Upload 5 files
Browse files
README.md
CHANGED
@@ -10,4 +10,6 @@ app_file: start.py
|
|
10 |
pinned: false
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
10 |
pinned: false
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
A simple RAG-chatbot which is linked to Kadi-demo instance using OAuth2 in Kadi.
|
app.py
CHANGED
@@ -7,34 +7,35 @@ Ref: https://kadi.readthedocs.io/en/stable/httpapi/intro.html#oauth2-tokens
|
|
7 |
Notes:
|
8 |
1. register an application in Kadi (Setting->Applications)
|
9 |
- Name: KadiOAuthTest
|
10 |
-
- Website URL: http://127.0.0.1:
|
11 |
-
- Redirect URIs: http://localhost:
|
12 |
|
13 |
And you will get Client ID and Client Secret, note them down and set in this file.
|
14 |
|
15 |
-
2. Start this app, and open browser with address "http://localhost:
|
16 |
-
|
17 |
"""
|
18 |
|
19 |
import json
|
20 |
-
|
21 |
import uvicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
from fastapi import FastAPI, Depends
|
23 |
from starlette.responses import RedirectResponse
|
24 |
from starlette.middleware.sessions import SessionMiddleware
|
25 |
from authlib.integrations.starlette_client import OAuth, OAuthError
|
26 |
from fastapi import Request
|
27 |
-
import gradio as gr
|
28 |
-
import kadi_apy
|
29 |
from kadi_apy import KadiManager
|
30 |
from requests.compat import urljoin
|
31 |
from typing import List, Tuple
|
32 |
-
import pymupdf
|
33 |
from sentence_transformers import SentenceTransformer
|
34 |
-
import numpy as np
|
35 |
-
import faiss
|
36 |
from dotenv import load_dotenv
|
37 |
-
import os
|
38 |
|
39 |
# Kadi OAuth settings
|
40 |
load_dotenv()
|
@@ -44,6 +45,7 @@ SECRET_KEY = os.environ["SECRET_KEY"]
|
|
44 |
huggingfacehub_api_token = os.environ["huggingfacehub_api_token"]
|
45 |
|
46 |
from huggingface_hub import login
|
|
|
47 |
login(token=huggingfacehub_api_token)
|
48 |
|
49 |
# Set up OAuth
|
@@ -54,6 +56,7 @@ oauth = OAuth()
|
|
54 |
instance = "my_instance" # "demo kit instance"
|
55 |
host = "https://demo-kadi4mat.iam.kit.edu"
|
56 |
|
|
|
57 |
base_url = host
|
58 |
oauth.register(
|
59 |
name="kadi4mat",
|
@@ -70,15 +73,22 @@ oauth.register(
|
|
70 |
|
71 |
# Global LLM client
|
72 |
from huggingface_hub import InferenceClient
|
|
|
73 |
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
embeddings_client = InferenceClient(model="sentence-transformers/all-mpnet-base-v2", token=huggingfacehub_api_token)
|
77 |
-
# embeddings_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", trust_remote_code=True) # unused
|
78 |
-
embeddings_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2", trust_remote_code=True)
|
79 |
|
80 |
# Dependency to get the current user
|
81 |
def get_user(request: Request):
|
|
|
|
|
82 |
if "user_access_token" in request.session:
|
83 |
token = request.session["user_access_token"]
|
84 |
else:
|
@@ -97,14 +107,17 @@ def get_user(request: Request):
|
|
97 |
|
98 |
@app.get("/")
|
99 |
def public(request: Request, user=Depends(get_user)):
|
|
|
|
|
100 |
root_url = gr.route_utils.get_root_url(request, "/", None)
|
101 |
-
print("root url", root_url)
|
102 |
if user:
|
103 |
return RedirectResponse(url=f"{root_url}/gradio/")
|
104 |
else:
|
105 |
return RedirectResponse(url=f"{root_url}/main/")
|
106 |
|
107 |
|
|
|
108 |
@app.route("/logout")
|
109 |
async def logout(request: Request):
|
110 |
request.session.pop("user", None)
|
@@ -114,24 +127,26 @@ async def logout(request: Request):
|
|
114 |
return RedirectResponse(url="/")
|
115 |
