|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
from seq2seq_trainer import Seq2SeqTrainer |
|
from seq2seq_training_args import Seq2SeqTrainingArguments |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForSeq2SeqLM, |
|
AutoTokenizer, |
|
HfArgumentParser, |
|
MBartTokenizer, |
|
MBartTokenizerFast, |
|
set_seed, |
|
) |
|
from transformers.trainer_utils import EvaluationStrategy, is_main_process |
|
from transformers.training_args import ParallelMode |
|
from utils import ( |
|
Seq2SeqDataCollator, |
|
Seq2SeqDataset, |
|
assert_all_frozen, |
|
build_compute_metrics_fn, |
|
check_output_dir, |
|
freeze_embeds, |
|
freeze_params, |
|
lmap, |
|
save_json, |
|
use_task_specific_params, |
|
write_txt_file, |
|
) |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."}) |
|
freeze_embeds: bool = field(default=False, metadata={"help": "Whether to freeze the embeddings."}) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
data_dir: str = field( |
|
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} |
|
) |
|
task: Optional[str] = field( |
|
default="summarization", |
|
metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"}, |
|
) |
|
max_source_length: Optional[int] = field( |
|
default=1024, |
|
metadata={ |
|
"help": ( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
max_target_length: Optional[int] = field( |
|
default=128, |
|
metadata={ |
|
"help": ( |
|
"The maximum total sequence length for target text after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
val_max_target_length: Optional[int] = field( |
|
default=142, |
|
metadata={ |
|
"help": ( |
|
"The maximum total sequence length for validation target text after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded. " |
|
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " |
|
"during ``evaluate`` and ``predict``." |
|
) |
|
}, |
|
) |
|
test_max_target_length: Optional[int] = field( |
|
default=142, |
|
metadata={ |
|
"help": ( |
|
"The maximum total sequence length for test target text after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
) |
|
}, |
|
) |
|
n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."}) |
|
n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."}) |
|
n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."}) |
|
src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."}) |
|
tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."}) |
|
eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."}) |
|
ignore_pad_token_for_loss: bool = field( |
|
default=True, |
|
metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."}, |
|
) |
|
|
|
|
|
def handle_metrics(split, metrics, output_dir): |
|
""" |
|
Log and save metrics |
|
|
|
Args: |
|
- split: one of train, val, test |
|
- metrics: metrics dict |
|
- output_dir: where to save the metrics |
|
""" |
|
|
|
logger.info(f"***** {split} metrics *****") |
|
for key in sorted(metrics.keys()): |
|
logger.info(f" {key} = {metrics[key]}") |
|
save_json(metrics, os.path.join(output_dir, f"{split}_results.json")) |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) |
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
check_output_dir(training_args) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, |
|
) |
|
logger.warning( |
|
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", |
|
training_args.local_rank, |
|
training_args.device, |
|
training_args.n_gpu, |
|
bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED), |
|
training_args.fp16, |
|
) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
if is_main_process(training_args.local_rank): |
|
transformers.utils.logging.set_verbosity_info() |
|
logger.info("Training/evaluation parameters %s", training_args) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config = AutoConfig.from_pretrained( |
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
) |
|
|
|
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") |
|
for p in extra_model_params: |
|
if getattr(training_args, p, None): |
|
assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" |
|
setattr(config, p, getattr(training_args, p)) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
) |
|
model = AutoModelForSeq2SeqLM.from_pretrained( |
|
model_args.model_name_or_path, |
|
