|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Testing suite for the PyTorch DeiT model. """ |
|
|
|
|
|
import inspect |
|
import unittest |
|
import warnings |
|
|
|
from transformers import DeiTConfig |
|
from transformers.models.auto import get_values |
|
from transformers.testing_utils import ( |
|
require_accelerate, |
|
require_torch, |
|
require_torch_gpu, |
|
require_vision, |
|
slow, |
|
torch_device, |
|
) |
|
from transformers.utils import cached_property, is_torch_available, is_vision_available |
|
|
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
from torch import nn |
|
|
|
from transformers import ( |
|
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, |
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, |
|
MODEL_MAPPING, |
|
DeiTForImageClassification, |
|
DeiTForImageClassificationWithTeacher, |
|
DeiTForMaskedImageModeling, |
|
DeiTModel, |
|
) |
|
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from transformers import DeiTFeatureExtractor |
|
|
|
|
|
class DeiTModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=13, |
|
image_size=30, |
|
patch_size=2, |
|
num_channels=3, |
|
is_training=True, |
|
use_labels=True, |
|
hidden_size=32, |
|
num_hidden_layers=5, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
type_sequence_label_size=10, |
|
initializer_range=0.02, |
|
num_labels=3, |
|
scope=None, |
|
encoder_stride=2, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.is_training = is_training |
|
self.use_labels = use_labels |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.type_sequence_label_size = type_sequence_label_size |
|
self.initializer_range = initializer_range |
|
self.scope = scope |
|
self.encoder_stride = encoder_stride |
|
|
|
|
|
num_patches = (image_size // patch_size) ** 2 |
|
self.seq_length = num_patches + 2 |
|
|
|
def prepare_config_and_inputs(self): |
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) |
|
|
|
labels = None |
|
if self.use_labels: |
|
labels = ids_tensor([self.batch_size], self.type_sequence_label_size) |
|
|
|
config = self.get_config() |
|
|
|
return config, pixel_values, labels |
|
|
|
def get_config(self): |
|
return DeiTConfig( |
|
image_size=self.image_size, |
|
patch_size=self.patch_size, |
|
num_channels=self.num_channels, |
|
hidden_size=self.hidden_size, |
|
num_hidden_layers=self.num_hidden_layers, |
|
num_attention_heads=self.num_attention_heads, |
|
intermediate_size=self.intermediate_size, |
|
hidden_act=self.hidden_act, |
|
hidden_dropout_prob=self.hidden_dropout_prob, |
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob, |
|
is_decoder=False, |
|
initializer_range=self.initializer_range, |
|
encoder_stride=self.encoder_stride, |
|
) |
|
|
|
def create_and_check_model(self, config, pixel_values, labels): |
|
model = DeiTModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(pixel_values) |
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
|
|
def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels): |
|
model = DeiTForMaskedImageModeling(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(pixel_values) |
|
self.parent.assertEqual( |
|
result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) |
|
) |
|
|
|
|
|
config.num_channels = 1 |
|
model = DeiTForMaskedImageModeling(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) |
|
result = model(pixel_values) |
|
self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size)) |
|
|
|
def create_and_check_for_image_classification(self, config, pixel_values, labels): |
|
config.num_labels = self.type_sequence_label_size |
|
model = DeiTForImageClassification(config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(pixel_values, labels=labels) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) |
|
|
|
|
|
config.num_channels = 1 |
|
model = DeiTForImageClassification(config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) |
|
result = model(pixel_values, labels=labels) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
( |
|
config, |
|
pixel_values, |
|
labels, |
|
) = config_and_inputs |
|
inputs_dict = {"pixel_values": pixel_values} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class DeiTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
""" |
|
Here we also overwrite some of the tests of test_modeling_common.py, as DeiT does not use input_ids, inputs_embeds, |
|
attention_mask and seq_length. |
|
""" |
|
|
|
all_model_classes = ( |
|
( |
|
DeiTModel, |
|
DeiTForImageClassification, |
|
DeiTForImageClassificationWithTeacher, |
|
DeiTForMaskedImageModeling, |
|
) |
|
if is_torch_available() |
|
else () |
|
) |
|
pipeline_model_mapping = ( |
|
{ |
|
"feature-extraction": DeiTModel, |
|
"image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), |
|
} |
|
if is_torch_available() |
|
else {} |
|
) |
|
|
|
test_pruning = False |
|
test_resize_embeddings = False |
|
test_head_masking = False |
|
|
|
def setUp(self): |
|
self.model_tester = DeiTModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=DeiTConfig, has_text_modality=False, hidden_size=37) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
@unittest.skip(reason="DeiT does not use inputs_embeds") |
|
def test_inputs_embeds(self): |
|
pass |
|
|
|
def test_model_common_attributes(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) |