|
116 |
|
|
|
117 |
@app.route("/login")
|
118 |
async def login(request: Request):
|
119 |
root_url = gr.route_utils.get_root_url(request, "/login", None)
|
120 |
redirect_uri = request.url_for("auth") # f"{root_url}/auth"
|
121 |
-
redirect_uri = redirect_uri.replace(scheme=
|
122 |
-
print("-----------in login")
|
123 |
-
print("root_urlt", root_url)
|
124 |
-
print("redirect_uri", redirect_uri)
|
125 |
-
print("request", request)
|
126 |
return await oauth.kadi4mat.authorize_redirect(request, redirect_uri)
|
127 |
|
128 |
|
|
|
129 |
@app.route("/auth")
|
130 |
async def auth(request: Request):
|
131 |
root_url = gr.route_utils.get_root_url(request, "/auth", None)
|
132 |
-
print("*****+ in auth")
|
133 |
-
print("root_urlt", root_url)
|
134 |
-
print("request", request)
|
135 |
try:
|
136 |
access_token = await oauth.kadi4mat.authorize_access_token(request)
|
137 |
request.session["user_access_token"] = access_token["access_token"]
|
@@ -144,10 +159,13 @@ async def auth(request: Request):
|
|
144 |
|
145 |
|
146 |
def greet(request: gr.Request):
|
|
|
|
|
147 |
return f"Welcome to Kadichat, you're logged in as: {request.username}"
|
148 |
|
149 |
|
150 |
def get_files_in_record(record_id, user_token, top_k=10):
|
|
|
151 |
|
152 |
manager = KadiManager(instance=instance, host=host, pat=user_token)
|
153 |
|
@@ -192,6 +210,7 @@ def get_files_in_record(record_id, user_token, top_k=10):
|
|
192 |
|
193 |
|
194 |
def get_all_records(user_token):
|
|
|
195 |
|
196 |
if not user_token:
|
197 |
return []
|
@@ -233,13 +252,16 @@ def get_all_records(user_token):
|
|
233 |
|
234 |
|
235 |
def _init_user_token(request: gr.Request):
|
|
|
|
|
236 |
user_token = request.request.session["user_access_token"]
|
237 |
return user_token
|
238 |
|
239 |
|
|
|
240 |
with gr.Blocks() as login_demo:
|
241 |
gr.Markdown(
|
242 |
-
|
243 |
<center>
|
244 |
<h1>Welcome to KadiChat!</h1>
|
245 |
<br/><br/>
|
@@ -247,7 +269,7 @@ with gr.Blocks() as login_demo:
|
|
247 |
<br/><br/>
|
248 |
Chat with Record in Kadi.</center>
|
249 |
"""
|
250 |
-
|
251 |
# Note: kadichat-logo is hosted on https://postimage.io/
|
252 |
|
253 |
with gr.Row():
|
@@ -257,7 +279,7 @@ with gr.Blocks() as login_demo:
|
|
257 |
btn = gr.Button("Sign in with Kadi (demo-instance)")
|
258 |
with gr.Column():
|
259 |
_btn_placeholder2 = gr.Button(visible=False)
|
260 |
-
|
261 |
gr.Markdown(
|
262 |
"""<br/><br/><br/><br/>
|
263 |
<center>
|
@@ -274,87 +296,92 @@ with gr.Blocks() as login_demo:
|
|
274 |
"""
|
275 |
btn.click(None, js=_js_redirect)
|
276 |
|
277 |
-
import tempfile
|
278 |
-
import os
|
279 |
-
import pymupdf
|
280 |
|
|
|
281 |
class SimpleRAG:
|
282 |
def __init__(self) -> None:
|
283 |
self.documents = []
|
284 |
self.embeddings_model = None
|
285 |
self.embeddings = None
|
286 |
self.index = None
|
287 |
-
#self.load_pdf("Brandt et al_2024_Kadi_info_page.pdf")
|
288 |
-
#self.build_vector_db()
|
289 |
|
290 |
def load_pdf(self, file_path: str) -> None:
|
291 |
"""Extracts text from a PDF file and stores it in the property documents by page."""
|
|
|
292 |
doc = pymupdf.open(file_path)
|
293 |
self.documents = []
|
294 |
for page_num in range(len(doc)):
|
295 |
page = doc[page_num]
|
296 |
text = page.get_text()
|
297 |
self.documents.append({"page": page_num + 1, "content": text})
|
298 |
-
print("PDF processed successfully!")
|
299 |
-
|
300 |
|
301 |
def build_vector_db(self) -> None:
|
302 |
"""Builds a vector database using the content of the PDF."""
