Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
class_names = ["pizza", "steake", "sushi"] | |
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3) | |
effnetb2.load_state_dict( | |
torch.load(f"09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20.pth", | |
map_location=torch.device("cpu")) | |
) | |
def predict(img) -> tuple[dict, float]: | |
start_time = timer() | |
img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th dimension | |
effnetb2.eval() | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
pred_time = round(timer() - start_time, 4) | |
return pred_labels_and_probs, pred_time | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
title = "FoodVision Mini😊" | |
description = "An [EffNetB2 feature extractor](https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html) computer vision model to classify images as pizza, steak and sushi" | |
article = "Create at [09. PyTorch Model Deployment](http://keivanjamali.com)." | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), | |
gr.Number(label="Prediction Time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
demo.launch() # Don't need share | |