Kohaku-Blueleaf
commited on
Commit
·
a1372fa
1
Parent(s):
cb688ac
init
Browse files- .gitignore +162 -0
- app.py +302 -0
- diff.py +120 -0
- meta.py +54 -0
- requirements.txt +3 -0
.gitignore
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
110 |
+
.pdm.toml
|
111 |
+
.pdm-python
|
112 |
+
.pdm-build/
|
113 |
+
|
114 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
115 |
+
__pypackages__/
|
116 |
+
|
117 |
+
# Celery stuff
|
118 |
+
celerybeat-schedule
|
119 |
+
celerybeat.pid
|
120 |
+
|
121 |
+
# SageMath parsed files
|
122 |
+
*.sage.py
|
123 |
+
|
124 |
+
# Environments
|
125 |
+
.env
|
126 |
+
.venv
|
127 |
+
env/
|
128 |
+
venv/
|
129 |
+
ENV/
|
130 |
+
env.bak/
|
131 |
+
venv.bak/
|
132 |
+
|
133 |
+
# Spyder project settings
|
134 |
+
.spyderproject
|
135 |
+
.spyproject
|
136 |
+
|
137 |
+
# Rope project settings
|
138 |
+
.ropeproject
|
139 |
+
|
140 |
+
# mkdocs documentation
|
141 |
+
/site
|
142 |
+
|
143 |
+
# mypy
|
144 |
+
.mypy_cache/
|
145 |
+
.dmypy.json
|
146 |
+
dmypy.json
|
147 |
+
|
148 |
+
# Pyre type checker
|
149 |
+
.pyre/
|
150 |
+
|
151 |
+
# pytype static type analyzer
|
152 |
+
.pytype/
|
153 |
+
|
154 |
+
# Cython debug symbols
|
155 |
+
cython_debug/
|
156 |
+
|
157 |
+
# PyCharm
|
158 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
159 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
160 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
161 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
162 |
+
#.idea/
|
app.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
import re
|
5 |
+
import random
|
6 |
+
from time import time
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from transformers import set_seed
|
10 |
+
if sys.platform == "win32":
|
11 |
+
#dev env in windows, @spaces.GPU will cause problem
|
12 |
+
def GPU(func):
|
13 |
+
return func
|
14 |
+
else:
|
15 |
+
from spaces import GPU
|
16 |
+
|
17 |
+
import kgen.models as models
|
18 |
+
import kgen.executor.titpop as titpop
|
19 |
+
from kgen.formatter import seperate_tags, apply_format
|
20 |
+
from kgen.generate import generate
|
21 |
+
|
22 |
+
from diff import load_model, encode_prompts
|
23 |
+
from meta import DEFAULT_NEGATIVE_PROMPT
|
24 |
+
|
25 |
+
|
26 |
+
sdxl_pipe = load_model()
|
27 |
+
|
28 |
+
models.load_model(
|
29 |
+
"KBlueLeaf/TITPOP-200M-dev",
|
30 |
+
device="cuda",
|
31 |
+
subfolder="dan-cc-coyo_epoch2",
|
32 |
+
)
|
33 |
+
generate(max_new_tokens=4)
|
34 |
+
|
35 |
+
|
36 |
+
DEFAULT_FORMAT = """<|special|>, <|characters|>, <|copyrights|>,
|
37 |
+
<|artist|>,
|
38 |
+
|
39 |
+
<|general|>,
|
40 |
+
|
41 |
+
<|extended|>.