|
303 |
if self.embeddings_model is None:
|
304 |
-
self.embeddings_model = SentenceTransformer(
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
#
|
311 |
-
#
|
312 |
-
self.embeddings =
|
313 |
-
|
314 |
-
|
|
|
315 |
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
|
316 |
self.index.add(np.array(self.embeddings))
|
317 |
print("Vector database built successfully!")
|
318 |
|
319 |
def search_documents(self, query: str, k: int = 4) -> List[str]:
|
320 |
"""Searches for relevant documents using vector similarity."""
|
|
|
|
|
321 |
# query_embedding = self.embeddings_model.encode([query], show_progress_bar=False)
|
322 |
-
embedding_responses = embeddings_client.post(
|
|
|
|
|
323 |
query_embedding = json.loads(embedding_responses.decode())
|
324 |
D, I = self.index.search(np.array(query_embedding), k)
|
325 |
results = [self.documents[i]["content"] for i in I[0]]
|
326 |
return results if results else ["No relevant documents found."]
|
327 |
|
|
|
328 |
def chunk_text(text, chunk_size=2048, overlap_size=256, separators=["\n\n", "\n"]):
|
329 |
"""Chunk text into pieces of specified size with overlap, considering separators."""
|
330 |
-
|
331 |
# Split the text by the separators
|
332 |
for sep in separators:
|
333 |
text = text.replace(sep, "\n")
|
334 |
-
|
335 |
chunks = []
|
336 |
start = 0
|
337 |
-
|
338 |
while start < len(text):
|
339 |
# Determine the end of the chunk, accounting for overlap and the chunk size
|
340 |
end = min(len(text), start + chunk_size)
|
341 |
-
|
342 |
# Find a natural break point at the newline to avoid cutting words
|
343 |
if end < len(text):
|
344 |
-
while end > start and text[end] !=
|
345 |
end -= 1
|
346 |
-
|
347 |
chunk = text[start:end].strip() # Strip trailing whitespace
|
348 |
chunks.append(chunk)
|
349 |
-
|
350 |
# Move the start position forward by the overlap size
|
351 |
start += chunk_size - overlap_size
|
352 |
-
|
353 |
return chunks
|
354 |
-
|
|
|
355 |
def load_and_chunk_pdf(file_path):
|
356 |
"""Extracts text from a PDF file and stores it in the property documents by chunks."""
|
357 |
-
|
358 |
with pymupdf.open(file_path) as pdf:
|
359 |
text = ""
|
360 |
for page in pdf:
|
@@ -364,11 +391,13 @@ def load_and_chunk_pdf(file_path):
|
|
364 |
documents = []
|
365 |
for chunk in chunks:
|
366 |
documents.append({"content": chunk, "metadata": pdf.metadata})
|
367 |
-
|
368 |
return documents
|
369 |
|
370 |
-
|
|
|
371 |
"""Extracts text from a PDF file and stores it in the property documents by page."""
|
|
|
372 |
doc = pymupdf.open(file_path)
|
373 |
documents = []
|
374 |
for page_num in range(len(doc)):
|
@@ -377,12 +406,15 @@ def load_pdf(file_path: str) -> None:
|
|
377 |
documents.append({"page": page_num + 1, "content": text})
|
378 |
print("PDF processed successfully!")
|
379 |
return documents
|
380 |
-
|
|
|
381 |
def prepare_file_for_chat(record_id, file_names, token, progress=gr.Progress()):
|
|
|
|
|
382 |
if not file_names:
|
383 |
raise gr.Error("No file selected")
|
384 |
progress(0, desc="Starting")
|
385 |
-
# Create connection to kadi
|
386 |
manager = KadiManager(instance=instance, host=host, pat=token)
|
387 |
record = manager.record(identifier=record_id)
|
388 |
progress(0.2, desc="Loading files...")
|
@@ -409,8 +441,12 @@ def prepare_file_for_chat(record_id, file_names, token, progress=gr.Progress()):
|
|
409 |
progress(1, desc="ready to chat")
|
410 |
return "ready to chat", user_rag
|
411 |
|
|
|
412 |
def preprocess_response(response: str) -> str:
|
413 |
"""Preprocesses the response to make it more polished."""