|
x = model.get_output_embeddings() |
|
self.assertTrue(x is None or isinstance(x, nn.Linear)) |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.forward) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
|
|
expected_arg_names = ["pixel_values"] |
|
self.assertListEqual(arg_names[:1], expected_arg_names) |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_for_masked_image_modeling(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs) |
|
|
|
def test_for_image_classification(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) |
|
|
|
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): |
|
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) |
|
|
|
if return_labels: |
|
if model_class.__name__ == "DeiTForImageClassificationWithTeacher": |
|
del inputs_dict["labels"] |
|
|
|
return inputs_dict |
|
|
|
def test_training(self): |
|
if not self.model_tester.is_training: |
|
return |
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
config.return_dict = True |
|
|
|
for model_class in self.all_model_classes: |
|
|
|
if ( |
|
model_class in get_values(MODEL_MAPPING) |
|
or model_class.__name__ == "DeiTForImageClassificationWithTeacher" |
|
): |
|
continue |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.train() |
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
loss = model(**inputs).loss |
|
loss.backward() |
|
|
|
def test_training_gradient_checkpointing(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
if not self.model_tester.is_training: |
|
return |
|
|
|
config.use_cache = False |
|
config.return_dict = True |
|
|
|
for model_class in self.all_model_classes: |
|
if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing: |
|
continue |
|
|
|
if model_class.__name__ == "DeiTForImageClassificationWithTeacher": |
|
continue |
|
model = model_class(config) |
|
model.gradient_checkpointing_enable() |
|
model.to(torch_device) |
|
model.train() |
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
loss = model(**inputs).loss |
|
loss.backward() |
|
|
|
def test_problem_types(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
problem_types = [ |
|
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, |
|
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, |
|
{"title": "regression", "num_labels": 1, "dtype": torch.float}, |
|
] |
|
|
|
for model_class in self.all_model_classes: |
|
if ( |
|
model_class |
|
not in [ |
|
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING), |
|
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING), |
|
] |
|
or model_class.__name__ == "DeiTForImageClassificationWithTeacher" |
|
): |
|
continue |
|
|
|
for problem_type in problem_types: |
|
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"): |
|
config.problem_type = problem_type["title"] |
|
config.num_labels = problem_type["num_labels"] |
|
|
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.train() |
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) |
|
|
|
if problem_type["num_labels"] > 1: |
|
inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"]) |
|
|
|
inputs["labels"] = inputs["labels"].to(problem_type["dtype"]) |
|
|
|
|
|
|
|
|
|
|
|
with warnings.catch_warnings(record=True) as warning_list: |
|
loss = model(**inputs).loss |
|
for w in warning_list: |
|
if "Using a target size that is different to the input size" in str(w.message): |
|
raise ValueError( |
|
f"Something is going wrong in the regression problem: intercepted {w.message}" |
|
) |
|
|
|
loss.backward() |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
model = DeiTModel.from_pretrained(model_name) |
|
self.assertIsNotNone(model) |
|
|
|
|
|
|
|
def prepare_img(): |
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") |
|
return image |
|
|
|
|
|
@require_torch |
|
@require_vision |
|
class DeiTModelIntegrationTest(unittest.TestCase): |
|
@cached_property |
|
def default_feature_extractor(self): |
|
return ( |
|
DeiTFeatureExtractor.from_pretrained("facebook/deit-base-distilled-patch16-224") |
|
if is_vision_available() |
|
else None |
|
) |
|
|
|
@slow |
|
def test_inference_image_classification_head(self): |
|
model = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224").to( |
|
torch_device |
|
) |
|
|
|
feature_extractor = self.default_feature_extractor |
|
image = prepare_img() |
|
inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
|
|
expected_shape = torch.Size((1, 1000)) |
|
self.assertEqual(outputs.logits.shape, expected_shape) |
|
|
|
expected_slice = torch.tensor([-1.0266, 0.1912, -1.2861]).to(torch_device) |
|
|
|
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) |
|
|
|
@slow |
|
@require_accelerate |
|
@require_torch_gpu |
|
def test_inference_fp16(self): |
|
r""" |
|
A small test to make sure that inference work in half precision without any problem. |
|
""" |
|
model = DeiTModel.from_pretrained( |
|
"facebook/deit-base-distilled-patch16-224", torch_dtype=torch.float16, device_map="auto" |
|
) |
|
feature_extractor = self.default_feature_extractor |
|
|
|
image = prepare_img() |
|
inputs = feature_extractor(images=image, return_tensors="pt") |
|
pixel_values = inputs.pixel_values.to(torch_device) |
|
|
|
|
|
with torch.no_grad(): |
|
_ = model(pixel_values) |
|
|