|
42 |
+
|
43 |
+
<|quality|>, <|meta|>, <|rating|>
|
44 |
+
""".strip()
|
45 |
+
DEFAULT_TAGS = """
|
46 |
+
1girl,
|
47 |
+
ningen mame, ciloranko,
|
48 |
+
solo, dragon girl,
|
49 |
+
masterpiece, absurdres, safe, newest
|
50 |
+
""".strip()
|
51 |
+
DEFAULT_NL = """
|
52 |
+
An illustration of a girl
|
53 |
+
""".strip()
|
54 |
+
|
55 |
+
|
56 |
+
def format_time(timing):
|
57 |
+
total = timing["total"]
|
58 |
+
generate_pass = timing["generate_pass"]
|
59 |
+
|
60 |
+
result = ""
|
61 |
+
|
62 |
+
result += f"""
|
63 |
+
### Process Time
|
64 |
+
| Total | {total:5.2f} sec / {generate_pass:5} Passes | {generate_pass/total:7.2f} Passes Per Second|
|
65 |
+
|-|-|-|
|
66 |
+
"""
|
67 |
+
if "generated_tokens" in timing:
|
68 |
+
total_generated_tokens = timing["generated_tokens"]
|
69 |
+
total_input_tokens = timing["input_tokens"]
|
70 |
+
if "generated_tokens" in timing and "total_sampling" in timing:
|
71 |
+
sampling_time = timing["total_sampling"] / 1000
|
72 |
+
process_time = timing["prompt_process"] / 1000
|
73 |
+
model_time = timing["total_eval"] / 1000
|
74 |
+
|
75 |
+
result += f"""| Process | {process_time:5.2f} sec / {total_input_tokens:5} Tokens | {total_input_tokens/process_time:7.2f} Tokens Per Second|
|
76 |
+
| Sampling | {sampling_time:5.2f} sec / {total_generated_tokens:5} Tokens | {total_generated_tokens/sampling_time:7.2f} Tokens Per Second|
|
77 |
+
| Eval | {model_time:5.2f} sec / {total_generated_tokens:5} Tokens | {total_generated_tokens/model_time:7.2f} Tokens Per Second|
|
78 |
+
"""
|
79 |
+
|
80 |
+
if "generated_tokens" in timing:
|
81 |
+
result += f"""
|
82 |
+
### Processed Tokens:
|
83 |
+
* {total_input_tokens:} Input Tokens
|
84 |
+
* {total_generated_tokens:} Output Tokens
|
85 |
+
"""
|
86 |
+
return result
|
87 |
+
|
88 |
+
|
89 |
+
@GPU
|
90 |
+
@torch.no_grad()
|
91 |
+
def generate(
|
92 |
+
tags,
|
93 |
+
nl_prompt,
|
94 |
+
black_list,
|
95 |
+
temp,
|
96 |
+
target_length,
|
97 |
+
top_p,
|
98 |
+
min_p,
|
99 |
+
top_k,
|
100 |
+
seed,
|
101 |
+
escape_brackets,
|
102 |
+
):
|
103 |
+
titpop.BAN_TAGS = [t.strip() for t in black_list.split(",") if t.strip()]
|
104 |
+
generation_setting = {
|
105 |
+
"seed": seed,
|
106 |
+
"temperature": temp,
|
107 |
+
"top_p": top_p,
|
108 |
+
"min_p": min_p,
|
109 |
+
"top_k": top_k,
|
110 |
+
}
|
111 |
+
inputs = seperate_tags(tags.split(","))
|
112 |
+
if nl_prompt:
|
113 |
+
if "<|extended|>" in DEFAULT_FORMAT:
|
114 |
+
inputs["extended"] = nl_prompt
|
115 |
+
elif "<|generated|>" in DEFAULT_FORMAT:
|
116 |
+
inputs["generated"] = nl_prompt
|
117 |
+
input_prompt = apply_format(inputs, DEFAULT_FORMAT)
|
118 |
+
if escape_brackets:
|
119 |
+
input_prompt = re.sub(r"([()\[\]])", r"\\\1", input_prompt)
|
120 |
+
|
121 |
+
meta, operations, general, nl_prompt = titpop.parse_titpop_request(
|
122 |
+
seperate_tags(tags.split(",")),
|
123 |
+
nl_prompt,
|
124 |
+
tag_length_target=target_length,
|
125 |
+
generate_extra_nl_prompt="<|generated|>" in DEFAULT_FORMAT or not nl_prompt,
|
126 |
+
)
|
127 |
+
t0 = time()
|
128 |
+
for result, timing in titpop.titpop_runner_generator(
|
129 |
+
meta, operations, general, nl_prompt, **generation_setting
