KabeerAmjad
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,13 +3,14 @@ import torchvision.transforms as transforms
|
|
3 |
import torchvision.models as models
|
4 |
from PIL import Image
|
5 |
import json
|
|
|
6 |
|
7 |
# Load the model with updated weights parameter
|
8 |
model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
|
9 |
model.eval() # Set model to evaluation mode
|
10 |
|
11 |
# Load the model's custom state_dict
|
12 |
-
model_path = '
|
13 |
try:
|
14 |
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
15 |
model.load_state_dict(state_dict)
|
@@ -29,13 +30,13 @@ preprocess = transforms.Compose([
|
|
29 |
])
|
30 |
|
31 |
# Load labels
|
32 |
-
with open("
|
33 |
labels = json.load(f)
|
34 |
|
35 |
# Function to predict image class
|
36 |
-
def predict(
|
37 |
-
#
|
38 |
-
input_image =
|
39 |
|
40 |
# Preprocess the image
|
41 |
input_tensor = preprocess(input_image)
|
@@ -54,9 +55,16 @@ def predict(image_path):
|
|
54 |
_, predicted_idx = torch.max(output, 1)
|
55 |
predicted_class = labels[str(predicted_idx.item())]
|
56 |
|
57 |
-
return predicted_class
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import torchvision.models as models
|
4 |
from PIL import Image
|
5 |
import json
|
6 |
+
import gradio as gr
|
7 |
|
8 |
# Load the model with updated weights parameter
|
9 |
model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
|
10 |
model.eval() # Set model to evaluation mode
|
11 |
|
12 |
# Load the model's custom state_dict
|
13 |
+
model_path = 'food_classification_model.pth'
|
14 |
try:
|
15 |
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
16 |
model.load_state_dict(state_dict)
|
|
|
30 |
])
|
31 |
|
32 |
# Load labels
|
33 |
+
with open("config.json") as f:
|
34 |
labels = json.load(f)
|
35 |
|
36 |
# Function to predict image class
|
37 |
+
def predict(image):
|
38 |
+
# Convert the uploaded file to a PIL image
|
39 |
+
input_image = image.convert("RGB")
|
40 |
|
41 |
# Preprocess the image
|
42 |
input_tensor = preprocess(input_image)
|
|
|
55 |
_, predicted_idx = torch.max(output, 1)
|
56 |
predicted_class = labels[str(predicted_idx.item())]
|
57 |
|
58 |
+
return f"Predicted class: {predicted_class}"
|
59 |
|
60 |
+
# Set up the Gradio interface
|
61 |
+
iface = gr.Interface(
|
62 |
+
fn=predict,
|
63 |
+
inputs=gr.inputs.Image(type="pil"),
|
64 |
+
outputs="text",
|
65 |
+
title="Food Classification Model",
|
66 |
+
description="Upload an image of food to classify it."
|
67 |
+
)
|
68 |
+
|
69 |
+
# Launch the Gradio app
|
70 |
+
iface.launch()
|