KVNAditya commited on
Commit
65e8f87
·
verified ·
1 Parent(s): bc7b755
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. .vscode/settings.json +22 -0
  3. ADL/0/ip__urls_cords.pkl +3 -0
  4. ADL/1/op__is_clfd.txt +12 -0
  5. ADL/8/__01__.ipynb +452 -0
  6. ADL/_/.env +0 -0
  7. ADL/_/requirements.txt +2 -0
  8. APA/0/gemma/code_gemma__7b/.gitattributes +36 -0
  9. APA/0/gemma/code_gemma__7b/README.md +262 -0
  10. APA/0/gemma/code_gemma__7b/codegemma_nl_benchmarks.png +0 -0
  11. APA/0/gemma/code_gemma__7b/config.json +26 -0
  12. APA/0/gemma/code_gemma__7b/generation_config.json +7 -0
  13. APA/0/gemma/code_gemma__7b/model-00001-of-00004.safetensors +3 -0
  14. APA/0/gemma/code_gemma__7b/model-00002-of-00004.safetensors +3 -0
  15. APA/0/gemma/code_gemma__7b/model-00003-of-00004.safetensors +3 -0
  16. APA/0/gemma/code_gemma__7b/model-00004-of-00004.safetensors +3 -0
  17. APA/0/gemma/code_gemma__7b/model.safetensors.index.json +261 -0
  18. APA/0/gemma/code_gemma__7b/special_tokens_map.json +30 -0
  19. APA/0/gemma/code_gemma__7b/tokenizer.json +3 -0
  20. APA/0/gemma/code_gemma__7b/tokenizer.model +3 -0
  21. APA/0/gemma/code_gemma__7b/tokenizer_config.json +1512 -0
  22. APA/8/__01__.ipynb +261 -0
  23. APA/_/.env +0 -0
  24. APA/_/requirements.txt +3 -0
  25. BW__RGB/0/ip__img/0.jpg +0 -0
  26. BW__RGB/0/ip__img/1.jpg +0 -0
  27. BW__RGB/0/ip__img/10.jpg +0 -0
  28. BW__RGB/0/ip__img/100.jpg +0 -0
  29. BW__RGB/0/ip__img/101.jpg +0 -0
  30. BW__RGB/0/ip__img/102.jpg +0 -0
  31. BW__RGB/0/ip__img/103.jpg +0 -0
  32. BW__RGB/0/ip__img/104.jpg +0 -0
  33. BW__RGB/0/ip__img/105.jpg +0 -0
  34. BW__RGB/0/ip__img/106.jpg +0 -0
  35. BW__RGB/0/ip__img/107.jpg +0 -0
  36. BW__RGB/0/ip__img/108.jpg +0 -0
  37. BW__RGB/0/ip__img/109.jpg +0 -0
  38. BW__RGB/0/ip__img/11.jpg +0 -0
  39. BW__RGB/0/ip__img/110.jpg +0 -0
  40. BW__RGB/0/ip__img/111.jpg +0 -0
  41. BW__RGB/0/ip__img/112.jpg +0 -0
  42. BW__RGB/0/ip__img/113.jpg +0 -0
  43. BW__RGB/0/ip__img/114.jpg +0 -0
  44. BW__RGB/0/ip__img/115.jpg +0 -0
  45. BW__RGB/0/ip__img/116.jpg +0 -0
  46. BW__RGB/0/ip__img/117.jpg +0 -0
  47. BW__RGB/0/ip__img/118.jpg +0 -0
  48. BW__RGB/0/ip__img/119.jpg +0 -0
  49. BW__RGB/0/ip__img/12.jpg +0 -0
  50. BW__RGB/0/ip__img/120.jpg +0 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ APA/0/gemma/code_gemma__7b/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ PUP/0/datum/datum__phishing.csv filter=lfs diff=lfs merge=lfs -text
.vscode/settings.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "terminal.integrated.env.windows": {
3
+ "PATH": "${.env:PATH};C:/Windows/System32;%SystemRoot%/System32/Wbem;${workspaceFolder}/__/conda/Miniconda/win__x64/__0_0_0__/Scripts"
4
+ },
5
+ "terminal.integrated.profiles.windows": {
6
+ "ps1__conda__win64": {
7
+ "overrideName" : true,
8
+ "source": "PowerShell",
9
+ "args": [
10
+ "-ExecutionPolicy",
11
+ "ByPass",
12
+ "-NoExit",
13
+ "-Command",
14
+ "& ${workspaceFolder}/__/conda/Miniconda/win__x64/__0_0_0__/shell/condabin/conda-hook.ps1",
15
+ ]
16
+ }
17
+ },
18
+ "terminal.integrated.defaultProfile.windows": "ps1__conda__win64",
19
+
20
+ "python.defaultInterpreterPath": "${workspaceFolder}/__/conda/Miniconda/win__x64/__0_0_0__/python.exe",
21
+ "python.terminal.activateEnvironment": true
22
+ }
ADL/0/ip__urls_cords.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17b718e0fb8c4e4936fe1a748ea4bdf301ce3f640eab93d77693d7dd9e278308
3
+ size 355422
ADL/1/op__is_clfd.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ip :: ['http://www.shea-davis.net/qKs1wmFu0jHdX7gAoX1WE1tv69bSdk9Jkhu0WsIpmPc3VaoI2pZbgRVuAFq1pa1Tb38tYleLhyGjWR?param_1=0UxBOdKj5br0V2Cc2FnjazaehJCXjz4j&param_2=L0Dn9ih6RCn72UtzdwpUYPUWoIl33D7OJOeMdfwjsQ8inUgfpomkSo3Hh95o1&param_3=KeF3EtmZ0ggJQCmVc9C1zhZZF26Pvq0uOHXTvA6AD0EIKpEjqlY7', (529475, 363074)]
3
+ op :: 1
4
+
5
+ ip :: ['http://www.ads.norton.com/LStKS8AZjsfm6pbT63O9baOtU1TCmJedJDvpR9WIRSZf4JBh5olBEAwn940PgK?param_1=6MrVuvl40jBNREhnFiiTQVMFPwFnUqqG9GufiKxPKsPEn9C4U13THBfDW1ix8&param_2=DQ0ZSCv8NWiLKSJsYPacqE1mYI5KHvMFjSZbX37tjSlFkouZhXaQRWJ81Zj1ZCs24lOmvGBFW&param_3=wElK6BbQf0epdFQ5wRCCJDCduBr&param_4=IAcf6ylq8m4n4zC93NLh4g103YZJdEXkySuhdDdB7ZqkdmaPZSUTtQCnFBU4&param_5=OOxQ18iw22ALICZaw9EavJgxfFUR5XNLCmZeayodPmGQvtTbJ8lix&param_6=3XIQ7fnNpwIrttMEekk6dtegXOBmgesqlAA5HBgn9NScqNS3yU1Oe0A2fJ9o81HVeuUMbocC3', (294620, 518935)]
6
+ op :: 0
7
+
8
+ ip :: ['http://www.shea-davis.net/qKs1wmFu0jHdX7gAoX1WE1tv69bSdk9Jkhu0WsIpmPc3VaoI2pZbgRVuAFq1pa1Tb38tYleLhyGjWR?param_1=0UxBOdKj5br0V2Cc2FnjazaehJCXjz4j&param_2=L0Dn9ih6RCn72UtzdwpUYPUWoIl33D7OJOeMdfwjsQ8inUgfpomkSo3Hh95o1&param_3=KeF3EtmZ0ggJQCmVc9C1zhZZF26Pvq0uOHXTvA6AD0EIKpEjqlY7', (529475, 363074)]
9
+ op :: 1
10
+
11
+ ip :: ['http://www.ads.norton.com/LStKS8AZjsfm6pbT63O9baOtU1TCmJedJDvpR9WIRSZf4JBh5olBEAwn940PgK?param_1=6MrVuvl40jBNREhnFiiTQVMFPwFnUqqG9GufiKxPKsPEn9C4U13THBfDW1ix8&param_2=DQ0ZSCv8NWiLKSJsYPacqE1mYI5KHvMFjSZbX37tjSlFkouZhXaQRWJ81Zj1ZCs24lOmvGBFW&param_3=wElK6BbQf0epdFQ5wRCCJDCduBr&param_4=IAcf6ylq8m4n4zC93NLh4g103YZJdEXkySuhdDdB7ZqkdmaPZSUTtQCnFBU4&param_5=OOxQ18iw22ALICZaw9EavJgxfFUR5XNLCmZeayodPmGQvtTbJ8lix&param_6=3XIQ7fnNpwIrttMEekk6dtegXOBmgesqlAA5HBgn9NScqNS3yU1Oe0A2fJ9o81HVeuUMbocC3', (294620, 518935)]
12
+ op :: 1
ADL/8/__01__.ipynb ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "---"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "> <center><a href='https://o-0268-kvnaditya-8620-o.web.app/documentation/adl.html'><h3>Implementation of Ad-Sherlock for Click-Fraud Detection using Deep-Learning</h3></center></a>\n",
15
+ "> <hr>\n",
16
+ "> <center>{K.V.N.Aditya | T.Vaishnavi Sagar | K.Karthik}</center>\n",
17
+ "> <br>\n",
18
+ "> <center>CMR Technical Campus</center>"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "markdown",
23
+ "metadata": {},
24
+ "source": [
25
+ "---\n",
26
+ "---"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "markdown",
31
+ "metadata": {},
32
+ "source": [
33
+ "### <center>importing modules</center>"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": null,
39
+ "metadata": {},
40
+ "outputs": [],
41
+ "source": [
42
+ "import random\n",
43
+ "import string\n",
44
+ "import os\n",
45
+ "import pickle\n",
46
+ "import torch\n",
47
+ "import warnings\n",
48
+ "from faker import Faker\n",
49
+ "from torch import nn"
50
+ ]
51
+ },
52
+ {
53
+ "cell_type": "markdown",
54
+ "metadata": {},
55
+ "source": [
56
+ "---"
57
+ ]
58
+ },
59
+ {
60
+ "cell_type": "markdown",
61
+ "metadata": {},
62
+ "source": [
63
+ "### <center>initializing path</center>"
64
+ ]
65
+ },
66
+ {
67
+ "cell_type": "code",
68
+ "execution_count": null,
69
+ "metadata": {},
70
+ "outputs": [],
71
+ "source": [
72
+ "DMA__ADL = os.path.abspath('../../ADL').replace('\\\\', '/')"
73
+ ]
74
+ },
75
+ {
76
+ "cell_type": "markdown",
77
+ "metadata": {},
78
+ "source": [
79
+ "---"
80
+ ]
81
+ },
82
+ {
83
+ "cell_type": "markdown",
84
+ "metadata": {},
85
+ "source": [
86
+ "### <center>configuring 'ipynb' and exploring GPU info</center>"
87
+ ]
88
+ },
89
+ {
90
+ "cell_type": "code",
91
+ "execution_count": null,
92
+ "metadata": {},
93
+ "outputs": [],
94
+ "source": [
95
+ "warnings.filterwarnings(\"ignore\")\n",