|
130 |
+
):
|
131 |
+
result = apply_format(result, DEFAULT_FORMAT)
|
132 |
+
if escape_brackets:
|
133 |
+
result = re.sub(r"([()\[\]])", r"\\\1", result)
|
134 |
+
timing["total"] = time() - t0
|
135 |
+
yield result, input_prompt, format_time(timing)
|
136 |
+
|
137 |
+
|
138 |
+
@GPU
|
139 |
+
@torch.no_grad()
|
140 |
+
def generate_image(
|
141 |
+
seed,
|
142 |
+
prompt,
|
143 |
+
prompt2,
|
144 |
+
):
|
145 |
+
torch.cuda.empty_cache()
|
146 |
+
prompt_embeds, negative_prompt_embeds, pooled_embeds2, neg_pooled_embeds2 = (
|
147 |
+
encode_prompts(sdxl_pipe, prompt, DEFAULT_NEGATIVE_PROMPT)
|
148 |
+
)
|
149 |
+
set_seed(seed)
|
150 |
+
result = sdxl_pipe(
|
151 |
+
prompt_embeds=prompt_embeds,
|
152 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
153 |
+
pooled_prompt_embeds=pooled_embeds2,
|
154 |
+
negative_pooled_prompt_embeds=neg_pooled_embeds2,
|
155 |
+
num_inference_steps=24,
|
156 |
+
width=1024,
|
157 |
+
height=1024,
|
158 |
+
guidance_scale=6.0,
|
159 |
+
).images[0]
|
160 |
+
prompt_embeds, negative_prompt_embeds, pooled_embeds2, neg_pooled_embeds2 = (
|
161 |
+
encode_prompts(sdxl_pipe, prompt2, DEFAULT_NEGATIVE_PROMPT)
|
162 |
+
)
|
163 |
+
set_seed(seed)
|
164 |
+
result2 = sdxl_pipe(
|
165 |
+
prompt_embeds=prompt_embeds,
|
166 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
167 |
+
pooled_prompt_embeds=pooled_embeds2,
|
168 |
+
negative_pooled_prompt_embeds=neg_pooled_embeds2,
|
169 |
+
num_inference_steps=24,
|
170 |
+
width=1024,
|
171 |
+
height=1024,
|
172 |
+
guidance_scale=6.0,
|
173 |
+
).images[0]
|
174 |
+
torch.cuda.empty_cache()
|
175 |
+
return result2, result
|
176 |
+
|
177 |
+
|
178 |
+
if __name__ == "__main__":
|
179 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
180 |
+
gr.Markdown("""# TITPOP DEMO""")
|
181 |
+
with gr.Accordion("Introduction and Instructions", open=False):
|
182 |
+
gr.Markdown(
|
183 |
+
"""
|
184 |
+
### What is this:
|
185 |
+
TITPOP
|
186 |
+
|
187 |
+
**The implementation is a little bit inefficient, image gen may be a little bit slower than expected.**
|
188 |
+
"""
|
189 |
+
)
|
190 |
+
with gr.Row():
|
191 |
+
with gr.Column(scale=5):
|
192 |
+
with gr.Row():
|
193 |
+
with gr.Column(scale=3):
|
194 |
+
tags_input = gr.TextArea(
|
195 |
+
label="Danbooru Tags",
|
196 |
+
lines=6,
|
197 |
+
show_copy_button=True,
|
198 |
+
interactive=True,
|
199 |
+
value=DEFAULT_TAGS,
|
200 |
+
placeholder="Enter danbooru tags here",
|
201 |
+
)
|
202 |
+
nl_prompt_input = gr.Textbox(
|
203 |
+
label="Natural Language Prompt",
|
204 |
+
lines=6,
|
205 |
+
show_copy_button=True,
|
206 |
+
interactive=True,
|
207 |
+
value=DEFAULT_NL,
|
208 |
+
placeholder="Enter Natural Language Prompt here",
|
209 |
+
)
|
210 |
+
black_list = gr.TextArea(
|
211 |
+
label="Black List (seperated by comma)",
|
212 |
+
lines=4,
|
213 |
+
interactive=True,
|
214 |
+
value="monochrome",
|
215 |
+
placeholder="Enter tag/nl black list here",
|
216 |
+
)
|
217 |
+
with gr.Column(scale=2):
|
218 |
+
target_length = gr.Dropdown(
|
219 |
+
label="Target Length",
|
220 |
+
choices=["very_short", "short", "long", "very_long"],
|
221 |
