Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,9 @@
|
|
1 |
import spaces
|
2 |
import torch
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import yt_dlp as youtube_dl
|
6 |
-
from transformers import pipeline
|
7 |
-
from
|
8 |
-
|
9 |
import tempfile
|
10 |
import os
|
11 |
|
@@ -16,6 +14,7 @@ YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
|
16 |
|
17 |
device = 0 if torch.cuda.is_available() else "cpu"
|
18 |
|
|
|
19 |
pipe = pipeline(
|
20 |
task="automatic-speech-recognition",
|
21 |
model=MODEL_NAME,
|
@@ -23,125 +22,104 @@ pipe = pipeline(
|
|
23 |
device=device,
|
24 |
)
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
@spaces.GPU
|
28 |
def transcribe(inputs, task):
|
29 |
if inputs is None:
|
30 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
31 |
-
|
32 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
33 |
-
return
|
34 |
-
|
35 |
-
|
36 |
-
def _return_yt_html_embed(yt_url):
|
37 |
-
video_id = yt_url.split("?v=")[-1]
|
38 |
-
HTML_str = (
|
39 |
-
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
40 |
-
" </center>"
|
41 |
-
)
|
42 |
-
return HTML_str
|
43 |
|
|
|
44 |
def download_yt_audio(yt_url, filename):
|
45 |
info_loader = youtube_dl.YoutubeDL()
|
46 |
-
|
47 |
try:
|
48 |
info = info_loader.extract_info(yt_url, download=False)
|
49 |
except youtube_dl.utils.DownloadError as err:
|
50 |
raise gr.Error(str(err))
|
51 |
-
|
52 |
-
|
53 |
-
file_h_m_s = file_length.split(":")
|
54 |
-
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
55 |
-
|
56 |
-
if len(file_h_m_s) == 1:
|
57 |
-
file_h_m_s.insert(0, 0)
|
58 |
-
if len(file_h_m_s) == 2:
|
59 |
-
file_h_m_s.insert(0, 0)
|
60 |
-
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
61 |
-
|
62 |
if file_length_s > YT_LENGTH_LIMIT_S:
|
63 |
-
|
64 |
-
|
65 |
-
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
66 |
-
|
67 |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
68 |
-
|
69 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
70 |
-
|
71 |
-
ydl.download([yt_url])
|
72 |
-
except youtube_dl.utils.ExtractorError as err:
|
73 |
-
raise gr.Error(str(err))
|
74 |
|
|
|
75 |
@spaces.GPU
|
76 |
-
def yt_transcribe(yt_url, task
|
77 |
-
html_embed_str = _return_yt_html_embed(yt_url)
|
78 |
-
|
79 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
80 |
filepath = os.path.join(tmpdirname, "video.mp4")
|
81 |
download_yt_audio(yt_url, filepath)
|
82 |
with open(filepath, "rb") as f:
|
83 |
inputs = f.read()
|
84 |
-
|
85 |
-
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
86 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
87 |
-
|
88 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
|
|
89 |
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
92 |
|
|
|
93 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
94 |
|
95 |
mf_transcribe = gr.Interface(
|
96 |
fn=transcribe,
|
97 |
-
inputs=[
|
98 |
-
gr.Audio(sources="microphone", type="filepath"),
|
99 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
100 |
-
],
|
101 |
outputs="text",
|
102 |
title="Whisper Large V3 Turbo: Transcribe Audio",
|
103 |
-
description=
|
104 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
105 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
106 |
-
" of arbitrary length."
|
107 |
-
),
|
108 |
-
allow_flagging="never",
|
109 |
)
|
110 |
|
111 |
file_transcribe = gr.Interface(
|
112 |
fn=transcribe,
|
113 |
-
inputs=[
|
114 |
-
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
115 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
116 |
-
],
|
117 |
outputs="text",
|
118 |
-
title="Whisper Large V3: Transcribe Audio"
|
119 |
-
description=(
|
120 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
121 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
122 |
-
" of arbitrary length."
|
123 |
-
),
|
124 |
-
allow_flagging="never",
|
125 |
)
|
126 |
|
127 |
yt_transcribe = gr.Interface(
|
128 |
fn=yt_transcribe,
|
129 |
-
inputs=[
|
130 |
-
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
131 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
132 |
-
],
|
133 |
outputs=["html", "text"],
|
134 |
-
title="Whisper Large V3: Transcribe YouTube"
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
141 |
)
|
142 |
|
143 |
with demo:
|
144 |
-
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
145 |
|
146 |
demo.queue().launch(ssr_mode=False)
|
147 |
-
|
|
|
1 |
import spaces
|
2 |
import torch
|
|
|
3 |
import gradio as gr
|
4 |
import yt_dlp as youtube_dl
|
5 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
6 |
+
from threading import Thread
|
|
|
7 |
import tempfile
|
8 |
import os
|
9 |
|
|
|
14 |
|
15 |
device = 0 if torch.cuda.is_available() else "cpu"
|
16 |
|
17 |
+
# Initialize the transcription pipeline
|
18 |
pipe = pipeline(
|
19 |
task="automatic-speech-recognition",
|
20 |
model=MODEL_NAME,
|
|
|
22 |
device=device,
|
23 |
)
|
24 |
|
25 |
+
# Hugging Face Token for the LLM model
|
26 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # Make sure to set this in the environment variables
|
27 |
+
|
28 |
+
# Load tokenizer and model for SOAP note generation
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
30 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto")
|
31 |
+
|
32 |
+
# Prompt for SOAP note generation
|
33 |
+
sys_prompt = "You are a world class clinical assistant."
