|
'''
|
|
Downloads models from Hugging Face to models/username_modelname.
|
|
|
|
Example:
|
|
python download-model.py facebook/opt-1.3b
|
|
|
|
'''
|
|
|
|
import argparse
|
|
import base64
|
|
import datetime
|
|
import hashlib
|
|
import json
|
|
import os
|
|
import re
|
|
import sys
|
|
from pathlib import Path
|
|
from time import sleep
|
|
|
|
import requests
|
|
import tqdm
|
|
from requests.adapters import HTTPAdapter
|
|
from requests.exceptions import ConnectionError, RequestException, Timeout
|
|
from tqdm.contrib.concurrent import thread_map
|
|
|
|
base = os.environ.get("HF_ENDPOINT") or "https://huggingface.co"
|
|
|
|
|
|
class ModelDownloader:
|
|
def __init__(self, max_retries=5):
|
|
self.max_retries = max_retries
|
|
|
|
def get_session(self):
|
|
session = requests.Session()
|
|
if self.max_retries:
|
|
session.mount('https://cdn-lfs.huggingface.co', HTTPAdapter(max_retries=self.max_retries))
|
|
session.mount('https://huggingface.co', HTTPAdapter(max_retries=self.max_retries))
|
|
|
|
if os.getenv('HF_USER') is not None and os.getenv('HF_PASS') is not None:
|
|
session.auth = (os.getenv('HF_USER'), os.getenv('HF_PASS'))
|
|
|
|
try:
|
|
from huggingface_hub import get_token
|
|
token = get_token()
|
|
except ImportError:
|
|
token = os.getenv("HF_TOKEN")
|
|
|
|
if token is not None:
|
|
session.headers = {'authorization': f'Bearer {token}'}
|
|
|
|
return session
|
|
|
|
def sanitize_model_and_branch_names(self, model, branch):
|
|
if model[-1] == '/':
|
|
model = model[:-1]
|
|
|
|
if model.startswith(base + '/'):
|
|
model = model[len(base) + 1:]
|
|
|
|
model_parts = model.split(":")
|
|
model = model_parts[0] if len(model_parts) > 0 else model
|
|
branch = model_parts[1] if len(model_parts) > 1 else branch
|
|
|
|
if branch is None:
|
|
branch = "main"
|
|
else:
|
|
pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
|
|
if not pattern.match(branch):
|
|
raise ValueError(
|
|
"Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
|
|
|
|
return model, branch
|
|
|
|
def get_download_links_from_huggingface(self, model, branch, text_only=False, specific_file=None):
|
|
session = self.get_session()
|
|
page = f"/api/models/{model}/tree/{branch}"
|
|
cursor = b""
|
|
|
|
links = []
|
|
sha256 = []
|
|
classifications = []
|
|
has_pytorch = False
|
|
has_pt = False
|
|
has_gguf = False
|
|
has_safetensors = False
|
|
is_lora = False
|
|
while True:
|
|
url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "")
|
|
r = session.get(url, timeout=10)
|
|
r.raise_for_status()
|
|
content = r.content
|
|
|
|
dict = json.loads(content)
|
|
if len(dict) == 0:
|
|
break
|
|
|
|
for i in range(len(dict)):
|
|
fname = dict[i]['path']
|
|
if specific_file not in [None, ''] and fname != specific_file:
|
|
continue
|
|
|
|
if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
|
|
is_lora = True
|
|
|
|
is_pytorch = re.match(r"(pytorch|adapter|gptq)_model.*\.bin", fname)
|
|
is_safetensors = re.match(r".*\.safetensors", fname)
|
|
is_pt = re.match(r".*\.pt", fname)
|
|
is_gguf = re.match(r'.*\.gguf', fname)
|
|
is_tiktoken = re.match(r".*\.tiktoken", fname)
|
|
is_tokenizer = re.match(r"(tokenizer|ice|spiece).*\.model", fname) or is_tiktoken
|
|
is_text = re.match(r".*\.(txt|json|py|md)", fname) or is_tokenizer
|
|
if any((is_pytorch, is_safetensors, is_pt, is_gguf, is_tokenizer, is_text)):
|
|
if 'lfs' in dict[i]:
|
|
sha256.append([fname, dict[i]['lfs']['oid']])
