create_alien_on_mars / simulation.py
KJMAN678
コードの修正, requirements.txt にmatplotlibを追加
3cc63f3
raw
history blame
13.1 kB
import random
from typing import Tuple, Dict, List
import matplotlib.pyplot as plt
import numpy as np
class Individual:
'''各個体のクラス
args: 個体の持つ遺伝子情報(np.array)'''
def __init__(self, genom_size):
self.body_hair = np.random.randint(0, 2, genom_size).tolist()
self.body_size = np.random.randint(0, 2, genom_size).tolist()
self.herd_num = np.random.randint(0, 2, genom_size).tolist()
self.eating = np.random.randint(0, 2, genom_size).tolist()
self.body_color = np.random.randint(0, 2, genom_size).tolist()
self.ferocity = np.random.randint(0, 2, genom_size).tolist()
self.all_genoms = {
"body_hair": self.body_hair,
"body_size": self.body_size,
"herd_num": self.herd_num,
"eating": self.eating,
"body_color": self.body_color,
"ferocity": self.ferocity,
}
self.fitness = {
"body_hair": 0,
"body_size": 0,
"herd_num": 0,
"eating": 0,
"body_color": 0,
"ferocity": 0,
} # 個体の適応度(set_fitness関数で設定)
self.set_fitness()
self.set_all_genoms()
def set_fitness(self):
'''個体に対する目的関数(OneMax)の値をself.fitnessに代入'''
self.fitness = {key: sum(value) for key, value in self.all_genoms.items()}
def get_fitness(self):
'''self.fitnessを出力'''
return self.fitness
def set_all_genoms(self):
'''self.all_parameterの中身をself.body_hair以下に代入する'''
self.body_hair = self.all_genoms["body_hair"]
self.body_size = self.all_genoms["body_size"]
self.herd_num = self.all_genoms["herd_num"]
self.eating = self.all_genoms["eating"]
self.body_color = self.all_genoms["body_color"]
self.ferocity = self.all_genoms["ferocity"]
def mutate(self):
'''遺伝子の突然変異'''
for i, (parameter, genom) in enumerate(self.all_genoms.items()):
tmp = genom.copy()
i = np.random.randint(0, len(genom) - 1)
tmp[i] = float(not genom[i])
self.all_genoms[parameter] = tmp
self.set_all_genoms()
self.set_fitness()
def random_temperature() -> float:
"""
火星の気温20℃〜-140℃の範囲でrandomにfloat値を返す
args
times (int): 試行回数
return
float: ランダムに作成した 火星の気温
"""
temperature = random.uniform(-140, 30)
return temperature
def random_food_volume(food_volume):
"""
餌の量
args
times (int): 試行回数
return
float: ランダムに作成した 火星の気温
"""
food_volume += random.randint(-100, 100)
if food_volume < 0:
food_volume = 0
return food_volume
def create_generation(POPURATIONS, GENOMS_SIZE):
'''初期世代の作成
return: 個体クラスのリスト'''
generation = {}
for i in range(POPURATIONS):
individual = Individual(GENOMS_SIZE)
generation[individual] = 0
return generation
def select_tournament(
generation_: List[Tuple[Individual, int]], TOUNAMENT_NUM
) -> List[Tuple[Individual, int]]:
"""
選択の関数(トーナメント方式)。すべてのgenerationから3つ選び、強い(scoreが最も高い)genomを1つ選ぶ。これをgenerationのサイズだけ繰り返す
args
generation List[Tuple[Individual, int]]: Individual で作成したゲノム情報 [["body_hair"], ["body_size"], ["herd_num"]] , 評価score
return
List[Tuple[Individual, int]] : トーナメント戦で生き残ったゲノム1つ
"""
selected_genoms = []
for i in range(len(generation_)):
# 最もスコアのよいgeneration を採用
tournament = random.sample(generation_, TOUNAMENT_NUM)
max_genom = max(tournament, key=lambda x: x[1])
selected_genoms.append(max_genom)
return selected_genoms
def cross_two_point_copy(child1, child2):
'''二点交叉'''
new_child1 = {}
new_child2 = {}
for parameter_genom_1, parameter_genom_2 in zip(child1[0].all_genoms.items(), child2[0].all_genoms.items()):
size = len(parameter_genom_1[1])
tmp_child_parameter1 = parameter_genom_1[0]
tmp_child_parameter2 = parameter_genom_2[0]
tmp_child_genom1 = parameter_genom_1[1].copy()
tmp_child_genom2 = parameter_genom_2[1].copy()
cxpoint1 = np.random.randint(1, size)
