KaiquanMah commited on
Commit
a5908eb
·
verified ·
1 Parent(s): b2c6200

Create preprocess.py

Browse files
Files changed (1) hide show
  1. preprocess.py +52 -0
preprocess.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import pandas as pd
3
+ from sklearn.model_selection import train_test_split
4
+ import os
5
+
6
+
7
+
8
+ def parse(csv_path):
9
+ print(f"Location of the file: {csv_path}")
10
+
11
+ # Step 1: Load the dataset
12
+ # file_path = "dataset.csv" # Path to the original dataset
13
+ data = pd.read_csv(csv_path)
14
+
15
+ # Drop dupes
16
+ data = data.drop_duplicates()
17
+
18
+ # Step 2: Define the feature columns (X) and target column (y)
19
+ X = data[["name", "attendance percentage", "average sleep time", "average screen time"]] # Feature columns
20
+ y = data["grade"] # Target column
21
+
22
+ # Step 3: Split the dataset into training and testing sets
23
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
24
+
25
+ # Step 4: Combine X and y back into dataframes for train and test
26
+ train_data = pd.concat([X_train, y_train], axis=1) # Combine features and target for training data
27
+ test_data = pd.concat([X_test, y_test], axis=1) # Combine features and target for testing data
28
+
29
+ # Step 5: Create the 'data' folder if it doesn't exist
30
+ output_folder = "data"
31
+ os.makedirs(output_folder, exist_ok=True)
32
+
33
+ # Step 6: Save the train and test sets as CSV files
34
+ train_file_path = os.path.join(output_folder, "train.csv")
35
+ test_file_path = os.path.join(output_folder, "test.csv")
36
+
37
+ train_data.to_csv(train_file_path, index=False)
38
+ test_data.to_csv(test_file_path, index=False)
39
+
40
+ print(f"Train and test datasets saved in '{output_folder}' folder.")
41
+
42
+
43
+
44
+
45
+
46
+ if __name__ == '__main__':
47
+ parser = argparse.ArgumentParser()
48
+ parser.add_argument("--csv-path", type=str)
49
+
50
+
51
+ args = parser.parse_args()
52
+ parse(args.csv_path)