from_tf=".ckpt" in model_args.model_name_or_path, |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
) |
|
|
|
|
|
use_task_specific_params(model, data_args.task) |
|
|
|
|
|
if data_args.eval_beams is None: |
|
data_args.eval_beams = model.config.num_beams |
|
|
|
|
|
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): |
|
assert ( |
|
data_args.tgt_lang is not None and data_args.src_lang is not None |
|
), "mBart requires --tgt_lang and --src_lang" |
|
if isinstance(tokenizer, MBartTokenizer): |
|
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang] |
|
else: |
|
model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.tgt_lang) |
|
|
|
if model_args.freeze_embeds: |
|
freeze_embeds(model) |
|
if model_args.freeze_encoder: |
|
freeze_params(model.get_encoder()) |
|
assert_all_frozen(model.get_encoder()) |
|
|
|
dataset_class = Seq2SeqDataset |
|
|
|
|
|
train_dataset = ( |
|
dataset_class( |
|
tokenizer, |
|
type_path="train", |
|
data_dir=data_args.data_dir, |
|
n_obs=data_args.n_train, |
|
max_target_length=data_args.max_target_length, |
|
max_source_length=data_args.max_source_length, |
|
prefix=model.config.prefix or "", |
|
) |
|
if training_args.do_train |
|
else None |
|
) |
|
eval_dataset = ( |
|
dataset_class( |
|
tokenizer, |
|
type_path="val", |
|
data_dir=data_args.data_dir, |
|
n_obs=data_args.n_val, |
|
max_target_length=data_args.val_max_target_length, |
|
max_source_length=data_args.max_source_length, |
|
prefix=model.config.prefix or "", |
|
) |
|
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO |
|
else None |
|
) |
|
test_dataset = ( |
|
dataset_class( |
|
tokenizer, |
|
type_path="test", |
|
data_dir=data_args.data_dir, |
|
n_obs=data_args.n_test, |
|
max_target_length=data_args.test_max_target_length, |
|
max_source_length=data_args.max_source_length, |
|
prefix=model.config.prefix or "", |
|
) |
|
if training_args.do_predict |
|
else None |
|
) |
|
|
|
|
|
compute_metrics_fn = ( |
|
build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None |
|
) |
|
trainer = Seq2SeqTrainer( |
|
model=model, |
|
args=training_args, |
|
data_args=data_args, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
data_collator=Seq2SeqDataCollator( |
|
tokenizer, data_args, model.config.decoder_start_token_id, training_args.tpu_num_cores |
|
), |
|
compute_metrics=compute_metrics_fn, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
all_metrics = {} |
|
|
|
if training_args.do_train: |
|
logger.info("*** Train ***") |
|
|
|
train_result = trainer.train( |
|
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None |
|
) |
|
metrics = train_result.metrics |
|
metrics["train_n_objs"] = data_args.n_train |
|
|
|
trainer.save_model() |
|
|
|
if trainer.is_world_process_zero(): |
|
handle_metrics("train", metrics, training_args.output_dir) |
|
all_metrics.update(metrics) |
|
|
|
|
|
trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json")) |
|
|
|
|
|
|
|
tokenizer.save_pretrained(training_args.output_dir) |
|
|
|
|
|
if training_args.do_eval: |
|
logger.info("*** Evaluate ***") |
|
|
|
metrics = trainer.evaluate(metric_key_prefix="val") |
|
metrics["val_n_objs"] = data_args.n_val |
|
metrics["val_loss"] = round(metrics["val_loss"], 4) |
|
|
|
if trainer.is_world_process_zero(): |
|
handle_metrics("val", metrics, training_args.output_dir) |
|
all_metrics.update(metrics) |
|
|
|
if training_args.do_predict: |
|
logger.info("*** Predict ***") |
|
|
|
test_output = trainer.predict(test_dataset=test_dataset, metric_key_prefix="test") |
|
metrics = test_output.metrics |
|
metrics["test_n_objs"] = data_args.n_test |
|
|
|
if trainer.is_world_process_zero(): |
|
metrics["test_loss"] = round(metrics["test_loss"], 4) |
|
handle_metrics("test", metrics, training_args.output_dir) |
|
all_metrics.update(metrics) |
|
|
|
if training_args.predict_with_generate: |
|
test_preds = tokenizer.batch_decode( |
|
test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True |
|
) |
|
test_preds = lmap(str.strip, test_preds) |
|
write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt")) |
|
|
|
if trainer.is_world_process_zero(): |
|
save_json(all_metrics, os.path.join(training_args.output_dir, "all_results.json")) |
|
|
|
return all_metrics |
|
|
|
|
|
def _mp_fn(index): |
|
|
|
main() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|