Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torchaudio | |
import speechbrain | |
from speechbrain.pretrained import EncoderClassifier, Tacotron2, HIFIGAN, ASR | |
import os | |
import soundfile as sf | |
# Ensure output directory exists | |
os.makedirs("output_audio", exist_ok=True) | |
# Load models | |
encoder = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb", savedir="models/encoder") | |
tacotron2 = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="models/tacotron2") | |
hifigan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="models/hifigan") | |
asr = ASR.from_hparams(source="speechbrain/asr-transformer-librispeech", savedir="models/asr") | |
def speech_to_text(input_audio): | |
sig, sr = torchaudio.load(input_audio) | |
transcription = asr.transcribe_file(input_audio) | |
return transcription | |
def speech_to_speech(input_audio, target_text): | |
# Load and encode speaker from input audio | |
signal, fs = torchaudio.load(input_audio) | |
if fs != 16000: | |
signal = torchaudio.transforms.Resample(orig_freq=fs, new_freq=16000)(signal) | |
embedding = encoder.encode_batch(signal) | |
# Synthesize speech from text | |
mel_output, mel_length, alignment = tacotron2.encode_text(target_text, embedding) | |
waveform = hifigan.decode_batch(mel_output) | |
# Save output audio | |
output_path = "output_audio/synthesized_speech.wav" | |
sf.write(output_path, waveform.squeeze().cpu().numpy(), 22050) | |
return output_path | |
def text_to_speech(text): | |
mel_output, mel_length, alignment = tacotron2.encode_text(text) | |
waveform = hifigan.decode_batch(mel_output) | |
output_path = "output_audio/text_to_speech.wav" | |
sf.write(output_path, waveform.squeeze().cpu().numpy(), 22050) | |
return output_path | |
iface = gr.Interface( | |
fn={ | |
"Speech to Text": speech_to_text, | |
"Text to Speech": text_to_speech, | |
"Speech to Speech": speech_to_speech | |
}, | |
inputs={ | |
"Speech to Text": gr.inputs.Audio(source="upload", type="file"), | |
"Text to Speech": gr.inputs.Textbox(label="Text"), | |
"Speech to Speech": [gr.inputs.Audio(source="upload", type="file"), gr.inputs.Textbox(label="Target Text")] | |
}, | |
outputs={ | |
"Speech to Text": gr.outputs.Textbox(label="Transcription"), | |
"Text to Speech": gr.outputs.Audio(type="file", label="Synthesized Speech"), | |
"Speech to Speech": gr.outputs.Audio(type="file", label="Synthesized Speech") | |
}, | |
title="Speech Processing App", | |
description="Upload an audio file or enter text to perform various speech processing tasks.", | |
layout="vertical" | |
) | |
if __name__ == "__main__": | |
iface.launch() | |