96
+ "print(f'count of gpu devices : `{torch.cuda.device_count()}`')\n",
97
+ "print(f'id of gpu device : `{torch.cuda.current_device()}`')\n",
98
+ "print(f'is cuda available : `{torch.cuda.is_available()}`')\n",
99
+ "print(f'is cuda enabled at backend : `{torch.backends.cudnn.enabled}`')\n",
100
+ "print(f'name of the instance gpu device : `{torch.cuda.get_device_name(torch.cuda.current_device())}`')\n",
101
+ "print(f'version of cuda : `{torch.backends.cudnn.version()}`')"
102
+ ]
103
+ },
104
+ {
105
+ "cell_type": "markdown",
106
+ "metadata": {},
107
+ "source": [
108
+ "---"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "markdown",
113
+ "metadata": {},
114
+ "source": [
115
+ "### <center>initializing data</center>"
116
+ ]
117
+ },
118
+ {
119
+ "cell_type": "code",
120
+ "execution_count": null,
121
+ "metadata": {},
122
+ "outputs": [],
123
+ "source": [
124
+ "print(\"--------\")\n",
125
+ "print(\"IPO\")\n",
126
+ "io_pklio0uc = f'{DMA__ADL}/0/ip__urls_cords.pkl'\n",
127
+ "def func_io_sudo_urls_cords(n=4*random.randrange(20,80)):\n",
128
+ " random.seed(268862)\n",
129
+ " Faker.seed(268862)\n",
130
+ " fake = Faker()\n",
131
+ " sudo_urls = [f'http://www.ads.{fake.domain_name()}' for _ in range(n//4)] + [f'https://www.ads.{fake.domain_name()}' for _ in range(n//4)] + [f'http://www.{fake.domain_name()}' for _ in range(n//4)] + [f'https://www.{fake.domain_name()}' for _ in range(n//4)]\n",
132
+ " sudo_urls = [sudo_urls[P]+'/'+ ''.join(random.choice(random.choice(string.digits + string.ascii_letters)) for _ in range(random.randint(20, 80))) + '?' + '&'.join([f\"param_{p}={''.join(random.choice(random.choice(string.digits + string.ascii_letters)) for _ in range(random.randint(20, 80)))}\" for p in range(1, random.randint(2, 8) + 1)]) for P in range(len(sudo_urls))]\n",
133
+ " random.shuffle(sudo_urls)\n",
134
+ " sudo_isad = [1 if('ad' in i) else 0 for i in sudo_urls]\n",
135
+ " sudo_cords = [(random.randrange(2,862268),random.randrange(2,862268)) for _ in range(n)]\n",
136
+ " random.shuffle(sudo_cords)\n",
137
+ " sudo_urls_cords = [(sudo_urls[p],(sudo_cords[p][0],sudo_cords[p][1]),sudo_isad[p]) for p in range(n)]\n",
138
+ " random.shuffle(sudo_urls_cords)\n",
139
+ " return sudo_urls_cords\n",
140
+ "if(not os.path.exists(io_pklio0uc)):\n",
141
+ " io__sudo_urls_cords = func_io_sudo_urls_cords(888) # n : multiples of '4'\n",
142
+ " pickle.dump(io__sudo_urls_cords, open(io_pklio0uc, 'wb'))\n",
143
+ "io__sudo_urls_cords = pickle.load(open(io_pklio0uc, 'rb'))\n",
144
+ "io__sudo_urls = [p[0] for p in io__sudo_urls_cords]\n",
145
+ "io__sudo_cord_x,io__sudo_cord_y = [p[1][0] for p in io__sudo_urls_cords],[p[1][1] for p in io__sudo_urls_cords]\n",
146
+ "io__sudo_isad = [p[2] for p in io__sudo_urls_cords]\n",
147
+ "for p in random.sample(io__sudo_urls_cords,4):\n",
148
+ " print(p)\n",
149
+ "print(\"--------\")"
150
+ ]
151
+ },
152
+ {
153
+ "cell_type": "markdown",
154
+ "metadata": {},
155
+ "source": [
156
+ "---"
157
+ ]
158
+ },
159
+ {
160
+ "cell_type": "markdown",
161
+ "metadata": {},
162
+ "source": [
163
+ "### <center>converting the data into tensors</center>"
164
+ ]
165
+ },
166
+ {
167
+ "cell_type": "code",
168
+ "execution_count": null,
169
+ "metadata": {},
170
+ "outputs": [],
171
+ "source": [
172
+ "io__sudo_urls = torch.tensor([[ord(p) for p in io] + [(-1)*len(io)]*(862 - len(io)) for io in io__sudo_urls]).to(torch.float).cuda(torch.cuda.current_device())\n",
173
+ "io__sudo_cord_x = torch.tensor(io__sudo_cord_x).cuda(torch.cuda.current_device())\n",
174
+ "io__sudo_cord_y = torch.tensor(io__sudo_cord_y).cuda(torch.cuda.current_device())\n",
175
+ "io__sudo_cords = torch.stack((io__sudo_cord_x,io__sudo_cord_y),dim=1).cuda(torch.cuda.current_device())\n",
176
+ "io__sudo_isad = torch.tensor(io__sudo_isad).cuda(torch.cuda.current_device())"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "markdown",
181
+ "metadata": {},
182
+ "source": [
183
+ "---"
184
+ ]
185
+ },
186
+ {
187
+ "cell_type": "markdown",
188
+ "metadata": {},
189
+ "source": [
190
+ "### <center>defining Neural Network</center>"
191
+ ]
192
+ },
193
+ {
194
+ "cell_type": "code",
195
+ "execution_count": null,
196
+ "metadata": {},
197
+ "outputs": [],
198
+ "source": [
199
+ "class __01__(nn.Module):\n",
200
+ " def __init__(IO):\n",
201
+ " super().__init__()\n",
202
+ " IO._O_ = torch.zeros(1).unsqueeze(0).to(torch.float).cuda(torch.cuda.current_device())\n",
203
+ " IO._I_ = torch.ones(1).unsqueeze(0).to(torch.float).cuda(torch.cuda.current_device())\n",
204
+ " IO.l20 = nn.Linear(862,1)\n",
205
+ " IO.l21 = nn.Linear(2,1)\n",
206
+ " IO.l30 = nn.Bilinear(1,1,1)\n",
207
+ " IO.l31 = nn.Bilinear(1,1,1)\n",
208
+ " IO.l40 = nn.Identity()\n",
209
+ " IO.l41 = nn.Identity() \n",
210
+ " IO.l5 = nn.Sigmoid()\n",
211
+ " IO.h20 = torch.zeros(1).unsqueeze(0).to(torch.float).cuda(torch.cuda.current_device())\n",
212
+ " IO.h21 = torch.zeros(1).unsqueeze(0).to(torch.float).cuda(torch.cuda.current_device())\n",
213
+ " IO.h22 = torch.zeros(1).unsqueeze(0).to(torch.float).cuda(torch.cuda.current_device())\n",
214
+ " IO.h23 = torch.zeros(1).unsqueeze(0).to(torch.float).cuda(torch.cuda.current_device())\n",
215
+ " IO.h30 = torch.zeros(1).unsqueeze(0).to(torch.float).cuda(torch.cuda.current_device())\n",
216
+ " IO.h31 = torch.zeros(1).unsqueeze(0).to(torch.float).cuda(torch.cuda.current_device())\n",
217
+ " def __8__(IO,ip=['',(0,0)],op=0.5):\n",
218
+ " IO.ip = ip\n",
219
+ " IO.h00 = IO.ip\n",
220
+ " IO.h10 = IO.l20(IO.h00[0].to(torch.float)).unsqueeze(0)\n",
221
+ " IO.h11 = IO.l21(IO.h00[1].to(torch.float)).unsqueeze(0)\n",
222
+ " IO.h20[op==0 or op==0.5] = IO.l30(IO.h20,IO.h10)\n",
223
+ " IO.h21[op==0.5 or op==1] = IO.l30(IO.h21,IO.h10)\n",
224
+ " IO.h22[op==0 or op==0.5] = IO.l31(IO.h22,IO.h11)\n",
225
+ " IO.h23[op==0.5 or op==1] = IO.l31(IO.h23,IO.h11)\n",
226
+ " IO.h30[op==0] = IO.l40(torch.max(IO.h20,IO._O_))\n",
227
+ " IO.h30[op==0.5] = IO.l40(torch.max(IO.h20,IO.h21))\n",
228
+ " IO.h30[op==1] = IO.l40(torch.max(IO.h21,IO._O_))\n",
229
+ " IO.h31[op==0] = IO.l41(torch.max(IO.h22,IO._O_))\n",
230
+ " IO.h31[op==0.5] = IO.l41(torch.max(IO.h22,IO.h23))\n",
231
+ " IO.h31[op==1] = IO.l41(torch.max(IO.h23,IO._O_))\n",
232
+ " IO.h40 = IO.l5(torch.mean(torch.stack((IO.h30,IO.h31)))).item()\n",
233
+ " IO.op = int(IO.h40 > 0.5)\n",
234
+ " return(IO.op)"
235
+ ]
236
+ },
237
+ {
238
+ "cell_type": "markdown",
239
+ "metadata": {},
240
+ "source": [
241
+ "---"
242
+ ]
243
+ },
244
+ {
245
+ "cell_type": "markdown",
246
+ "metadata": {},
247
+ "source": [
248
+ "### <center>defining the pipeline of `ADL` model to predict 'is_clfd' and to save the prediction</center>"
249
+ ]
250
+ },
251
+ {
252
+ "cell_type": "code",
253
+ "execution_count": null,
254
+ "metadata": {},
255
+ "outputs": [],
256
+ "source": [
257
+ "def func__is_clfd(ip):\n",
258
+ " _01_ = __01__().cuda(torch.cuda.current_device())\n",
259
+ " ip_url = torch.tensor([ord(p) for p in ip[0]] + [(-1)*len(ip[0])]*(862 - len(ip[0]))).to(torch.float).cuda(torch.cuda.current_device())\n",
260
+ " ip_cordx = torch.tensor(ip[1][0]).cuda(torch.cuda.current_device())\n",