|
|
|
|
if is_text:
|
|
links.append(f"{base}/{model}/resolve/{branch}/{fname}")
|
|
classifications.append('text')
|
|
continue
|
|
|
|
if not text_only:
|
|
links.append(f"{base}/{model}/resolve/{branch}/{fname}")
|
|
if is_safetensors:
|
|
has_safetensors = True
|
|
classifications.append('safetensors')
|
|
elif is_pytorch:
|
|
has_pytorch = True
|
|
classifications.append('pytorch')
|
|
elif is_pt:
|
|
has_pt = True
|
|
classifications.append('pt')
|
|
elif is_gguf:
|
|
has_gguf = True
|
|
classifications.append('gguf')
|
|
|
|
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
|
|
cursor = base64.b64encode(cursor)
|
|
cursor = cursor.replace(b'=', b'%3D')
|
|
|
|
|
|
|
|
|
|
if (has_pytorch or has_pt or has_gguf) and has_safetensors:
|
|
has_gguf = False
|
|
for i in range(len(classifications) - 1, -1, -1):
|
|
if classifications[i] in ['pytorch', 'pt', 'gguf']:
|
|
links.pop(i)
|
|
|
|
|
|
|
|
|
|
if has_gguf and specific_file is None:
|
|
has_q4km = False
|
|
for i in range(len(classifications) - 1, -1, -1):
|
|
if 'q4_k_m' in links[i].lower():
|
|
has_q4km = True
|
|
|
|
if has_q4km:
|
|
for i in range(len(classifications) - 1, -1, -1):
|
|
if 'q4_k_m' not in links[i].lower():
|
|
links.pop(i)
|
|
else:
|
|
for i in range(len(classifications) - 1, -1, -1):
|
|
if links[i].lower().endswith('.gguf'):
|
|
links.pop(i)
|
|
|
|
is_llamacpp = has_gguf and specific_file is not None
|
|
return links, sha256, is_lora, is_llamacpp
|
|
|
|
def get_output_folder(self, model, branch, is_lora, is_llamacpp=False):
|
|
base_folder = 'models' if not is_lora else 'loras'
|
|
|
|
|
|
if is_llamacpp:
|
|
return Path(base_folder)
|
|
|
|
output_folder = f"{'_'.join(model.split('/')[-2:])}"
|
|
if branch != 'main':
|
|
output_folder += f'_{branch}'
|
|
|
|
output_folder = Path(base_folder) / output_folder
|
|
return output_folder
|
|
|
|
def get_single_file(self, url, output_folder, start_from_scratch=False):
|
|
filename = Path(url.rsplit('/', 1)[1])
|
|
output_path = output_folder / filename
|
|
|
|
max_retries = 7
|
|
attempt = 0
|
|
while attempt < max_retries:
|
|
attempt += 1
|
|
session = self.get_session()
|
|
headers = {}
|
|
mode = 'wb'
|
|
|
|
try:
|
|
if output_path.exists() and not start_from_scratch:
|
|
|
|
r = session.get(url, stream=True, timeout=20)
|
|
total_size = int(r.headers.get('content-length', 0))
|
|
if output_path.stat().st_size >= total_size:
|
|
return
|
|
|
|
headers = {'Range': f'bytes={output_path.stat().st_size}-'}
|
|
mode = 'ab'
|
|
|
|
with session.get(url, stream=True, headers=headers, timeout=30) as r:
|
|
r.raise_for_status()
|
|
total_size = int(r.headers.get('content-length', 0))
|
|
block_size = 1024 * 1024
|
|
|
|
tqdm_kwargs = {
|
|
'total': total_size,
|
|
'unit': 'iB',
|
|
'unit_scale': True,
|
|
'bar_format': '{l_bar}{bar}| {n_fmt}/{total_fmt} {rate_fmt}'
|
|
}
|
|
|
|
if 'COLAB_GPU' in os.environ:
|
|
tqdm_kwargs.update({
|
|
'position': 0,
|
|
'leave': True
|
|
})
|
|
|
|
with open(output_path, mode) as f:
|
|
with tqdm.tqdm(**tqdm_kwargs) as t:
|
|
count = 0
|
|
for data in r.iter_content(block_size):
|
|
f.write(data)
|
|
t.update(len(data))
|
|
if total_size != 0 and self.progress_bar is not None:
|
|
count += len(data)
|
|
self.progress_bar(float(count) / float(total_size), f"{filename}")
|
|
|
|
break
|
|
except (RequestException, ConnectionError, Timeout) as e:
|
|
print(f"Error downloading {filename}: {e}.")