|
34 |
+
task_prompt = """
|
35 |
+
Convert the following transcribed conversation into a clinical SOAP note.
|
36 |
+
The text includes dialogue between a physician and a patient. Please clearly distinguish between the physician's and the patient's statements.
|
37 |
+
Extract and organize the information into the relevant sections of a SOAP note:
|
38 |
+
- Subjective (symptoms and patient statements),
|
39 |
+
- Objective (clinical findings and observations, these might be missing if the physician has not conducted a physical exam or has not verbally stated findings),
|
40 |
+
- Assessment (diagnosis or potential diagnoses, objectively provide a top 5 most likely diagnosis based on just the subjective findings, and use the objective findings if available),
|
41 |
+
- Plan (treatment and follow-up).
|
42 |
+
Ensure the note is concise, clear, and accurately reflects the conversation.
|
43 |
+
"""
|
44 |
+
|
45 |
+
# Function to transcribe audio inputs
|
46 |
@spaces.GPU
|
47 |
def transcribe(inputs, task):
|
48 |
if inputs is None:
|
49 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
|
|
50 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
51 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# Function to download audio from YouTube
|
54 |
def download_yt_audio(yt_url, filename):
|
55 |
info_loader = youtube_dl.YoutubeDL()
|
|
|
56 |
try:
|
57 |
info = info_loader.extract_info(yt_url, download=False)
|
58 |
except youtube_dl.utils.DownloadError as err:
|
59 |
raise gr.Error(str(err))
|
60 |
+
|
61 |
+
file_length_s = sum(x * int(t) for x, t in zip([3600, 60, 1], info["duration_string"].split(":")) if t.isdigit())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
if file_length_s > YT_LENGTH_LIMIT_S:
|
63 |
+
raise gr.Error(f"Video too long. Maximum allowed duration is {YT_LENGTH_LIMIT_S / 60} minutes.")
|
64 |
+
|
|
|
|
|
65 |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
|
|
66 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
67 |
+
ydl.download([yt_url])
|
|
|
|
|
|
|
68 |
|
69 |
+
# Function to transcribe YouTube audio
|
70 |
@spaces.GPU
|
71 |
+
def yt_transcribe(yt_url, task):
|
|
|
|
|
72 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
73 |
filepath = os.path.join(tmpdirname, "video.mp4")
|
74 |
download_yt_audio(yt_url, filepath)
|
75 |
with open(filepath, "rb") as f:
|
76 |
inputs = f.read()
|
77 |
+
inputs = pipe.feature_extractor.ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
|
|
78 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
|
|
79 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
80 |
+
return f'<iframe width="500" height="320" src="https://www.youtube.com/embed/{yt_url.split("?v=")[-1]}"> </iframe>', text
|
81 |
|
82 |
+
# Function to generate SOAP notes using LLM
|
83 |
+
def generate_soap(transcribed_text):
|
84 |
+
prompt = f"{sys_prompt}\n\n{task_prompt}\n{transcribed_text}"
|
85 |
+
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
86 |
+
outputs = model.generate(inputs, max_new_tokens=512)
|
87 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
88 |
|
89 |
+
# Gradio Interfaces for different inputs
|
90 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
91 |
|
92 |
mf_transcribe = gr.Interface(
|
93 |
fn=transcribe,
|
94 |
+
inputs=[gr.Audio(sources="microphone", type="filepath"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")],
|
|
|
|
|
|
|
95 |
outputs="text",
|
96 |
title="Whisper Large V3 Turbo: Transcribe Audio",
|
97 |
+
description="Transcribe long-form microphone or audio inputs."
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
|
100 |
file_transcribe = gr.Interface(
|
101 |
fn=transcribe,
|
102 |
+
inputs=[gr.Audio(sources="upload", type="filepath", label="Audio file"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")],
|
|
|
|
|
|
|
103 |
outputs="text",
|
104 |
+
title="Whisper Large V3: Transcribe Audio"
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
)
|
106 |
|
107 |
yt_transcribe = gr.Interface(
|
108 |
fn=yt_transcribe,
|
109 |
+
inputs=[gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")],
|
|
|
|
|
|
|
110 |
outputs=["html", "text"],
|
111 |
+
title="Whisper Large V3: Transcribe YouTube"
|
112 |
+
)
|
113 |
+
|
114 |
+
soap_note = gr.Interface(
|
115 |
+
fn=generate_soap,
|
116 |
+
inputs="text",
|
117 |
+
outputs="text",
|
118 |
+
title="Generate Clinical SOAP Note",
|
119 |
+
description="Convert transcribed conversation to a clinical SOAP note with structured sections (Subjective, Objective, Assessment, Plan)."
|
120 |
)
|
121 |
|
122 |
with demo:
|
123 |
+
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe, soap_note], ["Microphone", "Audio file", "YouTube", "SOAP Note"])
|
124 |
|
125 |
demo.queue().launch(ssr_mode=False)
|
|