261
+ " ip_cordy = torch.tensor(ip[1][1]).cuda(torch.cuda.current_device())\n",
262
+ " ip_cords = torch.stack((ip_cordx,ip_cordy),dim=0).cuda(torch.cuda.current_device())\n",
263
+ " op = _01_.__8__(ip=[ip_url,ip_cords])\n",
264
+ " with open(f'{DMA__ADL}/1/op__is_clfd.txt','a') as f:\n",
265
+ " f.write('\\n')\n",
266
+ " f.write(f\"ip :: {ip}\")\n",
267
+ " f.write('\\n')\n",
268
+ " f.write(f'op :: {op}')\n",
269
+ " f.write('\\n')\n",
270
+ " return op"
271
+ ]
272
+ },
273
+ {
274
+ "cell_type": "markdown",
275
+ "metadata": {},
276
+ "source": [
277
+ "---"
278
+ ]
279
+ },
280
+ {
281
+ "cell_type": "markdown",
282
+ "metadata": {},
283
+ "source": [
284
+ "### <center>initializing Neural Network</center>"
285
+ ]
286
+ },
287
+ {
288
+ "cell_type": "code",
289
+ "execution_count": null,
290
+ "metadata": {},
291
+ "outputs": [],
292
+ "source": [
293
+ "_01_ = __01__().cuda(torch.cuda.current_device())\n",
294
+ "print(_01_)"
295
+ ]
296
+ },
297
+ {
298
+ "cell_type": "markdown",
299
+ "metadata": {},
300
+ "source": [
301
+ "---"
302
+ ]
303
+ },
304
+ {
305
+ "cell_type": "markdown",
306
+ "metadata": {},
307
+ "source": [
308
+ "### <center>exploring the `ADL` model</center>"
309
+ ]
310
+ },
311
+ {
312
+ "cell_type": "code",
313
+ "execution_count": null,
314
+ "metadata": {},
315
+ "outputs": [],
316
+ "source": [
317
+ "dct__01_wb = {}\n",
318
+ "for i,j in _01_.named_parameters():\n",
319
+ " dct__01_wb[i] = j.mean().item()\n",
320
+ " print(i,j.mean().item())"
321
+ ]
322
+ },
323
+ {
324
+ "cell_type": "markdown",
325
+ "metadata": {},
326
+ "source": [
327
+ "---"
328
+ ]
329
+ },
330
+ {
331
+ "cell_type": "markdown",
332
+ "metadata": {},
333
+ "source": [
334
+ "### <center>initializing the train, test and validation of the data</center>"
335
+ ]
336
+ },
337
+ {
338
+ "cell_type": "code",
339
+ "execution_count": null,
340
+ "metadata": {},
341
+ "outputs": [],
342
+ "source": [
343
+ "lip0,lip1,lop0,lop1,lio0,lio1 = [],[],[],[],[],[]\n",
344
+ "for n in range(0,666):\n",
345
+ " lip0.append(_01_.__8__(ip=[io__sudo_urls[n],io__sudo_cords[n]],op=io__sudo_isad[n].__int__()))\n",
346
+ " lip1.append(io__sudo_isad[n].__int__())\n",
347
+ "for n in range(666,888):\n",
348
+ " lop0.append(_01_.__8__(ip=[io__sudo_urls[n],io__sudo_cords[n]]))\n",
349
+ " lop1.append(io__sudo_isad[n].__int__())\n",
350
+ "for n in range(0,888):\n",
351
+ " lio0.append(_01_.__8__(ip=[io__sudo_urls[n],io__sudo_cords[n]]))\n",
352
+ " lio1.append(io__sudo_isad[n].__int__())"
353
+ ]
354
+ },
355
+ {
356
+ "cell_type": "code",
357
+ "execution_count": null,
358
+ "metadata": {},
359
+ "outputs": [],
360
+ "source": [
361
+ "print(f\"training instances : (666) :\\n\\t:: no. of instances pridicted as 'click-fraud' : {sum(lip0)}\\n\\t:: no. of instances actually 'click-fraud' : {sum(lip1)}\\n\\t:: percent of pridiction of 'click-fraud' : {sum(lip0)/sum(lip1)*100}\")\n",
362
+ "print(f\"testing instances : (222) :\\n\\t:: no. of instances pridicted as 'click-fraud' : {sum(lop0)}\\n\\t:: no. of instances actually 'click-fraud' : {sum(lop1)}\\n\\t:: percent of pridiction of 'click-fraud' : {sum(lop0)/sum(lop1)*100}\")\n",
363
+ "print(f\"overall instances : (888) :\\n\\t:: no. of instances pridicted as 'click-fraud' : {sum(lio0)}\\n\\t:: no. of instances actually 'click-fraud' : {sum(lio1)}\\n\\t:: percent of pridiction of 'click-fraud' : {sum(lio0)/sum(lio1)*100}\")"
364
+ ]
365
+ },
366
+ {
367
+ "cell_type": "markdown",
368
+ "metadata": {},
369
+ "source": [
370
+ "---"
371
+ ]
372
+ },
373
+ {
374
+ "cell_type": "markdown",
375
+ "metadata": {},
376
+ "source": [
377
+ "### <center>evaluating the `ADL` model based on a random input data instance [url,cords] and predicting the output [is_clfd]</center>"
378
+ ]
379
+ },
380
+ {
381
+ "cell_type": "code",
382
+ "execution_count": null,
383
+ "metadata": {},
384
+ "outputs": [],
385
+ "source": [
386
+ "io = _01_.__8__(ip=[io__sudo_urls[random.choice(range(0,889))],io__sudo_cords[random.choice(range(0,889))]])\n",
387
+ "print(f\"evaluating a random instance :: [index] : `{random.choice(range(0,889))+1}` :\",end=\"\\n\\t:: \")\n",
388
+ "print(f'predicted output :: {io} || actual output :: {io__sudo_isad[random.choice(range(0,889))].__int__()}')"
389
+ ]
390
+ },
391
+ {
392
+ "cell_type": "markdown",
393
+ "metadata": {},
394
+ "source": [
395
+ "---"
396
+ ]
397
+ },
398
+ {
399
+ "cell_type": "markdown",
400
+ "metadata": {},
401
+ "source": [
402
+ "### <center>predicting the click-fraud for the input by passing into the defined pipeline</center>"
403
+ ]
404
+ },
405
+ {
406
+ "cell_type": "code",
407
+ "execution_count": null,
408
+ "metadata": {},
409
+ "outputs": [],
410
+ "source": [
411
+ "ip = ['http://www.shea-davis.net/qKs1wmFu0jHdX7gAoX1WE1tv69bSdk9Jkhu0WsIpmPc3VaoI2pZbgRVuAFq1pa1Tb38tYleLhyGjWR?param_1=0UxBOdKj5br0V2Cc2FnjazaehJCXjz4j&param_2=L0Dn9ih6RCn72UtzdwpUYPUWoIl33D7OJOeMdfwjsQ8inUgfpomkSo3Hh95o1&param_3=KeF3EtmZ0ggJQCmVc9C1zhZZF26Pvq0uOHXTvA6AD0EIKpEjqlY7',(529475, 363074)]\n",
412
+ "op = func__is_clfd(ip)\n",
413
+ "print(f\"ip__url : {ip[0]}\\nip__cords : {ip[1]}\")\n",
414
+ "print(f'predicted output :: {op}')\n",
415
+ "print(\"--------\")\n",
416
+ "ip = ['http://www.ads.norton.com/LStKS8AZjsfm6pbT63O9baOtU1TCmJedJDvpR9WIRSZf4JBh5olBEAwn940PgK?param_1=6MrVuvl40jBNREhnFiiTQVMFPwFnUqqG9GufiKxPKsPEn9C4U13THBfDW1ix8&param_2=DQ0ZSCv8NWiLKSJsYPacqE1mYI5KHvMFjSZbX37tjSlFkouZhXaQRWJ81Zj1ZCs24lOmvGBFW&param_3=wElK6BbQf0epdFQ5wRCCJDCduBr&param_4=IAcf6ylq8m4n4zC93NLh4g103YZJdEXkySuhdDdB7ZqkdmaPZSUTtQCnFBU4&param_5=OOxQ18iw22ALICZaw9EavJgxfFUR5XNLCmZeayodPmGQvtTbJ8lix&param_6=3XIQ7fnNpwIrttMEekk6dtegXOBmgesqlAA5HBgn9NScqNS3yU1Oe0A2fJ9o81HVeuUMbocC3',(294620, 518935)]\n",
417
+ "op = func__is_clfd(ip)\n",
418
+ "print(f\"ip__url : {ip[0]}\\nip__cords : {ip[1]}\")\n",
419
+ "print(f'predicted output :: {op}')"
420
+ ]
421
+ },
422
+ {
423
+ "cell_type": "markdown",
424
+ "metadata": {},
425
+ "source": [
426
+ "---"
427
+ ]
428
+ }
429
+ ],
430
+ "metadata": {
431
+ "kernelspec": {
432
+ "display_name": "Python 3",
433
+ "language": "python",
434
+ "name": "python3"
435
+ },
436
+ "language_info": {
437
+ "codemirror_mode": {
438
+ "name": "ipython",
439
+ "version": 3
440
+ },
441
+ "file_extension": ".py",
442
+ "mimetype": "text/x-python",
443
+ "name": "python",
444
+ "nbconvert_exporter": "python",
445
+ "pygments_lexer": "ipython3",
446
+ "version": "3.12.1"
447
+ },
448
+ "orig_nbformat": 4
449
+ },
450
+ "nbformat": 4,
451
+ "nbformat_minor": 2
452
+ }
ADL/_/.env ADDED
File without changes
ADL/_/requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ Faker==24.9.0
2
+ torch==2.2.2+cu121
APA/0/gemma/code_gemma__7b/.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
APA/0/gemma/code_gemma__7b/README.md ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ extra_gated_heading: Access CodeGemma on Hugging Face
4
+ extra_gated_prompt: >-
5
+ To access CodeGemma on Hugging Face, you’re required to review and agree to
6
+ Google’s usage license. To do this, please ensure you’re logged-in to Hugging
7
+ Face and click below. Requests are processed immediately.