|
|
|
|
|
|
|
414 |
# response = response.strip()
|
415 |
# response = response.replace("\n\n", "\n")
|
416 |
# response = response.replace(" ,", ",")
|
@@ -422,12 +458,15 @@ def preprocess_response(response: str) -> str:
|
|
422 |
|
423 |
|
424 |
def respond(message: str, history: List[Tuple[str, str]], user_session_rag):
|
425 |
-
|
|
|
426 |
# message is the current input query from user
|
427 |
# RAG
|
428 |
retrieved_docs = user_session_rag.search_documents(message)
|
429 |
context = "\n".join(retrieved_docs)
|
430 |
-
system_message = "You are an assistant to help user to answer question related to Kadi based on Relevant documents.\nRelevant documents: {}".format(
|
|
|
|
|
431 |
messages = [{"role": "assistant", "content": system_message}]
|
432 |
|
433 |
# Add history for conversational chat, TODO
|
@@ -439,13 +478,21 @@ def respond(message: str, history: List[Tuple[str, str]], user_session_rag):
|
|
439 |
|
440 |
messages.append({"role": "user", "content": f"\nQuestion: {message}"})
|
441 |
|
442 |
-
print("-----------------")
|
443 |
-
print(messages)
|
444 |
-
print("-----------------")
|
445 |
# Get anwser from LLM
|
446 |
-
response = client.chat_completion(
|
447 |
-
|
448 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
# Process response
|
450 |
polished_response = preprocess_response(response_content)
|
451 |
|
@@ -462,10 +509,9 @@ with gr.Blocks() as main_demo:
|
|
462 |
# State for storing user token
|
463 |
_state_user_token = gr.State([])
|
464 |
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
with gr.Row():
|
470 |
with gr.Column(scale=7):
|
471 |
m = gr.Markdown("Welcome to Chatbot!")
|
@@ -496,7 +542,9 @@ with gr.Blocks() as main_demo:
|
|
496 |
|
497 |
parse_files = gr.Button("Parse files")
|
498 |
# message_box = gr.Markdown("")
|
499 |
-
message_box =
|
|
|
|
|
500 |
# Interactions
|
501 |
# Update file list after selecting record
|
502 |
record_list.select(
|
@@ -505,13 +553,15 @@ with gr.Blocks() as main_demo:
|
|
505 |
outputs=record_file_dropdown,
|
506 |
)
|
507 |
# Prepare files for chatbot
|
508 |
-
parse_files.click(
|
|
|
|
|
|
|
|
|
509 |
|
510 |
with gr.Row():
|
511 |
txt_input = gr.Textbox(
|
512 |
-
show_label=False,
|
513 |
-
placeholder="Type your question here...",
|
514 |
-
lines=1
|
515 |
)
|
516 |
submit_btn = gr.Button("Submit", scale=1)
|
517 |
refresh_btn = gr.Button("Refresh Chat", scale=1, variant="secondary")
|
@@ -523,20 +573,21 @@ with gr.Blocks() as main_demo:
|
|
523 |
|
524 |
gr.Examples(examples=example_questions, inputs=[txt_input])
|
525 |
|
526 |
-
|
527 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
528 |
refresh_btn.click(lambda: [], None, chatbot)
|
529 |
|
530 |
app = gr.mount_gradio_app(app, main_demo, path="/gradio", auth_dependency=get_user)
|
531 |
|
532 |
|
533 |
-
# def launch_gradio():
|
534 |
-
# login_demo.launch(server_port=7860, host="0.0.0.0", share=True)
|
535 |
-
|
536 |
-
|
537 |
-
import threading
|
538 |
-
|
539 |
if __name__ == "__main__":
|
540 |
-
# Launch Gradio with share=True in a separate thread
|
541 |
-
# threading.Thread(target=launch_gradio).start()
|
542 |
uvicorn.run(app, port=7860, host="0.0.0.0")
|
|
|
7 |
Notes:
|
8 |
1. register an application in Kadi (Setting->Applications)
|
9 |
- Name: KadiOAuthTest
|
10 |
+
- Website URL: http://127.0.0.1:7860
|
11 |
+
- Redirect URIs: http://localhost:7860/auth
|
12 |
|
13 |
And you will get Client ID and Client Secret, note them down and set in this file.
|
14 |
|
15 |
+
2. Start this app, and open browser with address "http://localhost:7860/"
|
16 |
+
- if you are starting this app on Huggingface, use "start.py" instead.
