KBlueLeaf commited on
Commit
1b4fd22
·
verified ·
1 Parent(s): 6df76bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -36,9 +36,9 @@ from meta import DEFAULT_NEGATIVE_PROMPT, DEFAULT_FORMAT
36
  sdxl_pipe = load_model()
37
 
38
  models.load_model(
39
- "KBlueLeaf/TITPOP-200M-dev",
40
  device="cuda",
41
- subfolder="dan-cc-coyo_epoch2",
42
  )
43
  generate(max_new_tokens=4)
44
  DEFAULT_TAGS = """
@@ -184,6 +184,8 @@ if __name__ == "__main__":
184
  gr.Markdown(
185
  """
186
  ## TITPOP Demo
 
 
187
  ### What is this
188
  TITPOP is a tool to extend, generate, refine the input prompt for T2I models.
189
  <br>It can work on both Danbooru tags and Natural Language. Which means you can use it on almost all the existed T2I models.
@@ -202,7 +204,7 @@ TITPOP is a tool to extend, generate, refine the input prompt for T2I models.
202
  ### Why inference code is private? When will it be open sourced?
203
  1. This model/tool is still under development, currently is early Alpha version.
204
  2. I'm doing some research and projects based on this.
205
- 3. The model is released under CC-BY-NC-ND License currently. If you have interest, you can implement inference by yourself.
206
  4. Once the project/research are done, I will open source all these models/codes with Apache2 license.
207
 
208
  ### Notification
@@ -296,7 +298,7 @@ TITPOP is a tool to extend, generate, refine the input prompt for T2I models.
296
  gen_img = gr.Button("Generate Image from Result", variant="primary", interactive=False)
297
  with gr.Row():
298
  with gr.Column():
299
- img1 = gr.Image(label="Original Propmt", interactive=False)
300
  with gr.Column():
301
  img2 = gr.Image(label="Generated Prompt", interactive=False)
302
  def generate_wrapper(*args):
 
36
  sdxl_pipe = load_model()
37
 
38
  models.load_model(
39
+ "Amber-River/titpop",
40
  device="cuda",
41
+ subfolder="500M-epoch3",
42
  )
43
  generate(max_new_tokens=4)
44
  DEFAULT_TAGS = """
 
184
  gr.Markdown(
185
  """
186
  ## TITPOP Demo
187
+ **The model for demo is 500M version with 4epoch training (25B token seen)**
188
+
189
  ### What is this
190
  TITPOP is a tool to extend, generate, refine the input prompt for T2I models.
191
  <br>It can work on both Danbooru tags and Natural Language. Which means you can use it on almost all the existed T2I models.
 
204
  ### Why inference code is private? When will it be open sourced?
205
  1. This model/tool is still under development, currently is early Alpha version.
206
  2. I'm doing some research and projects based on this.
207
+ 3. The 200M model is released under CC-BY-NC-ND License currently. If you have interest, you can implement inference by yourself.
208
  4. Once the project/research are done, I will open source all these models/codes with Apache2 license.
209
 
210
  ### Notification
 
298
  gen_img = gr.Button("Generate Image from Result", variant="primary", interactive=False)
299
  with gr.Row():
300
  with gr.Column():
301
+ img1 = gr.Image(label="Original Prompt", interactive=False)
302
  with gr.Column():
303
  img2 = gr.Image(label="Generated Prompt", interactive=False)
304
  def generate_wrapper(*args):