8
+ extra_gated_button_content: Acknowledge license
9
+ license: gemma
10
+ license_link: https://ai.google.dev/gemma/terms
11
+ ---
12
+
13
+ # CodeGemma
14
+
15
+ Model Page
16
+ : [CodeGemma](https://ai.google.dev/gemma/docs/codegemma)
17
+
18
+ Resources and Technical Documentation
19
+ : [Technical Report](https://goo.gle/codegemma)
20
+ : [Responsible Generative AI Toolkit](https://ai.google.dev/responsible)
21
+
22
+ Terms of Use
23
+ : [Terms](https://ai.google.dev/gemma/terms)
24
+
25
+ Authors
26
+ : Google
27
+
28
+ ## Model Information
29
+
30
+ Summary description and brief definition of inputs and outputs.
31
+
32
+ ### Description
33
+
34
+ CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion.
35
+
36
+ | | [codegemma-2b](https://huggingface.co/google/codegemma-2b) | [**codegemma-7b**](https://huggingface.co/google/codegemma-7b) | [codegemma-7b-it](https://huggingface.co/google/codegemma-7b-it) |
37
+ |----------------------------------|:----------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------:|
38
+ | Code Completion | ✅ | ✅ | |
39
+ | Generation from natural language | | ✅ | ✅ |
40
+ | Chat | | | ✅ |
41
+ | Instruction Following | | | ✅ |
42
+
43
+ ### Sample Usage
44
+
45
+ #### For Code Completion
46
+
47
+ Code completion can be used for infilling inside code editors. CodeGemma was trained for this task using the fill-in-the-middle (FIM) objective, where you provide a prefix and a suffix as context for the completion. The following tokens are used to separate the different parts of the input:
48
+
49
+ - `<|fim_prefix|>` precedes the context before the completion we want to run.
50
+ - `<|fim_suffix|>` precedes the suffix. You must put this token exactly where the cursor would be positioned in an editor, as this is the location that will be completed by the model.
51
+ - `<|fim_middle|>` is the prompt that invites the model to run the generation.
52
+
53
+ In addition to these, there's also `<|file_separator|>`, which is used to provide multi-file contexts.
54
+
55
+ Please, make sure to not provide any extra spaces or newlines around the tokens, other than those that would naturally occur in the code fragment you want to complete. Here's an example:
56
+
57
+ ```python
58
+ from transformers import GemmaTokenizer, AutoModelForCausalLM
59
+
60
+ model_id = "google/codegemma-7b"
61
+ tokenizer = GemmaTokenizer.from_pretrained(model_id)
62
+ model = AutoModelForCausalLM.from_pretrained(model_id)
63
+
64
+ prompt = '''\
65
+ <|fim_prefix|>import datetime
66
+ def calculate_age(birth_year):
67
+ """Calculates a person's age based on their birth year."""
68
+ current_year = datetime.date.today().year
69
+ <|fim_suffix|>
70
+ return age<|fim_middle|>\
71
+ '''
72
+
73
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
74
+ prompt_len = inputs["input_ids"].shape[-1]
75
+ outputs = model.generate(**inputs, max_new_tokens=100)
76
+ print(tokenizer.decode(outputs[0][prompt_len:]))
77
+ ```
78
+
79
+ This may return something like the following:
80
+
81
+ ```
82
+ age = current_year - birth_year<|file_separator|>test_calculate_age.py
83
+ <|fim_suffix|>
84
+ assert calculate_age(1990) == 33
85
+ assert calculate_age(1980) == 43
86
+ assert calculate_age(1970) == 53
87
+ assert calculate_age(1960) == 63
88
+ assert calculate_age(1950) == 73
89
+ ```
90
+
91
+ Note the extra content after the correct completion. The model returns the completion, followed by one of the FIM tokens or the EOS token. You should ignore everything that comes after any of these tokens. A good way to achieve this is by providing a list of terminators to the `generate` function, like this:
92
+
93
+ ```python
94
+ FIM_PREFIX = '<|fim_prefix|>'
95
+ FIM_SUFFIX = '<|fim_suffix|>'
96
+ FIM_MIDDLE = '<|fim_middle|>'
97
+ FIM_FILE_SEPARATOR = '<|file_separator|>'
98
+
99
+ terminators = tokenizer.convert_tokens_to_ids([FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_FILE_SEPARATOR])
100
+ terminators += [tokenizer.eos_token_id]
101
+
102
+ outputs = model.generate(
103
+ **inputs,
104
+ max_new_tokens=100,
105
+ eos_token_id=terminators,
106
+ )
107
+ ```
108
+
109
+ In this case, generation stops as soon as the first delimiter is found in the response:
110
+
111
+ ```
112
+ age = current_year - birth_year<|file_separator|>
113
+ ```
114
+
115
+
116
+ #### For Code Generation
117
+
118
+ ```python
119
+ from transformers import GemmaTokenizer, AutoModelForCausalLM
120
+
121
+ tokenizer = GemmaTokenizer.from_pretrained("google/codegemma-7b")
122
+ model = AutoModelForCausalLM.from_pretrained("google/codegemma-7b")
123
+
124
+ input_text = "Write me a Python function to calculate the nth fibonacci number."
125
+ input_ids = tokenizer(input_text, return_tensors="pt")
126
+
127
+ outputs = model.generate(**input_ids)
128
+ print(tokenizer.decode(outputs[0]))
129
+ ```
130
+
131
+ ### Inputs and Outputs
132
+
133
+ Inputs
134
+ : For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt
135
+ : For instruction tuned model variant: natural language text or prompt
136
+
137
+ Outputs
138
+ : For pretrained model variants: fill-in-the-middle code completion, code and natural language
139
+ : For instruction tuned model variant: code and natural language
140
+
141
+ ## Model Data
142
+
143
+ Data used for model training and how the data was processed.
144
+
145
+ ### Training Dataset
146
+
147
+ Using Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code.
148
+
149
+ ### Training Data Processing
150
+
151
+ The following data pre-processing techniques were applied:
152
+
153
+ * FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% FIM rate with 50-50 PSM/SPM.
154
+ * Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing
155
+ * We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution.
156
+ * Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11).
157
+
158
+ ## Implementation Information
159
+
160
+ Information about the hardware and software used to train the models.
161
+
162
+ ### Hardware
163
+
164
+ CodeGemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e).
165
+
166
+ ### Software
167
+
168
+ Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/).
169
+
170
+ ## Evaluation Information
171
+
172
+ Model evaluation metrics and results.