|
17 |
"""
|
18 |
|
19 |
import json
|
|
|
20 |
import uvicorn
|
21 |
+
import gradio as gr
|
22 |
+
import kadi_apy
|
23 |
+
import pymupdf
|
24 |
+
import numpy as np
|
25 |
+
import faiss
|
26 |
+
import os
|
27 |
+
import tempfile
|
28 |
+
import pymupdf
|
29 |
from fastapi import FastAPI, Depends
|
30 |
from starlette.responses import RedirectResponse
|
31 |
from starlette.middleware.sessions import SessionMiddleware
|
32 |
from authlib.integrations.starlette_client import OAuth, OAuthError
|
33 |
from fastapi import Request
|
|
|
|
|
34 |
from kadi_apy import KadiManager
|
35 |
from requests.compat import urljoin
|
36 |
from typing import List, Tuple
|
|
|
37 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
38 |
from dotenv import load_dotenv
|
|
|
39 |
|
40 |
# Kadi OAuth settings
|
41 |
load_dotenv()
|
|
|
45 |
huggingfacehub_api_token = os.environ["huggingfacehub_api_token"]
|
46 |
|
47 |
from huggingface_hub import login
|
48 |
+
|
49 |
login(token=huggingfacehub_api_token)
|
50 |
|
51 |
# Set up OAuth
|
|
|
56 |
instance = "my_instance" # "demo kit instance"
|
57 |
host = "https://demo-kadi4mat.iam.kit.edu"
|
58 |
|
59 |
+
# Register oauth
|
60 |
base_url = host
|
61 |
oauth.register(
|
62 |
name="kadi4mat",
|
|
|
73 |
|
74 |
# Global LLM client
|
75 |
from huggingface_hub import InferenceClient
|
76 |
+
|
77 |
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
78 |
|
79 |
+
# Mixed-usage of huggingface client and local model for showing 2 possibilities
|
80 |
+
embeddings_client = InferenceClient(
|
81 |
+
model="sentence-transformers/all-mpnet-base-v2", token=huggingfacehub_api_token
|
82 |
+
)
|
83 |
+
embeddings_model = SentenceTransformer(
|
84 |
+
"sentence-transformers/all-mpnet-base-v2", trust_remote_code=True
|
85 |
+
)
|
86 |
|
|
|
|
|
|
|
87 |
|
88 |
# Dependency to get the current user
|
89 |
def get_user(request: Request):
|
90 |
+
"""Validate and get user information."""
|
91 |
+
|
92 |
if "user_access_token" in request.session:
|
93 |
token = request.session["user_access_token"]
|
94 |
else:
|
|
|
107 |
|
108 |
@app.get("/")
|
109 |
def public(request: Request, user=Depends(get_user)):
|
110 |
+
"""Main extrance of app."""
|
111 |
+
|
112 |
root_url = gr.route_utils.get_root_url(request, "/", None)
|
113 |
+
# print("root url", root_url)
|
114 |
if user:
|
115 |
return RedirectResponse(url=f"{root_url}/gradio/")
|
116 |
else:
|
117 |
return RedirectResponse(url=f"{root_url}/main/")
|
118 |
|
119 |
|
120 |
+
# Logout
|
121 |
@app.route("/logout")
|
122 |
async def logout(request: Request):
|
123 |
request.session.pop("user", None)
|
|
|
127 |
return RedirectResponse(url="/")
|
128 |
|
129 |
|
130 |
+
# Login
|
131 |
@app.route("/login")
|
132 |
async def login(request: Request):
|
133 |
root_url = gr.route_utils.get_root_url(request, "/login", None)
|
134 |
redirect_uri = request.url_for("auth") # f"{root_url}/auth"
|
135 |
+
redirect_uri = redirect_uri.replace(scheme="https") # required by Kadi
|
136 |
+
# print("-----------in login")
|
137 |
+
# print("root_urlt", root_url)
|
138 |
+
# print("redirect_uri", redirect_uri)
|
139 |
+
# print("request", request)
|
140 |
return await oauth.kadi4mat.authorize_redirect(request, redirect_uri)
|
141 |
|
142 |
|
143 |
+
# Get auth
|
144 |
@app.route("/auth")
|
145 |
async def auth(request: Request):
|
146 |
root_url = gr.route_utils.get_root_url(request, "/auth", None)
|
147 |
+
# print("*****+ in auth")
|
148 |
+
# print("root_urlt", root_url)
|
149 |
+
# print("request", request)
|
150 |
try:
|
151 |
access_token = await oauth.kadi4mat.authorize_access_token(request)
|
152 |
request.session["user_access_token"] = access_token["access_token"]
|
|
|
159 |
|
160 |
|
161 |
def greet(request: gr.Request):
|
162 |
+
"""Show greeting message."""