|
|
print(f"That was attempt {attempt}/{max_retries}.", end=' ')
|
|
if attempt < max_retries:
|
|
print(f"Retry begins in {2 ** attempt} seconds.")
|
|
sleep(2 ** attempt)
|
|
else:
|
|
print("Failed to download after the maximum number of attempts.")
|
|
|
|
def start_download_threads(self, file_list, output_folder, start_from_scratch=False, threads=4):
|
|
thread_map(lambda url: self.get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True)
|
|
|
|
def download_model_files(self, model, branch, links, sha256, output_folder, progress_bar=None, start_from_scratch=False, threads=4, specific_file=None, is_llamacpp=False):
|
|
self.progress_bar = progress_bar
|
|
|
|
|
|
output_folder.mkdir(parents=True, exist_ok=True)
|
|
|
|
if not is_llamacpp:
|
|
metadata = f'url: https://huggingface.co/{model}\n' \
|
|
f'branch: {branch}\n' \
|
|
f'download date: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}\n'
|
|
|
|
sha256_str = '\n'.join([f' {item[1]} {item[0]}' for item in sha256])
|
|
if sha256_str:
|
|
metadata += f'sha256sum:\n{sha256_str}'
|
|
|
|
metadata += '\n'
|
|
(output_folder / 'huggingface-metadata.txt').write_text(metadata)
|
|
|
|
if specific_file:
|
|
print(f"Downloading {specific_file} to {output_folder}")
|
|
else:
|
|
print(f"Downloading the model to {output_folder}")
|
|
|
|
self.start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads)
|
|
|
|
def check_model_files(self, model, branch, links, sha256, output_folder):
|
|
|
|
validated = True
|
|
for i in range(len(sha256)):
|
|
fpath = (output_folder / sha256[i][0])
|
|
|
|
if not fpath.exists():
|
|
print(f"The following file is missing: {fpath}")
|
|
validated = False
|
|
continue
|
|
|
|
with open(output_folder / sha256[i][0], "rb") as f:
|
|
bytes = f.read()
|
|
file_hash = hashlib.sha256(bytes).hexdigest()
|
|
if file_hash != sha256[i][1]:
|
|
print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}')
|
|
validated = False
|
|
else:
|
|
print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}')
|
|
|
|
if validated:
|
|
print('[+] Validated checksums of all model files!')
|
|
else:
|
|
print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('MODEL', type=str, default=None, nargs='?')
|
|
parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
|
|
parser.add_argument('--threads', type=int, default=4, help='Number of files to download simultaneously.')
|
|
parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
|
|
parser.add_argument('--specific-file', type=str, default=None, help='Name of the specific file to download (if not provided, downloads all).')
|
|
parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.')
|
|
parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.')
|
|
parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.')
|
|
parser.add_argument('--max-retries', type=int, default=5, help='Max retries count when get error in download time.')
|
|
args = parser.parse_args()
|
|
|
|
branch = args.branch
|
|
model = args.MODEL
|
|
specific_file = args.specific_file
|
|
|
|
if model is None:
|
|
print("Error: Please specify the model you'd like to download (e.g. 'python download-model.py facebook/opt-1.3b').")
|
|
sys.exit()
|
|
|
|
downloader = ModelDownloader(max_retries=args.max_retries)
|
|
|
|
try:
|
|
model, branch = downloader.sanitize_model_and_branch_names(model, branch)
|
|
except ValueError as err_branch:
|
|
print(f"Error: {err_branch}")
|
|
sys.exit()
|
|
|
|
|
|
links, sha256, is_lora, is_llamacpp = downloader.get_download_links_from_huggingface(model, branch, text_only=args.text_only, specific_file=specific_file)
|
|
|
|
|
|
if args.output:
|
|
output_folder = Path(args.output)
|
|
else:
|
|
output_folder = downloader.get_output_folder(model, branch, is_lora, is_llamacpp=is_llamacpp)
|
|
|
|
if args.check:
|
|
|
|
downloader.check_model_files(model, branch, links, sha256, output_folder)
|
|
else:
|
|
|
|
downloader.download_model_files(model, branch, links, sha256, output_folder, specific_file=specific_file, threads=args.threads, is_llamacpp=is_llamacpp)
|
|
|