cxpoint2 = np.random.randint(1, size - 1)
if cxpoint2 >= cxpoint1:
cxpoint2 += 1
else:
cxpoint1, cxpoint2 = cxpoint2, cxpoint1
tmp_child_genom1[cxpoint1:cxpoint2], tmp_child_genom2[cxpoint1:cxpoint2] = tmp_child_genom2[cxpoint1:cxpoint2].copy(), tmp_child_genom1[cxpoint1:cxpoint2].copy()
child1[0].all_genoms[tmp_child_parameter1] = tmp_child_genom1
child2[0].all_genoms[tmp_child_parameter2] = tmp_child_genom2
child1[0].set_all_genoms()
child1[0].set_fitness()
child2[0].set_all_genoms()
child2[0].set_fitness()
return child1, child2
def crossover(selected, POPURATIONS, CROSSOVER_PB):
'''交叉の関数'''
children = []
if POPURATIONS % 2:
selected.append(selected[0])
for child1, child2 in zip(selected[::2], selected[1::2]):
if np.random.rand() < CROSSOVER_PB:
child1, child2 = cross_two_point_copy(child1, child2)
children.append(child1)
children.append(child2)
children = children[:POPURATIONS]
return children
def mutate(children, MUTATION_PB):
tmp_children = []
for child in children:
individual, score = child[0], child[1]
if np.random.rand() < MUTATION_PB:
individual.mutate()
tmp_children.append((individual, score))
return tmp_children
def reset_generation_score(generation_):
for i, (individual, score) in enumerate(generation_):
generation_[i] = (individual, 0)
return generation_
def scoring(generation_, temperature, food_volume):
MAX_NUM = 4 # fitness の最大値
THREASHOLD_TEMPRETURE = 10 # score の判定に用いる気温のしきい値
THREASHOLD_FOOD_VOLUME = 3000 # score の判定に用いる食料のしきい値
generation_ = reset_generation_score(generation_)
# scoring を実施
for i, (individual, score) in enumerate(generation_):
# 各パラメーターの特性値を探索
for parameter, fitness in individual.get_fitness().items():
# 気温が高い
if temperature > THREASHOLD_TEMPRETURE:
if parameter == "body_hair": # body_hair が小さいほうが有利、大きいほうが不利
score += MAX_NUM - fitness
elif parameter == "body_size": # body_size が小さいほうが有利、大きいほうが不利
score += MAX_NUM - fitness
elif parameter == "body_color": # body_color が暗い方が有利、明るいほうが不利
score += fitness
# 気温が低い
else:
if parameter == "body_hair": # body_hair が大きいほうが有利、小さいほうが不利
score += fitness
elif parameter == "body_size": # body_size が大きいほうが有利、小さいほうが不利
score += fitness
elif parameter == "body_color": # body_color が明るい方が有利、暗いほうが不利
score += MAX_NUM - fitness
# エサが多い
if food_volume > THREASHOLD_FOOD_VOLUME:
if parameter == "body_size": # body_size が大きいほうが有利、小さいほうが不利
score += fitness
elif parameter == "herd_num": # herd_num が大きいほうが有利、小さいほうが不利
score += fitness
elif parameter == "eating": # eating が大きい(肉食)ほうが有利、小さい(草食)ほうが不利
score += fitness
# エサが少ない
else:
if parameter == "body_size": # body_size が小さいほうが有利、大きいほうが不利
score += MAX_NUM - fitness
elif parameter == "herd_num": # herd_num が小さいほうが有利、大きいほうが不利
score += MAX_NUM - fitness
elif parameter == "eating": # eating が小さい(草食)ほうが有利、大さい(肉食)ほうが不利
score += MAX_NUM - fitness
# 強さ
if parameter == "body_size": # body_size が大きいほうが有利、小さい方が不利
score += fitness
elif parameter == "herd_num":
score += fitness
elif parameter == "ferocity": # ferocity が大きい(凶暴)ほうが有利、小さい(おとなしい)ほうが不利
score += fitness
# score を更新
generation_[i] = (individual, int(score))
return generation_
def ga_solve(generation, NUM_GENERATION, POPURATIONS, TOUNAMENT_NUM, CROSSOVER_PB, MUTATION_PB):
'''遺伝的アルゴリズムのソルバー
return: 最終世代の最高適応値の個体、最低適応値の個体'''
best = []
worst = []
temperature_transition = []
food_volume = 500
food_volume_transition = []
parameter_transiton = {
"body_size" : [],
"body_hair" : [],
"herd_num" : [],
"eating" : [],
"body_color" : [],
"ferocity" : [],
}
# --- Generation loop
print('Generation loop start.')