|
163 |
+
|
164 |
return f"Welcome to Kadichat, you're logged in as: {request.username}"
|
165 |
|
166 |
|
167 |
def get_files_in_record(record_id, user_token, top_k=10):
|
168 |
+
"""Get all file list within one record."""
|
169 |
|
170 |
manager = KadiManager(instance=instance, host=host, pat=user_token)
|
171 |
|
|
|
210 |
|
211 |
|
212 |
def get_all_records(user_token):
|
213 |
+
"""Get all record list in Kadi."""
|
214 |
|
215 |
if not user_token:
|
216 |
return []
|
|
|
252 |
|
253 |
|
254 |
def _init_user_token(request: gr.Request):
|
255 |
+
"""Init user token."""
|
256 |
+
|
257 |
user_token = request.request.session["user_access_token"]
|
258 |
return user_token
|
259 |
|
260 |
|
261 |
+
# Landing page for login
|
262 |
with gr.Blocks() as login_demo:
|
263 |
gr.Markdown(
|
264 |
+
"""<br/><br/><br/><br/><br/><br/><br/><br/>
|
265 |
<center>
|
266 |
<h1>Welcome to KadiChat!</h1>
|
267 |
<br/><br/>
|
|
|
269 |
<br/><br/>
|
270 |
Chat with Record in Kadi.</center>
|
271 |
"""
|
272 |
+
)
|
273 |
# Note: kadichat-logo is hosted on https://postimage.io/
|
274 |
|
275 |
with gr.Row():
|
|
|
279 |
btn = gr.Button("Sign in with Kadi (demo-instance)")
|
280 |
with gr.Column():
|
281 |
_btn_placeholder2 = gr.Button(visible=False)
|
282 |
+
|
283 |
gr.Markdown(
|
284 |
"""<br/><br/><br/><br/>
|
285 |
<center>
|
|
|
296 |
"""
|
297 |
btn.click(None, js=_js_redirect)
|
298 |
|
|
|
|
|
|
|
299 |
|
300 |
+
# A simple RAG implementation
|
301 |
class SimpleRAG:
|
302 |
def __init__(self) -> None:
|
303 |
self.documents = []
|
304 |
self.embeddings_model = None
|
305 |
self.embeddings = None
|
306 |
self.index = None
|
307 |
+
# self.load_pdf("Brandt et al_2024_Kadi_info_page.pdf")
|
308 |
+
# self.build_vector_db()
|
309 |
|
310 |
def load_pdf(self, file_path: str) -> None:
|
311 |
"""Extracts text from a PDF file and stores it in the property documents by page."""
|
312 |
+
|
313 |
doc = pymupdf.open(file_path)
|
314 |
self.documents = []
|
315 |
for page_num in range(len(doc)):
|
316 |
page = doc[page_num]
|
317 |
text = page.get_text()
|
318 |
self.documents.append({"page": page_num + 1, "content": text})
|
319 |
+
# print("PDF processed successfully!")
|
|
|
320 |
|
321 |
def build_vector_db(self) -> None:
|
322 |
"""Builds a vector database using the content of the PDF."""
|
323 |
if self.embeddings_model is None:
|
324 |
+
self.embeddings_model = SentenceTransformer(
|
325 |
+
"sentence-transformers/all-mpnet-base-v2", trust_remote_code=True
|
326 |
+
) # jinaai/jina-embeddings-v2-base-de?
|
327 |
+
|
328 |
+
# Use local model
|
329 |
+
# print("now doing embedding")
|
330 |
+
# print("len of documents", len(self.documents))
|
331 |
+
# embedding_responses = embeddings_client.post(json={"inputs":[doc["content"] for doc in self.documents]}, task="feature-extraction")
|
332 |
+
# self.embeddings = np.array(json.loads(embedding_responses.decode()))
|
333 |
+
self.embeddings = self.embeddings_model.encode(
|
334 |
+
[doc["content"] for doc in self.documents], show_progress_bar=True
|
335 |
+
)
|
336 |
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
|
337 |
self.index.add(np.array(self.embeddings))
|
338 |
print("Vector database built successfully!")