+
value="short",
|
222 |
+
)
|
223 |
+
temp = gr.Slider(
|
224 |
+
label="Temp",
|
225 |
+
minimum=0.0,
|
226 |
+
maximum=1.5,
|
227 |
+
value=0.5,
|
228 |
+
step=0.05,
|
229 |
+
)
|
230 |
+
top_p = gr.Slider(
|
231 |
+
label="Top P",
|
232 |
+
minimum=0.0,
|
233 |
+
maximum=1.0,
|
234 |
+
value=0.95,
|
235 |
+
step=0.05,
|
236 |
+
)
|
237 |
+
min_p = gr.Slider(
|
238 |
+
label="Min P",
|
239 |
+
minimum=0.0,
|
240 |
+
maximum=0.2,
|
241 |
+
value=0.05,
|
242 |
+
step=0.01,
|
243 |
+
)
|
244 |
+
top_k = gr.Slider(
|
245 |
+
label="Top K", minimum=0, maximum=120, value=60, step=1
|
246 |
+
)
|
247 |
+
with gr.Row():
|
248 |
+
seed = gr.Number(
|
249 |
+
label="Seed",
|
250 |
+
minimum=0,
|
251 |
+
maximum=2147483647,
|
252 |
+
value=20090220,
|
253 |
+
step=1,
|
254 |
+
)
|
255 |
+
escape_brackets = gr.Checkbox(
|
256 |
+
label="Escape Brackets", value=False
|
257 |
+
)
|
258 |
+
submit = gr.Button("TITPOP!", variant="primary")
|
259 |
+
with gr.Accordion("Speed statstics", open=False):
|
260 |
+
cost_time = gr.Markdown()
|
261 |
+
with gr.Column(scale=5):
|
262 |
+
result = gr.TextArea(
|
263 |
+
label="Result", lines=8, show_copy_button=True, interactive=False
|
264 |
+
)
|
265 |
+
input_prompt = gr.Textbox(
|
266 |
+
label="Input Prompt", lines=1, interactive=False, visible=False
|
267 |
+
)
|
268 |
+
gen_img = gr.Button("Generate Image from Result", variant="primary")
|
269 |
+
with gr.Row():
|
270 |
+
with gr.Column():
|
271 |
+
img1 = gr.Image(label="Original Propmt", interactive=False)
|
272 |
+
with gr.Column():
|
273 |
+
img2 = gr.Image(label="Generated Prompt", interactive=False)
|
274 |
+
submit.click(
|
275 |
+
generate,
|
276 |
+
[
|
277 |
+
tags_input,
|
278 |
+
nl_prompt_input,
|
279 |
+
black_list,
|
280 |
+
temp,
|
281 |
+
target_length,
|
282 |
+
top_p,
|
283 |
+
min_p,
|
284 |
+
top_k,
|
285 |
+
seed,
|
286 |
+
escape_brackets,
|
287 |
+
],
|
288 |
+
[
|
289 |
+
result,
|
290 |
+
input_prompt,
|
291 |
+
cost_time,
|
292 |
+
],
|
293 |
+
queue=True,
|
294 |
+
)
|
295 |
+
gen_img.click(
|
296 |
+
generate_image,
|
297 |
+
[seed, result, input_prompt],
|
298 |
+
[img1, img2],
|
299 |
+
queue=True,
|
300 |
+
)
|
301 |
+
|
302 |
+
demo.launch()
|
diff.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from diffusers import StableDiffusionXLKDiffusionPipeline
|
5 |
+
from k_diffusion.sampling import get_sigmas_polyexponential
|
6 |
+
from k_diffusion.sampling import sample_dpmpp_2m_sde
|
7 |
+
|
8 |
+
torch.set_float32_matmul_precision("medium")
|
9 |
+
|
10 |
+
|
11 |
+
def set_timesteps_polyexponential(self, orig_sigmas, num_inference_steps, device=None):
|
12 |
+
self.num_inference_steps = num_inference_steps
|
13 |
+
|
14 |
+
self.sigmas = get_sigmas_polyexponential(
|
15 |
+
num_inference_steps + 1,
|
16 |
+
sigma_min=orig_sigmas[-2],
|
17 |
+
sigma_max=orig_sigmas[0],
|
18 |
+
rho=0.666666,
|
19 |
+
device=device or "cpu",
|
20 |
+
)
|
21 |
+
self.sigmas = torch.cat([self.sigmas[:-2], self.sigmas.new_zeros([1])])
|
22 |
+
|
23 |
+
|
24 |
+
def model_forward(k_diffusion_model: torch.nn.Module):
|
25 |
+
orig_forward = k_diffusion_model.forward
|
26 |
+
|
27 |
+
def forward(*args, **kwargs):
