|
import argparse |
|
import glob |
|
import logging |
|
import os |
|
from argparse import Namespace |
|
from importlib import import_module |
|
|
|
import numpy as np |
|
import torch |
|
from lightning_base import BaseTransformer, add_generic_args, generic_train |
|
from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score |
|
from torch.nn import CrossEntropyLoss |
|
from torch.utils.data import DataLoader, TensorDataset |
|
from utils_ner import TokenClassificationTask |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class NERTransformer(BaseTransformer): |
|
""" |
|
A training module for NER. See BaseTransformer for the core options. |
|
""" |
|
|
|
mode = "token-classification" |
|
|
|
def __init__(self, hparams): |
|
if type(hparams) == dict: |
|
hparams = Namespace(**hparams) |
|
module = import_module("tasks") |
|
try: |
|
token_classification_task_clazz = getattr(module, hparams.task_type) |
|
self.token_classification_task: TokenClassificationTask = token_classification_task_clazz() |
|
except AttributeError: |
|
raise ValueError( |
|
f"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " |
|
f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" |
|
) |
|
self.labels = self.token_classification_task.get_labels(hparams.labels) |
|
self.pad_token_label_id = CrossEntropyLoss().ignore_index |
|
super().__init__(hparams, len(self.labels), self.mode) |
|
|
|
def forward(self, **inputs): |
|
return self.model(**inputs) |
|
|
|
def training_step(self, batch, batch_num): |
|
"Compute loss and log." |
|
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} |
|
if self.config.model_type != "distilbert": |
|
inputs["token_type_ids"] = ( |
|
batch[2] if self.config.model_type in ["bert", "xlnet"] else None |
|
) |
|
|
|
outputs = self(**inputs) |
|
loss = outputs[0] |
|
|
|
return {"loss": loss} |
|
|
|
def prepare_data(self): |
|
"Called to initialize data. Use the call to construct features" |
|
args = self.hparams |
|
for mode in ["train", "dev", "test"]: |
|
cached_features_file = self._feature_file(mode) |
|
if os.path.exists(cached_features_file) and not args.overwrite_cache: |
|
logger.info("Loading features from cached file %s", cached_features_file) |
|
features = torch.load(cached_features_file) |
|
else: |
|
logger.info("Creating features from dataset file at %s", args.data_dir) |
|
examples = self.token_classification_task.read_examples_from_file(args.data_dir, mode) |
|
features = self.token_classification_task.convert_examples_to_features( |
|
examples, |
|
self.labels, |
|
args.max_seq_length, |
|
self.tokenizer, |
|
cls_token_at_end=bool(self.config.model_type in ["xlnet"]), |
|
cls_token=self.tokenizer.cls_token, |
|
cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0, |
|
sep_token=self.tokenizer.sep_token, |
|
sep_token_extra=False, |
|
pad_on_left=bool(self.config.model_type in ["xlnet"]), |
|
pad_token=self.tokenizer.pad_token_id, |
|
pad_token_segment_id=self.tokenizer.pad_token_type_id, |
|
pad_token_label_id=self.pad_token_label_id, |
|
) |
|
logger.info("Saving features into cached file %s", cached_features_file) |
|
torch.save(features, cached_features_file) |
|
|
|
def get_dataloader(self, mode: int, batch_size: int, shuffle: bool = False) -> DataLoader: |
|
"Load datasets. Called after prepare data." |
|
cached_features_file = self._feature_file(mode) |
|
logger.info("Loading features from cached file %s", cached_features_file) |
|
features = torch.load(cached_features_file) |
|
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) |
|
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) |
|
if features[0].token_type_ids is not None: |
|
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) |
|
else: |
|
all_token_type_ids = torch.tensor([0 for f in features], dtype=torch.long) |
|
|
|
all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long) |
|
return DataLoader( |
|
TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_label_ids), batch_size=batch_size |
|
) |
|
|
|
def validation_step(self, batch, batch_nb): |
|
"""Compute validation""" "" |
|
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} |
|
if self.config.model_type != "distilbert": |
|
inputs["token_type_ids"] = ( |
|
batch[2] if self.config.model_type in ["bert", "xlnet"] else None |
|
) |
|
outputs = self(**inputs) |
|
tmp_eval_loss, logits = outputs[:2] |
|
preds = logits.detach().cpu().numpy() |
|
out_label_ids = inputs["labels"].detach().cpu().numpy() |
|
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} |
|
|
|
def _eval_end(self, outputs): |
|
"Evaluation called for both Val and Test" |
|
val_loss_mean = torch.stack([x["val_loss"] for x in outputs]).mean() |
|
preds = np.concatenate([x["pred"] for x in outputs], axis=0) |
|
preds = np.argmax(preds, axis=2) |
|
out_label_ids = np.concatenate([x["target"] for x in outputs], axis=0) |
|
|
|
label_map = dict(enumerate(self.labels)) |
|
out_label_list = [[] for _ in range(out_label_ids.shape[0])] |
|
preds_list = [[] for _ in range(out_label_ids.shape[0])] |
|
|
|
for i in range(out_label_ids.shape[0]): |
|
for j in range(out_label_ids.shape[1]): |
|
if out_label_ids[i, j] != self.pad_token_label_id: |
|
out_label_list[i].append(label_map[out_label_ids[i][j]]) |
|
preds_list[i].append(label_map[preds[i][j]]) |
|
|
|
results = { |
|
"val_loss": val_loss_mean, |
|
"accuracy_score": accuracy_score(out_label_list, preds_list), |
|
"precision": precision_score(out_label_list, preds_list), |
|
"recall": recall_score(out_label_list, preds_list), |
|
"f1": f1_score(out_label_list, preds_list), |
|
} |
|
|
|
ret = dict(results.items()) |
|
ret["log"] = results |
|
return ret, preds_list, out_label_list |
|
|
|
def validation_epoch_end(self, outputs): |
|
|
|
ret, preds, targets = self._eval_end(outputs) |
|
logs = ret["log"] |
|
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} |
|
|
|
def test_epoch_end(self, outputs): |
|
|
|
ret, predictions, targets = self._eval_end(outputs) |
|
|
|
|
|
|
|
|
|
logs = ret["log"] |
|
|
|
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} |
|
|
|
@staticmethod |
|
def add_model_specific_args(parser, root_dir): |
|
|
|
BaseTransformer.add_model_specific_args(parser, root_dir) |
|
parser.add_argument( |
|
"--task_type", default="NER", type=str, help="Task type to fine tune in training (e.g. NER, POS, etc)" |
|
) |
|
parser.add_argument( |
|
"--max_seq_length", |
|
default=128, |
|
type=int, |
|
help=( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--labels", |
|
default="", |
|
type=str, |
|
help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.", |
|
) |
|
parser.add_argument( |
|
"--gpus", |
|
default=0, |
|
type=int, |
|
help="The number of GPUs allocated for this, it is by default 0 meaning none", |
|
) |
|
|
|
parser.add_argument( |
|
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" |
|
) |
|
|
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
add_generic_args(parser, os.getcwd()) |
|
parser = NERTransformer.add_model_specific_args(parser, os.getcwd()) |
|
args = parser.parse_args() |
|
model = NERTransformer(args) |
|
trainer = generic_train(model, args) |
|
|
|
if args.do_predict: |
|
|
|
|
|
|
|
|
|
checkpoints = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) |
|
model = model.load_from_checkpoint(checkpoints[-1]) |
|
trainer.test(model) |
|
|