|
339 |
|
340 |
def search_documents(self, query: str, k: int = 4) -> List[str]:
|
341 |
"""Searches for relevant documents using vector similarity."""
|
342 |
+
|
343 |
+
# Use embeddings_client
|
344 |
# query_embedding = self.embeddings_model.encode([query], show_progress_bar=False)
|
345 |
+
embedding_responses = embeddings_client.post(
|
346 |
+
json={"inputs": [query]}, task="feature-extraction"
|
347 |
+
)
|
348 |
query_embedding = json.loads(embedding_responses.decode())
|
349 |
D, I = self.index.search(np.array(query_embedding), k)
|
350 |
results = [self.documents[i]["content"] for i in I[0]]
|
351 |
return results if results else ["No relevant documents found."]
|
352 |
|
353 |
+
|
354 |
def chunk_text(text, chunk_size=2048, overlap_size=256, separators=["\n\n", "\n"]):
|
355 |
"""Chunk text into pieces of specified size with overlap, considering separators."""
|
356 |
+
|
357 |
# Split the text by the separators
|
358 |
for sep in separators:
|
359 |
text = text.replace(sep, "\n")
|
360 |
+
|
361 |
chunks = []
|
362 |
start = 0
|
363 |
+
|
364 |
while start < len(text):
|
365 |
# Determine the end of the chunk, accounting for overlap and the chunk size
|
366 |
end = min(len(text), start + chunk_size)
|
367 |
+
|
368 |
# Find a natural break point at the newline to avoid cutting words
|
369 |
if end < len(text):
|
370 |
+
while end > start and text[end] != "\n":
|
371 |
end -= 1
|
372 |
+
|
373 |
chunk = text[start:end].strip() # Strip trailing whitespace
|
374 |
chunks.append(chunk)
|
375 |
+
|
376 |
# Move the start position forward by the overlap size
|
377 |
start += chunk_size - overlap_size
|
378 |
+
|
379 |
return chunks
|
380 |
+
|
381 |
+
|
382 |
def load_and_chunk_pdf(file_path):
|
383 |
"""Extracts text from a PDF file and stores it in the property documents by chunks."""
|
384 |
+
|
385 |
with pymupdf.open(file_path) as pdf:
|
386 |
text = ""
|
387 |
for page in pdf:
|
|
|
391 |
documents = []
|
392 |
for chunk in chunks:
|
393 |
documents.append({"content": chunk, "metadata": pdf.metadata})
|
394 |
+
|
395 |
return documents
|
396 |
|
397 |
+
|
398 |
+
def load_pdf(file_path):
|
399 |
"""Extracts text from a PDF file and stores it in the property documents by page."""
|
400 |
+
|
401 |
doc = pymupdf.open(file_path)
|
402 |
documents = []
|
403 |
for page_num in range(len(doc)):
|
|
|
406 |
documents.append({"page": page_num + 1, "content": text})
|
407 |
print("PDF processed successfully!")
|
408 |
return documents
|
409 |
+
|
410 |
+
|
411 |
def prepare_file_for_chat(record_id, file_names, token, progress=gr.Progress()):
|
412 |
+
"""Parse file and prepare RAG."""
|
413 |
+
|
414 |
if not file_names:
|
415 |
raise gr.Error("No file selected")
|
416 |
progress(0, desc="Starting")
|
417 |
+
# Create connection to kadi
|
418 |
manager = KadiManager(instance=instance, host=host, pat=token)
|
419 |
record = manager.record(identifier=record_id)
|
420 |
progress(0.2, desc="Loading files...")
|
|
|
441 |
progress(1, desc="ready to chat")
|
442 |
return "ready to chat", user_rag
|
443 |
|
444 |
+
|
445 |
def preprocess_response(response: str) -> str:
|
446 |
"""Preprocesses the response to make it more polished."""
|
447 |
+
|
448 |
+
# Placeholder for preprocessing
|
449 |
+
|
450 |
# response = response.strip()
|
451 |
# response = response.replace("\n\n", "\n")
|
452 |
# response = response.replace(" ,", ",")
|
|
|
458 |
|
459 |
|
460 |
def respond(message: str, history: List[Tuple[str, str]], user_session_rag):
|
461 |
+
"""Get respond from LLMs."""