173
+
174
+ ### Evaluation Approach
175
+
176
+ We evaluate CodeGemma on a variety of academic benchmarks across several domains:
177
+
178
+ * Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling
179
+ * Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust)
180
+ * Q&A: BoolQ, PIQA, TriviaQA
181
+ * Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande
182
+ * Math Reasoning: GSM8K, MATH
183
+
184
+ ### Evaluation Results
185
+
186
+ #### Coding Benchmarks
187
+
188
+ Benchmark | 2B | 7B | 7B-IT
189
+ ----------------------|-------|-------|------
190
+ HumanEval | 31.1 | 44.5 | 56.1
191
+ MBPP | 43.6 | 56.2 | 54.2
192
+ HumanEval Single Line | 78.41 | 76.09 | 68.25
193
+ HumanEval Multi Line | 51.44 | 58.44 | 20.05
194
+ BC HE C++ | 24.2 | 32.9 | 42.2
195
+ BC HE C# | 10.6 | 22.4 | 26.7
196
+ BC HE Go | 20.5 | 21.7 | 28.6
197
+ BC HE Java | 29.2 | 41.0 | 48.4
198
+ BC HE JavaScript | 21.7 | 39.8 | 46.0
199
+ BC HE Kotlin | 28.0 | 39.8 | 51.6
200
+ BC HE Python | 21.7 | 42.2 | 48.4
201
+ BC HE Rust | 26.7 | 34.1 | 36.0
202
+ BC MBPP C++ | 47.1 | 53.8 | 56.7
203
+ BC MBPP C# | 28.7 | 32.5 | 41.2
204
+ BC MBPP Go | 45.6 | 43.3 | 46.2
205
+ BC MBPP Java | 41.8 | 50.3 | 57.3
206
+ BC MBPP JavaScript | 45.3 | 58.2 | 61.4
207
+ BC MBPP Kotlin | 46.8 | 54.7 | 59.9
208
+ BC MBPP Python | 38.6 | 59.1 | 62.0
209
+ BC MBPP Rust | 45.3 | 52.9 | 53.5
210
+
211
+ #### Natural Language Benchmarks
212
+
213
+ ![CodeGemma Natural Language Benchmarks](./codegemma_nl_benchmarks.png)
214
+
215
+ ## Ethics and Safety
216
+
217
+ Ethics and safety evaluation approach and results.
218
+
219
+ ### Evaluation Approach
220
+
221
+ Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including:
222
+
223
+ * Human evaluation on prompts covering content safety and representational harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_approach) for more details on evaluation approach.
224
+ * Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited.
225
+
226
+ ### Evaluation Results
227
+
228
+ The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details.
229
+
230
+ ## Model Usage & Limitations
231
+
232
+ These models have certain limitations that users should be aware of.
233
+
234
+ ### Intended Usage
235
+
236
+ Code Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development.
237
+
238
+ Code Completion
239
+ : PT models can be used to complete code with an IDE extension
240
+
241
+ Code Generation
242
+ : IT model can be used to generate code with or without an IDE extension
243
+
244
+ Code Conversation
245
+ : IT model can power conversation interfaces which discuss code.
246
+
247
+ Code Education
248
+ : IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice.
249
+
250
+ ### Known Limitations
251
+
252
+ Large Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details on the limitations of LLMs.
253
+
254
+ ### Ethical Considerations & Risks
255
+
256
+ The development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to [the same discussion](https://ai.google.dev/gemma/docs/model_card#ethical_considerations_and_risks) in the Gemma model card for model details.
257
+
258
+ ### Benefits
259
+
260
+ At the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models.
261
+
262
+ Using the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
APA/0/gemma/code_gemma__7b/codegemma_nl_benchmarks.png ADDED
APA/0/gemma/code_gemma__7b/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "GemmaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 2,
8
+ "eos_token_id": 1,
9
+ "head_dim": 256,
10
+ "hidden_activation": "gelu_pytorch_tanh",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 24576,
14
+ "max_position_embeddings": 8192,
15
+ "model_type": "gemma",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 16,
19
+ "pad_token_id": 0,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_theta": 10000.0,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.39.3",
24
+ "use_cache": true,
25
+ "vocab_size": 256000
26
+ }
APA/0/gemma/code_gemma__7b/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.39.3"
7
+ }
APA/0/gemma/code_gemma__7b/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9167cf03780d5d7e0682826d51fe3cd03ccb2449b27aa40c90ca4b64f0901aee
3
+ size 4995496656
APA/0/gemma/code_gemma__7b/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da22f51c0d055ffc4b7d6ef4cb1509df6c8f9f0c6ea14be0ad8a729ba8193f15
3
+ size 4982953168
APA/0/gemma/code_gemma__7b/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43845ddfcb04afa9d6b1f72a3b4ff6272ab8b1a3cb2fa473fc42cfb433a96a8d
3
+ size 4982953200
APA/0/gemma/code_gemma__7b/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a4286add77b8a3d86fa5eab4da890e8eca27e99637be07909afe34d81d46d25
3
+ size 2113988336
APA/0/gemma/code_gemma__7b/model.safetensors.index.json ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 17075361792
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
26
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00004.safetensors",
71
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
72
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
73
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
74
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
75
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
80
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
81
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
82
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
83
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
84
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
85
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
86
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
87
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
88
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
89
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
90
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
91
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
92
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
93
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
94
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
95
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
96
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
97
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
98
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
99
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
100
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
101
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
102
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
103
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
104
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
105
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
107
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
110
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
111
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
112
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
113
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
114
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
115
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
116
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
125
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00004.safetensors",
161
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
162
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
163
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
164
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
165
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00004.safetensors",
170
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
171
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
172
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
173
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
174
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
175
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
176
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
177
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
178
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
179
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
180
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
181
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
182
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
183
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
184
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
185
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
186
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
187
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
188
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
189
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
190
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
191
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
192
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
193
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
194
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
195
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
196
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
197
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
198
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
199
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
200
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
201
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
202
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
203
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
204
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
205
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
206
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
207
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
208
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
209
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
210
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
211
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
212
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
213
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
214
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
215
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
224
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
225
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
226
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
227
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
228
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
229
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
230
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
231
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
232
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
233
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
234
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
235
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
236
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
237
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
238
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
239
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
240
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
241
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
242
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
243
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
244
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
245
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
246
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
247
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
248
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
249
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
