|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import json |
|
import logging |
|
import os |
|
import sys |
|
from unittest.mock import patch |
|
|
|
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow |
|
|
|
|
|
SRC_DIRS = [ |
|
os.path.join(os.path.dirname(__file__), dirname) |
|
for dirname in [ |
|
"text-classification", |
|
"language-modeling", |
|
"summarization", |
|
"token-classification", |
|
"question-answering", |
|
] |
|
] |
|
sys.path.extend(SRC_DIRS) |
|
|
|
|
|
if SRC_DIRS is not None: |
|
import run_clm_flax |
|
import run_flax_glue |
|
import run_flax_ner |
|
import run_mlm_flax |
|
import run_qa |
|
import run_summarization_flax |
|
import run_t5_mlm_flax |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
|
|
logger = logging.getLogger() |
|
|
|
|
|
def get_setup_file(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("-f") |
|
args = parser.parse_args() |
|
return args.f |
|
|
|
|
|
def get_results(output_dir, split="eval"): |
|
path = os.path.join(output_dir, f"{split}_results.json") |
|
if os.path.exists(path): |
|
with open(path, "r") as f: |
|
return json.load(f) |
|
raise ValueError(f"can't find {path}") |
|
|
|
|
|
stream_handler = logging.StreamHandler(sys.stdout) |
|
logger.addHandler(stream_handler) |
|
|
|
|
|
class ExamplesTests(TestCasePlus): |
|
def test_run_glue(self): |
|
tmp_dir = self.get_auto_remove_tmp_dir() |
|
testargs = f""" |
|
run_glue.py |
|
--model_name_or_path distilbert-base-uncased |
|
--output_dir {tmp_dir} |
|
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv |
|
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv |
|
--per_device_train_batch_size=2 |
|
--per_device_eval_batch_size=1 |
|
--learning_rate=1e-4 |
|
--eval_steps=2 |
|
--warmup_steps=2 |
|
--seed=42 |
|
--max_seq_length=128 |
|
""".split() |
|
|
|
with patch.object(sys, "argv", testargs): |
|
run_flax_glue.main() |
|
result = get_results(tmp_dir) |
|
self.assertGreaterEqual(result["eval_accuracy"], 0.75) |
|
|
|
@slow |
|
def test_run_clm(self): |
|
tmp_dir = self.get_auto_remove_tmp_dir() |
|
testargs = f""" |
|
run_clm_flax.py |
|
--model_name_or_path distilgpt2 |
|
--train_file ./tests/fixtures/sample_text.txt |
|
--validation_file ./tests/fixtures/sample_text.txt |
|
--do_train |
|
--do_eval |
|
--block_size 128 |
|
--per_device_train_batch_size 4 |
|
--per_device_eval_batch_size 4 |
|
--num_train_epochs 2 |
|
--logging_steps 2 --eval_steps 2 |
|
--output_dir {tmp_dir} |
|
--overwrite_output_dir |
|
""".split() |
|
|
|
with patch.object(sys, "argv", testargs): |
|
run_clm_flax.main() |
|
result = get_results(tmp_dir) |
|
self.assertLess(result["eval_perplexity"], 100) |
|
|
|
@slow |
|
def test_run_summarization(self): |
|
tmp_dir = self.get_auto_remove_tmp_dir() |
|
testargs = f""" |
|
run_summarization.py |
|
--model_name_or_path t5-small |
|
--train_file tests/fixtures/tests_samples/xsum/sample.json |
|
--validation_file tests/fixtures/tests_samples/xsum/sample.json |
|
--test_file tests/fixtures/tests_samples/xsum/sample.json |
|
--output_dir {tmp_dir} |
|
--overwrite_output_dir |
|
--num_train_epochs=3 |
|
--warmup_steps=8 |
|
--do_train |
|
--do_eval |
|
--do_predict |
|
--learning_rate=2e-4 |
|
--per_device_train_batch_size=2 |
|
--per_device_eval_batch_size=1 |
|
--predict_with_generate |
|
""".split() |
|
|
|
with patch.object(sys, "argv", testargs): |
|