# Dict[Individual, int] から List[Tuple(individual, int)]へ変換
# Dict だと Key の重複ができないため
generation_ = [(individual, score) for individual, score in generation.items()]
for i in range(NUM_GENERATION):
temperature = random_temperature()
temperature_transition.append(temperature)
food_volume = random_food_volume(food_volume)
food_volume_transition.append(food_volume)
# スコアリング
generation_ = scoring(generation_, temperature, food_volume)
# --- Step1. Print fitness in the generation
best_individual_score = max(generation_, key=lambda x: x[1])
best.append(best_individual_score[0].fitness)
worst_individual_score = min(generation_, key=lambda x: x[1])
worst.append(worst_individual_score[0].fitness)
# print("Generation: " + str(i) \
# + ": Best fitness: " + str(best_individual_score[0].fitness) + "Best fitness score: " + str(best_individual_score[1]) \
# + ". Worst fitness: " + str(worst_individual_score[0].fitness) + "Worst fitness score: " + str(worst_individual_score[1])
# )
# --- Step2. Selection (Roulette)
selected_genoms = select_tournament(generation_, TOUNAMENT_NUM)
# --- Step3. Crossover (two_point_copy)
children = crossover(selected_genoms, POPURATIONS, CROSSOVER_PB)
# --- Step4. Mutation
generation_ = mutate(children, MUTATION_PB)
for parameter, genom in best_individual_score[0].all_genoms.items():
parameter_transiton[parameter].append(sum(genom))
best_individual_score[0].set_all_genoms()
best_individual_score[0].set_fitness()
print("Generation loop ended. The best individual: ")
print(best_individual_score[0].all_genoms)
plt.figure(figsize=(20, 5))
plt.title("temperature")
plt.plot(temperature_transition)
plt.ylabel("temperature Celsius")
plt.xlabel("generation")
plt.savefig("simlation_tempreture.png")
plt.figure(figsize=(20, 5))
plt.title("food volume")
plt.plot(food_volume_transition)
plt.ylim(0);
plt.ylabel("food volume")
plt.xlabel("generation")
plt.savefig("simlation_food_volume.png")
plt.figure(figsize=(20, 16))
for i, (parameter, transition) in enumerate(parameter_transiton.items()):
plt.subplot(6, 1, i+1)
plt.title(parameter)
plt.plot(transition, label=parameter)
plt.legend()
plt.ylim(0, 4)
plt.tight_layout()
plt.savefig("each_parameter_transition.png")
return best, worst
def get_word_for_image_generate(word_dict, best, index):
# アルゴリズムの結果に対応するwordを抽出
word_list = [word_dict[parameter][int(fitness)] for parameter, fitness in best[index].items()]
# 最終的な I/F 補足: スペース区切りの文字列 を渡す, 英語もありうる
word = " ".join(word_list)
return word