Spaces:
Build error
Build error
| import gradio as gr | |
| import os | |
| import torch | |
| from model import create_effnetb2_model | |
| from timeit import default_timer as timer | |
| with open("class_names.txt", "r") as f: | |
| class_names = [food_name.strip() for food_name in f.readlines()] | |
| effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=101) | |
| effnetb2.load_state_dict(torch.load(f="Pretrained_EffNetB2_Feature_Extractor_Food101.pth", | |
| map_location=torch.device("cpu"))) | |
| def predict(img) -> tuple[dict, float]: | |
| start_time = timer() | |
| img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th dimension | |
| effnetb2.eval() | |
| with torch.inference_mode(): | |
| pred_probs = torch.softmax(effnetb2(img), dim=1) | |
| pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
| pred_time = round(timer() - start_time, 4) | |
| return pred_labels_and_probs, pred_time | |
| example_list = [["examples/" + example] for example in os.listdir("examples")] | |
| title = "Food Vision 101 πποΈπͺ" | |
| description = "An [EffNetB2 feature extractor](https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html) computer vision model to classify 101 classes of food from the [Food101](https://pytorch.org/vision/stable/generated/torchvision.datasets.Food101.html) dataset." | |
| article = "Create at [KeivanJamali.com](http://keivanjamali.com)." | |
| demo = gr.Interface(fn=predict, | |
| inputs=gr.Image(type="pil"), | |
| outputs=[gr.Label(num_top_classes=5, label="Predictions"), | |
| gr.Number(label="Prediction Time (s)")], | |
| examples=example_list, | |
| title=title, | |
| description=description, | |
| article=article) | |
| demo.launch() | |