|
28 |
+
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
29 |
+
result = orig_forward(*args, **kwargs)
|
30 |
+
return result.float()
|
31 |
+
|
32 |
+
return forward
|
33 |
+
|
34 |
+
|
35 |
+
def load_model(model_id="KBlueLeaf/Kohaku-XL-Zeta", device="cuda"):
|
36 |
+
pipe: StableDiffusionXLKDiffusionPipeline
|
37 |
+
pipe = StableDiffusionXLKDiffusionPipeline.from_pretrained(
|
38 |
+
model_id, torch_dtype=torch.float16
|
39 |
+
).to(device)
|
40 |
+
pipe.scheduler.set_timesteps = partial(
|
41 |
+
set_timesteps_polyexponential, pipe.scheduler, pipe.scheduler.sigmas
|
42 |
+
)
|
43 |
+
pipe.sampler = partial(sample_dpmpp_2m_sde, eta=0.35, solver_type="heun")
|
44 |
+
pipe.k_diffusion_model.forward = model_forward(pipe.k_diffusion_model)
|
45 |
+
return pipe
|
46 |
+
|
47 |
+
|
48 |
+
def encode_prompts(pipe: StableDiffusionXLKDiffusionPipeline, prompt, neg_prompt):
|
49 |
+
max_length = pipe.tokenizer.model_max_length
|
50 |
+
|
51 |
+
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
|
52 |
+
input_ids2 = pipe.tokenizer_2(prompt, return_tensors="pt").input_ids.to("cuda")
|
53 |
+
|
54 |
+
negative_ids = pipe.tokenizer(
|
55 |
+
neg_prompt,
|
56 |
+
truncation=False,
|
57 |
+
padding="max_length",
|
58 |
+
max_length=input_ids.shape[-1],
|
59 |
+
return_tensors="pt",
|
60 |
+
).input_ids.to("cuda")
|
61 |
+
negative_ids2 = pipe.tokenizer_2(
|
62 |
+
neg_prompt,
|
63 |
+
truncation=False,
|
64 |
+
padding="max_length",
|
65 |
+
max_length=input_ids.shape[-1],
|
66 |
+
return_tensors="pt",
|
67 |
+
).input_ids.to("cuda")
|
68 |
+
|
69 |
+
if negative_ids.size() > input_ids.size():
|
70 |
+
input_ids = pipe.tokenizer(
|
71 |
+
prompt,
|
72 |
+
truncation=False,
|
73 |
+
padding="max_length",
|
74 |
+
max_length=negative_ids.shape[-1],
|
75 |
+
return_tensors="pt",
|
76 |
+
).input_ids.to("cuda")
|
77 |
+
input_ids2 = pipe.tokenizer_2(
|
78 |
+
prompt,
|
79 |
+
truncation=False,
|
80 |
+
padding="max_length",
|
81 |
+
max_length=negative_ids.shape[-1],
|
82 |
+
return_tensors="pt",
|
83 |
+
).input_ids.to("cuda")
|
84 |
+
|
85 |
+
concat_embeds = []
|
86 |
+
neg_embeds = []
|
87 |
+
for i in range(0, input_ids.shape[-1], max_length):
|
88 |
+
concat_embeds.append(pipe.text_encoder(input_ids[:, i : i + max_length])[0])
|
89 |
+
neg_embeds.append(pipe.text_encoder(negative_ids[:, i : i + max_length])[0])
|
90 |
+
|
91 |
+
concat_embeds2 = []
|
92 |
+
neg_embeds2 = []
|
93 |
+
pooled_embeds2 = []
|
94 |
+
neg_pooled_embeds2 = []
|
95 |
+
for i in range(0, input_ids.shape[-1], max_length):
|
96 |
+
hidden_states = pipe.text_encoder_2(
|
97 |
+
input_ids2[:, i : i + max_length], output_hidden_states=True
|
98 |
+
)
|
99 |
+
concat_embeds2.append(hidden_states.hidden_states[-2])
|
100 |
+
pooled_embeds2.append(hidden_states[0])
|
101 |
+
|
102 |
+
hidden_states = pipe.text_encoder_2(
|
103 |
+
negative_ids2[:, i : i + max_length], output_hidden_states=True
|
104 |
+
)
|
105 |
+
neg_embeds2.append(hidden_states.hidden_states[-2])
|
106 |
+
neg_pooled_embeds2.append(hidden_states[0])
|
107 |
+
|
108 |
+
prompt_embeds = torch.cat(concat_embeds, dim=1)
|
109 |
+
negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
