K1Jamali commited on
Commit
d567255
1 Parent(s): ecc568d

fix app.py to remove share=True

Browse files
Files changed (1) hide show
  1. app.py +48 -48
app.py CHANGED
@@ -1,48 +1,48 @@
1
-
2
- import gradio as gr
3
- import os
4
- import torch
5
-
6
- from model import create_effnetb2_model
7
- from timeit import default_timer as timer
8
-
9
- class_names = ["pizza", "steake", "sushi"]
10
-
11
- effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3)
12
-
13
- effnetb2.load_state_dict(
14
- torch.load(f"09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20.pth",
15
- map_location=torch.device("cpu"))
16
- )
17
-
18
- def predict(img) -> tuple[dict, float]:
19
- start_time = timer()
20
- img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th dimension
21
- effnetb2.eval()
22
- with torch.inference_mode():
23
- pred_probs = torch.softmax(effnetb2(img), dim=1)
24
-
25
- pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
26
-
27
- pred_time = round(timer() - start_time, 4)
28
-
29
- return pred_labels_and_probs, pred_time
30
-
31
-
32
- example_list = [["examples/" + example] for example in os.listdir("examples")]
33
-
34
-
35
- title = "FoodVision Mini😊"
36
- description = "An [EffNetB2 feature extractor](https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html) computer vision model to classify images as pizza, steak and sushi"
37
- article = "Create at [09. PyTorch Model Deployment](http://keivanjamali.com)."
38
-
39
- demo = gr.Interface(fn=predict,
40
- inputs=gr.Image(type="pil"),
41
- outputs=[gr.Label(num_top_classes=3, label="Predictions"),
42
- gr.Number(label="Prediction Time (s)")],
43
- examples=example_list,
44
- title=title,
45
- description=description,
46
- article=article)
47
-
48
- demo.launch(debug=False, share=True)
 
1
+
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+
6
+ from model import create_effnetb2_model
7
+ from timeit import default_timer as timer
8
+
9
+ class_names = ["pizza", "steake", "sushi"]
10
+
11
+ effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3)
12
+
13
+ effnetb2.load_state_dict(
14
+ torch.load(f"09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20.pth",
15
+ map_location=torch.device("cpu"))
16
+ )
17
+
18
+ def predict(img) -> tuple[dict, float]:
19
+ start_time = timer()
20
+ img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th dimension
21
+ effnetb2.eval()
22
+ with torch.inference_mode():
23
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
24
+
25
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
26
+
27
+ pred_time = round(timer() - start_time, 4)
28
+
29
+ return pred_labels_and_probs, pred_time
30
+
31
+
32
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
33
+
34
+
35
+ title = "FoodVision Mini😊"
36
+ description = "An [EffNetB2 feature extractor](https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html) computer vision model to classify images as pizza, steak and sushi"
37
+ article = "Create at [09. PyTorch Model Deployment](http://keivanjamali.com)."
38
+
39
+ demo = gr.Interface(fn=predict,
40
+ inputs=gr.Image(type="pil"),
41
+ outputs=[gr.Label(num_top_classes=3, label="Predictions"),
42
+ gr.Number(label="Prediction Time (s)")],
43
+ examples=example_list,
44
+ title=title,
45
+ description=description,
46
+ article=article)
47
+
48
+ demo.launch(debug=False) # Don't need share