250
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
251
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
252
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
253
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
254
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
255
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
256
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
257
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
258
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
259
+ "model.norm.weight": "model-00004-of-00004.safetensors"
260
+ }
261
+ }
APA/0/gemma/code_gemma__7b/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<bos>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<eos>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
APA/0/gemma/code_gemma__7b/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7ebb96114e033c4ee00b6991644672cf1f9d1d27e60381ee66caf466fe62339
3
+ size 17518540
APA/0/gemma/code_gemma__7b/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:583f2ebd2a1936009b7da991ea255504db68c7a9713a78673d1335a87098966c
3
+ size 4241023
APA/0/gemma/code_gemma__7b/tokenizer_config.json ADDED
@@ -0,0 +1,1512 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<bos>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<mask>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "5": {
46
+ "content": "<2mass>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "6": {
54
+ "content": "[@BOS@]",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "7": {
62
+ "content": "<unused0>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": false
68
+ },
69
+ "8": {
70
+ "content": "<unused1>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": false
76
+ },
77
+ "9": {
78
+ "content": "<unused2>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": false
84
+ },
85
+ "10": {
86
+ "content": "<unused3>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": false
92
+ },
93
+ "11": {
94
+ "content": "<unused4>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": false
100
+ },
101
+ "12": {
102
+ "content": "<unused5>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": false
108
+ },
109
+ "13": {
110
+ "content": "<unused6>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": false
116
+ },
117
+ "14": {
118
+ "content": "<unused7>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "15": {
126
+ "content": "<unused8>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "16": {
134
+ "content": "<unused9>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "17": {
142
+ "content": "<unused10>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "18": {
150
+ "content": "<unused11>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "19": {
158
+ "content": "<unused12>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "20": {
166
+ "content": "<unused13>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "21": {
174
+ "content": "<unused14>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "22": {
182
+ "content": "<unused15>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "23": {
190
+ "content": "<unused16>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "24": {
198
+ "content": "<unused17>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "25": {
206
+ "content": "<unused18>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "26": {
214
+ "content": "<unused19>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "27": {
222
+ "content": "<unused20>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "28": {
230
+ "content": "<unused21>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "29": {
238
+ "content": "<unused22>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ },
245
+ "30": {
246
+ "content": "<unused23>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": false
252
+ },
253
+ "31": {
254
+ "content": "<unused24>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": false
260
+ },
261
+ "32": {
262
+ "content": "<unused25>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": false
268
+ },
269
+ "33": {
270
+ "content": "<unused26>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": false
276
+ },
277
+ "34": {
278
+ "content": "<unused27>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": false
284
+ },
285
+ "35": {
286
+ "content": "<unused28>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": false
292
+ },
293
+ "36": {
294
+ "content": "<unused29>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": false
300
+ },
301
+ "37": {
302
+ "content": "<unused30>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": false
308
+ },
309
+ "38": {
310
+ "content": "<unused31>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": false
316
+ },
317
+ "39": {
318
+ "content": "<unused32>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": false
324
+ },
325
+ "40": {
326
+ "content": "<unused33>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": false
332
+ },
333
+ "41": {
334
+ "content": "<unused34>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": false
340
+ },
341
+ "42": {
342
+ "content": "<unused35>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": false
348
+ },
349
+ "43": {
350
+ "content": "<unused36>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": false
356
+ },
357
+ "44": {
358
+ "content": "<unused37>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": false
364
+ },
365
+ "45": {
366
+ "content": "<unused38>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": false
372
+ },
373
+ "46": {
374
+ "content": "<unused39>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": false
380
+ },
381
+ "47": {
382
+ "content": "<unused40>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": false
388
+ },
389
+ "48": {
390
+ "content": "<unused41>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": false
396
+ },
397
+ "49": {
398
+ "content": "<unused42>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": false
404
+ },
405
+ "50": {
406
+ "content": "<unused43>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": false
412
+ },
413
+ "51": {
414
+ "content": "<unused44>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": false
420
+ },
421
+ "52": {
422
+ "content": "<unused45>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": false
428
+ },
429
+ "53": {
430
+ "content": "<unused46>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": false
436
+ },
437
+ "54": {
438
+ "content": "<unused47>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": false
444
+ },
445
+ "55": {
446
+ "content": "<unused48>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": false
452
+ },
453
+ "56": {
454
+ "content": "<unused49>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": false
460
+ },
461
+ "57": {
462
+ "content": "<unused50>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": false
468
+ },
469
+ "58": {
470
+ "content": "<unused51>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": false
476
+ },
477
+ "59": {
478
+ "content": "<unused52>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": false
484
+ },
485
+ "60": {
486
+ "content": "<unused53>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": false
492
+ },
493
+ "61": {
494
+ "content": "<unused54>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": false
500
+ },
501
+ "62": {
502
+ "content": "<unused55>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": false
508
+ },
509
+ "63": {
510
+ "content": "<unused56>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": false
516
+ },
517
+ "64": {
518
+ "content": "<unused57>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": false
524
+ },
525
+ "65": {
526
+ "content": "<unused58>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": false
532
+ },
533
+ "66": {
534
+ "content": "<unused59>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": false
540
+ },
541
+ "67": {
542
+ "content": "<|fim_prefix|>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": false
548
+ },
549
+ "68": {
550
+ "content": "<|fim_middle|>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": false
556
+ },
557
+ "69": {
558
+ "content": "<|fim_suffix|>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": false
564
+ },
565
+ "70": {
566
+ "content": "<|file_separator|>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": false
572
+ },
573
+ "71": {
574
+ "content": "<unused64>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": false
580
+ },
581
+ "72": {
582
+ "content": "<unused65>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": false
588
+ },
589
+ "73": {
590
+ "content": "<unused66>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": false
596
+ },
597
+ "74": {
598
+ "content": "<unused67>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": false
604
+ },
605
+ "75": {
606
+ "content": "<unused68>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": false
612
+ },
613
+ "76": {
614
+ "content": "<unused69>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": false
620
+ },
621
+ "77": {
622
+ "content": "<unused70>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": false
628
+ },
629
+ "78": {
630
+ "content": "<unused71>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": false
636
+ },
637
+ "79": {
638
+ "content": "<unused72>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": false
644
+ },
645
+ "80": {
646
+ "content": "<unused73>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": false
652
+ },
653
+ "81": {
654
+ "content": "<unused74>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": false
660
+ },
661
+ "82": {
662
+ "content": "<unused75>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": false
668
+ },
669
+ "83": {
670
+ "content": "<unused76>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": false
676
+ },
677
+ "84": {
678
+ "content": "<unused77>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": false
684
+ },
685
+ "85": {
686
+ "content": "<unused78>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": false
692
+ },
693
+ "86": {
694
+ "content": "<unused79>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": false
700
+ },
701
+ "87": {
702
+ "content": "<unused80>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": false
708
+ },
709
+ "88": {
710
+ "content": "<unused81>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": false
716
+ },
717
+ "89": {
718
+ "content": "<unused82>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": false
724
+ },
725
+ "90": {
726
+ "content": "<unused83>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": false
732
+ },
733
+ "91": {
734
+ "content": "<unused84>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": false
740
+ },
741
+ "92": {
742
+ "content": "<unused85>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": false
748
+ },
749
+ "93": {
750
+ "content": "<unused86>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": false
756
+ },
757
+ "94": {
758
+ "content": "<unused87>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": false
764
+ },
765
+ "95": {
766
+ "content": "<unused88>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": false
772
+ },
773
+ "96": {
774
+ "content": "<unused89>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": false
780
+ },
781
+ "97": {
782
+ "content": "<unused90>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": false
788
+ },
789
+ "98": {
790
+ "content": "<unused91>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": false
796
+ },
797
+ "99": {
798
+ "content": "<unused92>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": false
804
+ },
805
+ "100": {
806
+ "content": "<unused93>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": false