|
110 |
+
prompt_embeds2 = torch.cat(concat_embeds2, dim=1)
|
111 |
+
negative_prompt_embeds2 = torch.cat(neg_embeds2, dim=1)
|
112 |
+
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds2], dim=-1)
|
113 |
+
negative_prompt_embeds = torch.cat(
|
114 |
+
[negative_prompt_embeds, negative_prompt_embeds2], dim=-1
|
115 |
+
)
|
116 |
+
|
117 |
+
pooled_embeds2 = torch.mean(torch.stack(pooled_embeds2, dim=0), dim=0)
|
118 |
+
neg_pooled_embeds2 = torch.mean(torch.stack(neg_pooled_embeds2, dim=0), dim=0)
|
119 |
+
|
120 |
+
return prompt_embeds, negative_prompt_embeds, pooled_embeds2, neg_pooled_embeds2
|
meta.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DEFAULT_STYLE_LIST = {
|
2 |
+
"style 1": "ask (askzy), torino aqua, migolu",
|
3 |
+
"style 2": "azuuru, torino aqua, kedama milk, fuzichoco, ask (askzy), chen bin, atdan, hito, mignon",
|
4 |
+
"style 3": "nou (nounknown), shikimi (yurakuru), namiki itsuki, lemon89h, satsuki (miicat), chon (chon33v), omutatsu, mochizuki kei",
|
5 |
+
"style 4": "ciloranko, maccha (mochancc), lobelia (saclia), migolu, ask (askzy), wanke, jiu ye sang, rumoon, mizumi zumi",
|
6 |
+
"style 5": "reoen, alchemaniac, rella, watercolor (medium)",
|
7 |
+
"style 6": "ogipote, misu kasumi, fuzichoco, ciloranko, ninjin nouka, ningen mame, ask (askzy), kita (kitairoha), maccha (mochancc)",
|
8 |
+
"no style": "",
|
9 |
+
}
|
10 |
+
|
11 |
+
MODEL_DEFAULT_QUALITY_LIST = {
|
12 |
+
"KBlueLeaf/Kohaku-XL-Zeta": "masterpiece, newest, absurdres",
|
13 |
+
"KBlueLeaf/Kohaku-XL-Epsilon-rev2": "masterpiece, newest, absurdres",
|
14 |
+
"KBlueLeaf/Kohaku-XL-Epsilon": "masterpiece, newest, absurdres, safe",
|
15 |
+
"cagliostrolab/animagine-xl-3.1": "masterpiece, newest, very aesthetic, absurdres, safe",
|
16 |
+
}
|
17 |
+
|
18 |
+
MODEL_FORMAT_LIST = {
|
19 |
+
"KBlueLeaf/Kohaku-XL-Zeta": """<|special|>,
|
20 |
+
<|characters|>, <|copyrights|>,
|
21 |
+
<|artist|>,
|
22 |
+
|
23 |
+
<|general|>,
|
24 |
+
|
25 |
+
<|quality|>, <|meta|>, <|rating|>""",
|
26 |
+
"KBlueLeaf/Kohaku-XL-Epsilon-rev2": """<|special|>,
|
27 |
+
<|characters|>, <|copyrights|>,
|
28 |
+
<|artist|>,
|
29 |
+
|
30 |
+
<|general|>,
|
31 |
+
|
32 |
+
<|quality|>, <|meta|>, <|rating|>""",
|
33 |
+
"KBlueLeaf/Kohaku-XL-Epsilon": """<|special|>,
|
34 |
+
<|characters|>, <|copyrights|>,
|
35 |
+
<|artist|>,
|
36 |
+
|
37 |
+
<|general|>,
|
38 |
+
|
39 |
+
<|quality|>, <|meta|>, <|rating|>""",
|
40 |
+
"cagliostrolab/animagine-xl-3.1": """<|special|>,
|
41 |
+
<|characters|>, <|copyrights|>,
|
42 |
+
<|artist|>,
|
43 |
+
|
44 |
+
<|general|>,
|
45 |
+
|
46 |
+
<|quality|>, <|meta|>, <|rating|>""",
|
47 |
+
}
|
48 |
+
|
49 |
+
|
50 |
+
DEFAULT_NEGATIVE_PROMPT = """
|
51 |
+
low quality, worst quality, normal quality, text, signature, jpeg artifacts,
|
52 |
+
bad anatomy, old, early, mini skirt, nsfw, chibi, multiple girls, multiple boys,
|
53 |
+
multiple tails, multiple views, copyright name, watermark, artist name, signature
|
54 |
+
"""
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git+https://${GITHUB_TOKEN}@github.com/KohakuBlueleaf/TITPOP-KGen@titpop
|
2 |
+
gradio
|
3 |
+
spaces
|