|
import gradio as gr |
|
from transformers import ViltProcessor, ViltForQuestionAnswering |
|
from PIL import Image |
|
import torch |
|
|
|
|
|
processor = ViltProcessor.from_pretrained("MariaK/vilt_finetuned_200") |
|
model = ViltForQuestionAnswering.from_pretrained("MariaK/vilt_finetuned_200") |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
def predict(image, question): |
|
|
|
inputs = processor(image, question, return_tensors="pt").to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
logits = outputs.logits |
|
idx = logits.argmax(-1).item() |
|
predicted_answer = model.config.id2label[idx] |
|
return predicted_answer |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
gr.Image(type="pil"), |
|
gr.Textbox(lines=1, placeholder="Enter your question here..."), |
|
], |
|
outputs="text", |
|
title="Visual Question Answering with Fine-tuned Vilt", |
|
description="Upload an image and ask a question about it!", |
|
) |
|
|
|
|
|
iface.launch(share=True) |