812
+ },
813
+ "101": {
814
+ "content": "<unused94>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": false
820
+ },
821
+ "102": {
822
+ "content": "<unused95>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": false
828
+ },
829
+ "103": {
830
+ "content": "<unused96>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": false
836
+ },
837
+ "104": {
838
+ "content": "<unused97>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": false
844
+ },
845
+ "105": {
846
+ "content": "<unused98>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": false
852
+ },
853
+ "106": {
854
+ "content": "<start_of_turn>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": false
860
+ },
861
+ "107": {
862
+ "content": "<end_of_turn>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": false
868
+ },
869
+ "108": {
870
+ "content": "\n",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": false
876
+ },
877
+ "109": {
878
+ "content": "\n\n",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": false
884
+ },
885
+ "110": {
886
+ "content": "\n\n\n",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": false
892
+ },
893
+ "111": {
894
+ "content": "\n\n\n\n",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": false
900
+ },
901
+ "112": {
902
+ "content": "\n\n\n\n\n",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": false
908
+ },
909
+ "113": {
910
+ "content": "\n\n\n\n\n\n",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": false
916
+ },
917
+ "114": {
918
+ "content": "\n\n\n\n\n\n\n",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": false
924
+ },
925
+ "115": {
926
+ "content": "\n\n\n\n\n\n\n\n",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": false
932
+ },
933
+ "116": {
934
+ "content": "\n\n\n\n\n\n\n\n\n",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": false
940
+ },
941
+ "117": {
942
+ "content": "\n\n\n\n\n\n\n\n\n\n",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": false
948
+ },
949
+ "118": {
950
+ "content": "\n\n\n\n\n\n\n\n\n\n\n",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": false
956
+ },
957
+ "119": {
958
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": false
964
+ },
965
+ "120": {
966
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": false
972
+ },
973
+ "121": {
974
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": false
980
+ },
981
+ "122": {
982
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": false
988
+ },
989
+ "123": {
990
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": false
996
+ },
997
+ "124": {
998
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": false
1004
+ },
1005
+ "125": {
1006
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": false
1012
+ },
1013
+ "126": {
1014
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": false
1020
+ },
1021
+ "127": {
1022
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": false
1028
+ },
1029
+ "128": {
1030
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": false
1036
+ },
1037
+ "129": {
1038
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": false
1044
+ },
1045
+ "130": {
1046
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": false
1052
+ },
1053
+ "131": {
1054
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": false
1060
+ },
1061
+ "132": {
1062
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": false
1068
+ },
1069
+ "133": {
1070
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": false
1076
+ },
1077
+ "134": {
1078
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": false
1084
+ },
1085
+ "135": {
1086
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": false
1092
+ },
1093
+ "136": {
1094
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": false
1100
+ },
1101
+ "137": {
1102
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": false
1108
+ },
1109
+ "138": {
1110
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": false
1116
+ },
1117
+ "169": {
1118
+ "content": "<table>",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": false
1124
+ },
1125
+ "170": {
1126
+ "content": "<caption>",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": false
1132
+ },
1133
+ "171": {
1134
+ "content": "<thead>",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": false
1140
+ },
1141
+ "172": {
1142
+ "content": "<tbody>",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": false
1148
+ },
1149
+ "173": {
1150
+ "content": "<tfoot>",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": false
1156
+ },
1157
+ "174": {
1158
+ "content": "<tr>",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": false
1164
+ },
1165
+ "175": {
1166
+ "content": "<th>",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": false
1172
+ },
1173
+ "176": {
1174
+ "content": "<td>",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": false
1180
+ },
1181
+ "177": {
1182
+ "content": "</table>",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": false
1188
+ },
1189
+ "178": {
1190
+ "content": "</caption>",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": false
1196
+ },
1197
+ "179": {
1198
+ "content": "</thead>",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": false
1204
+ },
1205
+ "180": {
1206
+ "content": "</tbody>",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": false
1212
+ },
1213
+ "181": {
1214
+ "content": "</tfoot>",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": false
1220
+ },
1221
+ "182": {
1222
+ "content": "</tr>",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": false
1228
+ },
1229
+ "183": {
1230
+ "content": "</th>",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": false
1236
+ },
1237
+ "184": {
1238
+ "content": "</td>",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": false
1244
+ },
1245
+ "185": {
1246
+ "content": "<h1>",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": false
1252
+ },
1253
+ "186": {
1254
+ "content": "<h2>",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": false
1260
+ },
1261
+ "187": {
1262
+ "content": "<h3>",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": false
1268
+ },
1269
+ "188": {
1270
+ "content": "<h4>",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": false
1276
+ },
1277
+ "189": {
1278
+ "content": "<h5>",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": false
1284
+ },
1285
+ "190": {
1286
+ "content": "<h6>",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": false
1292
+ },
1293
+ "191": {
1294
+ "content": "<blockquote>",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": false
1300
+ },
1301
+ "192": {
1302
+ "content": "</h1>",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": false
1308
+ },
1309
+ "193": {
1310
+ "content": "</h2>",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": false
1316
+ },
1317
+ "194": {
1318
+ "content": "</h3>",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": false
1324
+ },
1325
+ "195": {
1326
+ "content": "</h4>",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": false
1332
+ },
1333
+ "196": {
1334
+ "content": "</h5>",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": false
1340
+ },
1341
+ "197": {
1342
+ "content": "</h6>",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": false
1348
+ },
1349
+ "198": {
1350
+ "content": "</blockquote>",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": false
1356
+ },
1357
+ "199": {
1358
+ "content": "<strong>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": false
1364
+ },
1365
+ "200": {
1366
+ "content": "<em>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": false
1372
+ },
1373
+ "201": {
1374
+ "content": "<b>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": false
1380
+ },
1381
+ "202": {
1382
+ "content": "<i>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": false
1388
+ },
1389
+ "203": {
1390
+ "content": "<u>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": false
1396
+ },
1397
+ "204": {
1398
+ "content": "<s>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": false
1404
+ },
1405
+ "205": {
1406
+ "content": "<sub>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": false
1412
+ },
1413
+ "206": {
1414
+ "content": "<sup>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": false
1420
+ },
1421
+ "207": {
1422
+ "content": "<code>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": false
1428
+ },
1429
+ "208": {
1430
+ "content": "</strong>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": false
1436
+ },
1437
+ "209": {
1438
+ "content": "</em>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": false
1444
+ },
1445
+ "210": {
1446
+ "content": "</b>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": false
1452
+ },
1453
+ "211": {
1454
+ "content": "</i>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": false
1460
+ },
1461
+ "212": {
1462
+ "content": "</u>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": false
1468
+ },
1469
+ "213": {
1470
+ "content": "</s>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": false
1476
+ },
1477
+ "214": {
1478
+ "content": "</sub>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": false
1484
+ },
1485
+ "215": {
1486
+ "content": "</sup>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": false
1492
+ },
1493
+ "216": {
1494
+ "content": "</code>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": false
1500
+ }
1501
+ },
1502
+ "bos_token": "<bos>",
1503
+ "clean_up_tokenization_spaces": false,
1504
+ "eos_token": "<eos>",
1505
+ "model_max_length": 1000000000000000019884624838656,
1506
+ "pad_token": "<pad>",
1507
+ "sp_model_kwargs": {},
1508
+ "spaces_between_special_tokens": false,
1509
+ "tokenizer_class": "GemmaTokenizer",
1510
+ "unk_token": "<unk>",
1511
+ "use_default_system_prompt": false
1512
+ }
APA/8/__01__.ipynb ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "---"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "markdown",
12
+ "metadata": {},
13
+ "source": [
14
+ "> <center><a href='https://o-0268-kvnaditya-8620-o.web.app/documentation/apa.html'><h3>Artificial-Intelligence Programming Assistance using GenAI</h3></center></a>\n",
15
+ "> <hr>\n",
16
+ "> <center>K.V.N.Aditya</center>\n",
17
+ "> <br>\n",
18
+ "> <center>SurgeClasses || CMR Technical Campus</center>"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "markdown",
23
+ "metadata": {},
24
+ "source": [
25
+ "---\n",
26
+ "---"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "markdown",
31
+ "metadata": {},
32
+ "source": [
33
+ "### <center>importing modules</center>"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": null,
39
+ "metadata": {},
40
+ "outputs": [],
41
+ "source": [
42
+ "import os\n",
43
+ "import shutil\n",
44
+ "import google.generativeai as genai\n",
45
+ "from IPython.core.interactiveshell import InteractiveShell\n",
46
+ "from IPython.display import display, Markdown\n",
47
+ "from datetime import datetime, timezone"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "markdown",
52
+ "metadata": {},
53
+ "source": [
54
+ "---"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "markdown",
59
+ "metadata": {},
60
+ "source": [
61
+ "### <center>configuring 'ipynb'</center>"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "execution_count": null,
67
+ "metadata": {},
68
+ "outputs": [],
69
+ "source": [
70
+ "InteractiveShell.ast_node_interactivity = \"all\"\n",
71
+ "_H_ = '-' * shutil.get_terminal_size().columns\n",
72
+ "_HH_ = '=' * shutil.get_terminal_size().columns"
73
+ ]
74
+ },
75
+ {
76
+ "cell_type": "markdown",
77
+ "metadata": {},
78
+ "source": [
79
+ "---"
80
+ ]
81
+ },
82
+ {
83
+ "cell_type": "markdown",
84
+ "metadata": {},
85
+ "source": [
86
+ "### <center>initializing path</center>"
