.array(model.predict(new_X_test)).squeeze()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
test_predictions_df = pd.DataFrame(test_predictions)
|
| 25 |
+
|
| 26 |
+
# Ensure binary values (0 or 1)
|
| 27 |
+
for col in test_predictions_df.columns:
|
| 28 |
+
test_predictions_df[col] = (test_predictions_df[col] > 0.5).astype(int)
|
| 29 |
+
|
| 30 |
+
# Apply "at least one model predicts 1" rule
|
| 31 |
+
test_predictions_df["is_click_predicted"] = test_predictions_df.max(axis=1)
|
| 32 |
+
|
| 33 |
+
return test_predictions_df
|
| 34 |
+
|
model_trainer.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
from catboost import CatBoostClassifier
|
| 3 |
+
from xgboost import XGBClassifier
|
| 4 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 5 |
+
from config import CATBOOST_PARAMS, XGB_PARAMS, RF_PARAMS
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def train_models(X_train, y_train, categorical_columns):
|
| 9 |
+
""" Train and return machine learning models """
|
| 10 |
+
models = {}
|
| 11 |
+
|
| 12 |
+
# Train CatBoost
|
| 13 |
+
start_time = time.time()
|
| 14 |
+
catboost = CatBoostClassifier(**CATBOOST_PARAMS)
|
| 15 |
+
catboost.fit(X_train, y_train, cat_features=[X_train.columns.get_loc(col) for col in categorical_columns])
|
| 16 |
+
models["CatBoost"] = catboost
|
| 17 |
+
print(f"✅ CatBoost trained in {time.time() - start_time:.2f} sec")
|
| 18 |
+
|
| 19 |
+
# Train XGBoost
|
| 20 |
+
if set(y_train.unique()) <= {0, 1}: # Ensure only valid labels exist
|
| 21 |
+
start_time = time.time()
|
| 22 |
+
xgb = XGBClassifier(**XGB_PARAMS)
|
| 23 |
+
xgb.fit(X_train, y_train)
|
| 24 |
+
models["XGBoost"] = xgb
|
| 25 |
+
print(f"✅ XGBoost trained in {time.time() - start_time:.2f} sec")
|
| 26 |
+
else:
|
| 27 |
+
x_train_xgboost = X_train[~y_train.isna()]
|
| 28 |
+
y_train_xgboost = y_train.dropna()
|
| 29 |
+
if set(y_train_xgboost.unique()) <= {0, 1}:
|
| 30 |
+
start_time = time.time()
|
| 31 |
+
xgb = XGBClassifier(**XGB_PARAMS)
|
| 32 |
+
xgb.fit(x_train_xgboost, y_train_xgboost)
|
| 33 |
+
models["XGBoost"] = xgb
|
| 34 |
+
print(f"✅ XGBoost trained in {time.time() - start_time:.2f} sec")
|
| 35 |
+
else:
|
| 36 |
+
models["XGBoost"] = None
|
| 37 |
+
print("⚠ XGBoost training skipped due to invalid labels!")
|
| 38 |
+
|
| 39 |
+
# Train RandomForest
|
| 40 |
+
start_time = time.time()
|
| 41 |
+
rf = RandomForestClassifier(**RF_PARAMS)
|
| 42 |
+
rf.fit(X_train, y_train)
|
| 43 |
+
models["RandomForest"] = rf
|
| 44 |
+
print(f"✅ RandomForest trained in {time.time() - start_time:.2f} sec")
|
| 45 |
+
|
| 46 |
+
return models
|