|
462 |
+
|
463 |
# message is the current input query from user
|
464 |
# RAG
|
465 |
retrieved_docs = user_session_rag.search_documents(message)
|
466 |
context = "\n".join(retrieved_docs)
|
467 |
+
system_message = "You are an assistant to help user to answer question related to Kadi based on Relevant documents.\nRelevant documents: {}".format(
|
468 |
+
context
|
469 |
+
)
|
470 |
messages = [{"role": "assistant", "content": system_message}]
|
471 |
|
472 |
# Add history for conversational chat, TODO
|
|
|
478 |
|
479 |
messages.append({"role": "user", "content": f"\nQuestion: {message}"})
|
480 |
|
481 |
+
# print("-----------------")
|
482 |
+
# print(messages)
|
483 |
+
# print("-----------------")
|
484 |
# Get anwser from LLM
|
485 |
+
response = client.chat_completion(
|
486 |
+
messages, max_tokens=2048, temperature=0.0
|
487 |
+
) # , top_p=0.9)
|
488 |
+
response_content = "".join(
|
489 |
+
[
|
490 |
+
choice.message["content"]
|
491 |
+
for choice in response.choices
|
492 |
+
if "content" in choice.message
|
493 |
+
]
|
494 |
+
)
|
495 |
+
|
496 |
# Process response
|
497 |
polished_response = preprocess_response(response_content)
|
498 |
|
|
|
509 |
# State for storing user token
|
510 |
_state_user_token = gr.State([])
|
511 |
|
512 |
+
# State for user rag
|
513 |
+
user_session_rag = gr.State("placeholder")
|
514 |
+
|
|
|
515 |
with gr.Row():
|
516 |
with gr.Column(scale=7):
|
517 |
m = gr.Markdown("Welcome to Chatbot!")
|
|
|
542 |
|
543 |
parse_files = gr.Button("Parse files")
|
544 |
# message_box = gr.Markdown("")
|
545 |
+
message_box = gr.Textbox(
|
546 |
+
label="", value="progress bar", interactive=False
|
547 |
+
)
|
548 |
# Interactions
|
549 |
# Update file list after selecting record
|
550 |
record_list.select(
|
|
|
553 |
outputs=record_file_dropdown,
|
554 |
)
|
555 |
# Prepare files for chatbot
|
556 |
+
parse_files.click(
|
557 |
+
fn=prepare_file_for_chat,
|
558 |
+
inputs=[record_list, record_file_dropdown, _state_user_token],
|
559 |
+
outputs=[message_box, user_session_rag],
|
560 |
+
)
|
561 |
|
562 |
with gr.Row():
|
563 |
txt_input = gr.Textbox(
|
564 |
+
show_label=False, placeholder="Type your question here...", lines=1
|
|
|
|
|
565 |
)
|
566 |
submit_btn = gr.Button("Submit", scale=1)
|
567 |
refresh_btn = gr.Button("Refresh Chat", scale=1, variant="secondary")
|
|
|
573 |
|
574 |
gr.Examples(examples=example_questions, inputs=[txt_input])
|
575 |
|
576 |
+
# Actions
|
577 |
+
txt_input.submit(
|
578 |
+
fn=respond,
|
579 |
+
inputs=[txt_input, chatbot, user_session_rag],
|
580 |
+
outputs=[chatbot, txt_input],
|
581 |
+
)
|
582 |
+
submit_btn.click(
|
583 |
+
fn=respond,
|
584 |
+
inputs=[txt_input, chatbot, user_session_rag],
|
585 |
+
outputs=[chatbot, txt_input],
|
586 |
+
)
|
587 |
refresh_btn.click(lambda: [], None, chatbot)
|
588 |
|
589 |
app = gr.mount_gradio_app(app, main_demo, path="/gradio", auth_dependency=get_user)
|
590 |
|
591 |
|
|
|
|
|
|
|
|
|
|
|
|
|
592 |
if __name__ == "__main__":
|
|
|
|
|
593 |
uvicorn.run(app, port=7860, host="0.0.0.0")
|
start.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
import subprocess
|
2 |
|
3 |
-
subprocess.run("kadi-apy config create", shell=True)
|
4 |
subprocess.run("uvicorn app:app --host 0.0.0.0 --port 7860", shell=True)
|
|
|
1 |
import subprocess
|
2 |
|
3 |
+
subprocess.run("kadi-apy config create", shell=True) # check kadi
|
4 |
subprocess.run("uvicorn app:app --host 0.0.0.0 --port 7860", shell=True)
|