87
+ ]
88
+ },
89
+ {
90
+ "cell_type": "code",
91
+ "execution_count": null,
92
+ "metadata": {},
93
+ "outputs": [],
94
+ "source": [
95
+ "DMA__APA = os.path.abspath('../../APA').replace('\\\\', '/')"
96
+ ]
97
+ },
98
+ {
99
+ "cell_type": "markdown",
100
+ "metadata": {},
101
+ "source": [
102
+ "---"
103
+ ]
104
+ },
105
+ {
106
+ "cell_type": "markdown",
107
+ "metadata": {},
108
+ "source": [
109
+ "### <center>defining `APA`</center>"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": null,
115
+ "metadata": {},
116
+ "outputs": [],
117
+ "source": [
118
+ "class cls__APA():\n",
119
+ " def __init__(_io_,*,args__api_key='',args__apa_config__temp=1,args_apa_config__top_p=1,args_apa_config__top_k=1,args_apa_config__max_op_tokns=88888888,args__google_gemini_model='gemini-1.5-pro-latest',args__op_1__io=1,args__op_1__p=1,args__init__op_1='APA'):\n",
120
+ " _io_.init__apa = \"The name of the System is 'Artificial-Intelligence Programming Assistance (APA)' tuned by 'K.V.N.Aditya' using 'Google Gemini-1.5-Pro\\n\\nTasks:\\n Code Evolution : for the passed input task, generate the code\\n Code Termination : for the passed input task with partial code, complete the code\\n Code Evaluation : for the passed input task and code, evaluate the code and debug the errors, if needed test the input and/or output codes with test-cases\\n Code Definition : for the passed input task and code, explain / summarize the code.\\n\\nExamples: \\n Code Evolution :\\n [ip] :: evolute code to print \\\"APA\\\"\\n [op] ::\\n def func__APA:\\n print(\\\"APA\\\")\\n Code Termination :\\n [ip] :: terminate code for printing \\\"APA\\\" `def func__APA():...`\\n [op] ::\\n def func__APA:\\n print(\\\"APA\\\")\\n Code Evaluation :\\n [ip] :: evaluate code for printing \\\"APA\\\" `def func__APA() print(\\\"APA\\\")`\\n [op] ::\\n def func__APA:\\n print(\\\"APA\\\")\\n evaluation(s):\\n expected \\\":\\\" after function name\\n Code Definition :\\n [ip] :: define code `def func__APA():print(\\\"APA\\\")`\\n [op] ::\\n the code consists of a function defined as 'func__APA' which print the string 'APA' as output from with-in the function.\\n\\nDefaults :\\n Programming Language : Python\\n Tasks :\\n Code Evolution : if none of the task instructed, generate random program.\\n Code Termination : \\n if the prompt/instruction consists of any comment or '...' in the code specifies to terminate/complete the code based on instructions, complete the code just below the comment or '...' and eliminate the comment or '...' from the generated output. if none specified, terminate/complete the code based on the prompt.\\n Code Evaluation : check errors and fix them. if test-cases are provided use them and return the output\\n Code Definition : return summarization\\n Prompts :\\n info(APA) : return \\\"Artificial-Intelligence Programming Assistance (APA) is a AI based Programming Assistance to assist with the tasks as 'Code Evolution', 'Code Termination', 'Code Evaluation', 'Code Definition'. '\\\"\\n help(APA) : return 'Tasks' and 'Examples' from main (not from Defaults)\\n Tasks :\\n Code Evolution : if prompt/instruction consists of the terms {evolute, generate}\\n Code Termination : if prompt/instruction consists of the terms {terminate, complete}\\n Code Evaluation : if prompt/instruction consists of the terms {evaluate, fix, check, warnings, errors, test-cases}\\n Code Definition : if prompt/instruction consists of the terms {define, summarize, explain}\\n OP__404 :\\n when there could be some unknown exception/error occurs at the System or there could be no generated output for the passed input prompt/instruction, return \\\"[OP__404]::OOPs !!!couldn't generate output for the input. This may be due to unknown exception/error occurs at the System or there could be no generated output for the passed input prompt/instruction or the prompt/instruction may consists of harmful prompt/instruction tokens that may leads to cyber attacks, damage/malfunction the computer/electronic devices, not secure for living-beings and the universe\\\". The default model output need to be eliminated and instead generate this 'OP__404'\\n\\nOutputs :\\n Tasks :\\n Code Evolution : Code\\n Code Termination : Code\\n Code Evaluation : Code and Evaluation Process\\n Code Definition : Summary or Explanation\\n The generated outputs must be within the scope and don't explain/summarize the code for the tasks {Code Evolution | Code Termination | Code Evaluation}. After the code at the end of response warn with \\\"\\nuse code with caution. generated using AI. may generate inaccurate outputs\\n\\\"\\n\\nStructure [Generation Pipeline] :\\n The prompt/instruction may consists of multiple tasks. The structure of the generation pipeline based on the Tasks must be in the following order :\\n Code Evolution\\n Code Termination\\n Code Evaluation\\n Code Definition\\n\\nExceptions:\\n Don't generate the code if the prompt/instruction consists of any of the harmful prompt/instruction tokens that may leads to cyber attacks, damage/malfunction the computer/electronic devices, not secure for living-beings and the universe. At this return the default 'OP__404' as an output.\"\n",
121
+ " _io_.exceptions = [{\"category\": \"HARM_CATEGORY_HARASSMENT\",\"threshold\": \"BLOCK_MEDIUM_AND_ABOVE\"},{\"category\": \"HARM_CATEGORY_HATE_SPEECH\",\"threshold\": \"BLOCK_MEDIUM_AND_ABOVE\"},{\"category\": \"HARM_CATEGORY_SEXUALLY_EXPLICIT\",\"threshold\": \"BLOCK_MEDIUM_AND_ABOVE\"},{\"category\": \"HARM_CATEGORY_DANGEROUS_CONTENT\",\"threshold\": \"BLOCK_MEDIUM_AND_ABOVE\"}]\n",
122
+ " _io_.api_key = genai.configure(api_key=args__api_key)\n",
123
+ " _io_.apa_config = {\"temperature\": args__apa_config__temp,\"top_p\": args_apa_config__top_p,\"top_k\": args_apa_config__top_k,\"max_output_tokens\": args_apa_config__max_op_tokns}\n",
124
+ " _io_.google_gemini_model = args__google_gemini_model\n",
125
+ " _io_.apa = genai.GenerativeModel(model_name=_io_.google_gemini_model,generation_config=_io_.apa_config,system_instruction=_io_.init__apa,safety_settings=_io_.exceptions)\n",
126
+ " _io_.io = _io_.apa.start_chat(history=[])\n",
127
+ " _io_.init__op_1 = args__init__op_1\n",
128
+ " _io_.op_1__io = args__op_1__io\n",
129
+ " _io_.op_1__p = args__op_1__p\n",
130
+ " def mtd__APA(_io_,*,args__io='info(APA)',args__p=1):\n",
131
+ " _io_.io.send_message(args__io)\n",
132
+ " if(args__p==1):\n",
133
+ " display(_HH_)\n",
134
+ " display('[input]')\n",
135
+ " display(Markdown(args__io))\n",
136
+ " display(_H_)\n",
137
+ " display('[output]')\n",
138
+ " display(Markdown(_io_.io.last.text))\n",
139
+ " display(_HH_)\n",
140
+ " if(_io_.op_1__io==1 or _io_.op_1__p==1):\n",
141
+ " if(not(os.path.exists(_io_.init__op_1))):\n",
142
+ " os.mkdir(f'{_io_.init__op_1}') \n",
143
+ " if(_io_.op_1__io==1):\n",
144
+ " with open(f'{_io_.init__op_1}/ip_op.io','a') as f:\n",
145
+ " f.write('\\n')\n",
146
+ " f.write(_HH_)\n",
147
+ " f.write('\\n')\n",
148
+ " f.write('[input]')\n",
149
+ " f.write('\\n')\n",
150
+ " f.write(args__io)\n",
151
+ " f.write('\\n')\n",
152
+ " f.write(_H_)\n",
153
+ " f.write('\\n')\n",
154
+ " f.write('[output]')\n",
155
+ " f.write('\\n')\n",
156
+ " f.write(_io_.io.last.text)\n",
157
+ " f.write('\\n')\n",
158
+ " f.write(_HH_)\n",
159
+ " f.write('\\n')\n",
160
+ " if(_io_.op_1__p==1):\n",
161
+ " with open(f'{_io_.init__op_1}/io_p.io','w') as f:\n",
162
+ " f.write(_HH_)\n",
163
+ " f.write('\\n')\n",
164
+ " f.write(_io_.io.history.__str__())\n",
165
+ " f.write('\\n')\n",
166
+ " f.write(_HH_)"
167
+ ]
168
+ },
169
+ {
170
+ "cell_type": "markdown",
171
+ "metadata": {},
172
+ "source": [
173
+ "---"
174
+ ]
175
+ },
176
+ {
177
+ "cell_type": "markdown",
178
+ "metadata": {},
179
+ "source": [
180
+ "### <center>pipelining `APA`</center>"
181
+ ]
182
+ },
183
+ {
184
+ "cell_type": "code",
185
+ "execution_count": null,
186
+ "metadata": {},
187
+ "outputs": [],
188
+ "source": [
189
+ "__io__ = 1\n",
190
+ "while(__io__):\n",
191
+ " __io__ = int(input('[ip]:[__io__]::{1}:continue|{0}:exit') or 0)\n",
192
+ " if(not(__io__)):\n",
193
+ " break\n",
194
+ " try:\n",
195
+ " api_key = input('[ip]::Google Gemini API-Key') or ''\n",
196
+ " apa_config__temp = int(input('[ip]::temperature') or 1)\n",
197
+ " apa_config__top_p = int(input('[ip]::top_p') or 1)\n",
198
+ " apa_config__top_k = int(input('[ip]::top_k') or 1)\n",
199
+ " apa_config__max_op_tokns = int(input('[ip]::max_output_tokens') or 88888888)\n",
200
+ " google_gemini_model = input('[ip]::Google Gemini Model') or 'gemini-1.5-pro-latest'\n",
201
+ " init__op_1 = input('[ip]::init__op_1') or 'APA'\n",
202
+ " dt = datetime.now(timezone.utc)\n",
203
+ " init__op_1 = 'APA'+'__'+str(dt.year)+str(dt.month)+str(dt.day)+str(dt.hour)+str(dt.minute)+str(dt.second)+str(dt.microsecond)\n",
204
+ " init__op_1 = f'{DMA__APA}/1/io__APA/{init__op_1}'\n",
205
+ " op_1__io = int(input('[ip]::op_1__io') or 1)\n",
206
+ " op_1__p = int(input('[ip]::op_1__p') or 1)\n",
207
+ " obj__APA = cls__APA(args__api_key=api_key,args__apa_config__temp=apa_config__temp,args_apa_config__top_p=apa_config__top_p,args_apa_config__top_k=apa_config__top_k,args_apa_config__max_op_tokns=apa_config__max_op_tokns,args__google_gemini_model=google_gemini_model,args__op_1__io=op_1__io,args__op_1__p=op_1__p,args__init__op_1=init__op_1)\n",
208
+ " display(_HH_)\n",
209
+ " display(f\"[logs]::initializing `io__APA` at '{init__op_1}'\")\n",
210
+ " display(_HH_)\n",
211
+ " except Exception as e:\n",
212
+ " display(_HH_)\n",
213
+ " display(f\"[logs]::\\n\\t{e}\")\n",
214
+ " display(_HH_)\n",
215
+ " break\n",
216
+ " _io_ = 1\n",
217
+ " while(_io_):\n",
218
+ " _io_ = int(input('[ip]:[_io_]::{1}:continue|{0}:exit') or 1)\n",
219
+ " if(not(_io_)):\n",
220
+ " break\n",
221
+ " try:\n",
222
+ " io = input('[ip]::io') or 'info(APA)'\n",
223
+ " p = int(input('[ip]::p') or 1)\n",
224
+ " obj__APA.mtd__APA(args__io=io,args__p=p)\n",
225
+ " except Exception as e:\n",
226
+ " display(_HH_)\n",
227
+ " display(f\"[logs]::\\n\\t{e}\")\n",
228
+ " display(_HH_)\n",
229
+ " break"
230
+ ]
231
+ },
232
+ {
233
+ "cell_type": "markdown",
234
+ "metadata": {},
235
+ "source": [
236
+ "---"
237
+ ]
238
+ }
239
+ ],
240
+ "metadata": {
241
+ "kernelspec": {
242
+ "display_name": "cmrtc__surge_classes__dsaiml",
243
+ "language": "python",
244
+ "name": "python3"
245
+ },
246
+ "language_info": {
247
+ "codemirror_mode": {
248
+ "name": "ipython",
249
+ "version": 3
250
+ },
251
+ "file_extension": ".py",
252
+ "mimetype": "text/x-python",
253
+ "name": "python",
254
+ "nbconvert_exporter": "python",
255
+ "pygments_lexer": "ipython3",
256
+ "version": "3.12.1"
257
+ }
258
+ },
259
+ "nbformat": 4,
260
+ "nbformat_minor": 2
261
+ }
APA/_/.env ADDED
File without changes
APA/_/requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ipython==8.12.3
2
+ ipython==8.22.2
3
+ protobuf==5.26.1
BW__RGB/0/ip__img/0.jpg ADDED
BW__RGB/0/ip__img/1.jpg ADDED
BW__RGB/0/ip__img/10.jpg ADDED
BW__RGB/0/ip__img/100.jpg ADDED
BW__RGB/0/ip__img/101.jpg ADDED
BW__RGB/0/ip__img/102.jpg ADDED
BW__RGB/0/ip__img/103.jpg ADDED
BW__RGB/0/ip__img/104.jpg ADDED
BW__RGB/0/ip__img/105.jpg ADDED
BW__RGB/0/ip__img/106.jpg ADDED
BW__RGB/0/ip__img/107.jpg ADDED
BW__RGB/0/ip__img/108.jpg ADDED
BW__RGB/0/ip__img/109.jpg ADDED
BW__RGB/0/ip__img/11.jpg ADDED
BW__RGB/0/ip__img/110.jpg ADDED
BW__RGB/0/ip__img/111.jpg ADDED
BW__RGB/0/ip__img/112.jpg ADDED
BW__RGB/0/ip__img/113.jpg ADDED
BW__RGB/0/ip__img/114.jpg ADDED
BW__RGB/0/ip__img/115.jpg ADDED
BW__RGB/0/ip__img/116.jpg ADDED
BW__RGB/0/ip__img/117.jpg ADDED
BW__RGB/0/ip__img/118.jpg ADDED
BW__RGB/0/ip__img/119.jpg ADDED
BW__RGB/0/ip__img/12.jpg ADDED
BW__RGB/0/ip__img/120.jpg ADDED