run_summarization_flax.main() |
|
result = get_results(tmp_dir, split="test") |
|
self.assertGreaterEqual(result["test_rouge1"], 10) |
|
self.assertGreaterEqual(result["test_rouge2"], 2) |
|
self.assertGreaterEqual(result["test_rougeL"], 7) |
|
self.assertGreaterEqual(result["test_rougeLsum"], 7) |
|
|
|
@slow |
|
def test_run_mlm(self): |
|
tmp_dir = self.get_auto_remove_tmp_dir() |
|
testargs = f""" |
|
run_mlm.py |
|
--model_name_or_path distilroberta-base |
|
--train_file ./tests/fixtures/sample_text.txt |
|
--validation_file ./tests/fixtures/sample_text.txt |
|
--output_dir {tmp_dir} |
|
--overwrite_output_dir |
|
--max_seq_length 128 |
|
--per_device_train_batch_size 4 |
|
--per_device_eval_batch_size 4 |
|
--logging_steps 2 --eval_steps 2 |
|
--do_train |
|
--do_eval |
|
--num_train_epochs=1 |
|
""".split() |
|
|
|
with patch.object(sys, "argv", testargs): |
|
run_mlm_flax.main() |
|
result = get_results(tmp_dir) |
|
self.assertLess(result["eval_perplexity"], 42) |
|
|
|
@slow |
|
def test_run_t5_mlm(self): |
|
tmp_dir = self.get_auto_remove_tmp_dir() |
|
testargs = f""" |
|
run_t5_mlm_flax.py |
|
--model_name_or_path t5-small |
|
--train_file ./tests/fixtures/sample_text.txt |
|
--validation_file ./tests/fixtures/sample_text.txt |
|
--do_train |
|
--do_eval |
|
--max_seq_length 128 |
|
--per_device_train_batch_size 4 |
|
--per_device_eval_batch_size 4 |
|
--num_train_epochs 2 |
|
--logging_steps 2 --eval_steps 2 |
|
--output_dir {tmp_dir} |
|
--overwrite_output_dir |
|
""".split() |
|
|
|
with patch.object(sys, "argv", testargs): |
|
run_t5_mlm_flax.main() |
|
result = get_results(tmp_dir) |
|
self.assertGreaterEqual(result["eval_accuracy"], 0.42) |
|
|
|
@slow |
|
def test_run_ner(self): |
|
|
|
epochs = 7 if get_gpu_count() > 1 else 2 |
|
|
|
tmp_dir = self.get_auto_remove_tmp_dir() |
|
testargs = f""" |
|
run_flax_ner.py |
|
--model_name_or_path bert-base-uncased |
|
--train_file tests/fixtures/tests_samples/conll/sample.json |
|
--validation_file tests/fixtures/tests_samples/conll/sample.json |
|
--output_dir {tmp_dir} |
|
--overwrite_output_dir |
|
--do_train |
|
--do_eval |
|
--warmup_steps=2 |
|
--learning_rate=2e-4 |
|
--logging_steps 2 --eval_steps 2 |
|
--per_device_train_batch_size=2 |
|
--per_device_eval_batch_size=2 |
|
--num_train_epochs={epochs} |
|
--seed 7 |
|
""".split() |
|
|
|
with patch.object(sys, "argv", testargs): |
|
run_flax_ner.main() |
|
result = get_results(tmp_dir) |
|
self.assertGreaterEqual(result["eval_accuracy"], 0.75) |
|
self.assertGreaterEqual(result["eval_f1"], 0.3) |
|
|
|
@slow |
|
def test_run_qa(self): |
|
tmp_dir = self.get_auto_remove_tmp_dir() |
|
testargs = f""" |
|
run_qa.py |
|
--model_name_or_path bert-base-uncased |
|
--version_2_with_negative |
|
--train_file tests/fixtures/tests_samples/SQUAD/sample.json |
|
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json |
|
--output_dir {tmp_dir} |
|
--overwrite_output_dir |
|
--num_train_epochs=3 |
|
--warmup_steps=2 |
|
--do_train |
|
--do_eval |
|
--logging_steps 2 --eval_steps 2 |
|
--learning_rate=2e-4 |
|
--per_device_train_batch_size=2 |
|
--per_device_eval_batch_size=1 |
|
""".split() |
|
|
|
with patch.object(sys, "argv", testargs): |
|
run_qa.main() |
|
result = get_results(tmp_dir) |
|
self.assertGreaterEqual(result["eval_f1"], 30) |
|
self.assertGreaterEqual(result["eval_exact"], 30) |
|
|