John6666's picture
Upload 11 files
cc6e31a verified
raw
history blame
19.1 kB
from PIL import Image
import torch
import gradio as gr
import spaces
from transformers import (
AutoImageProcessor,
AutoModelForImageClassification,
)
from pathlib import Path
WD_MODEL_NAMES = ["p1atdev/wd-swinv2-tagger-v3-hf"]
WD_MODEL_NAME = WD_MODEL_NAMES[0]
wd_model = AutoModelForImageClassification.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
wd_model.to("cuda" if torch.cuda.is_available() else "cpu")
wd_processor = AutoImageProcessor.from_pretrained(WD_MODEL_NAME, trust_remote_code=True)
def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
return (
[f"1{noun}"]
+ [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
+ [f"{maximum+1}+{noun}s"]
)
PEOPLE_TAGS = (
_people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
)
RATING_MAP = {
"sfw": "safe",
"general": "safe",
"sensitive": "sensitive",
"questionable": "nsfw",
"explicit": "explicit, nsfw",
}
DANBOORU_TO_E621_RATING_MAP = {
"sfw": "rating_safe",
"general": "rating_safe",
"safe": "rating_safe",
"sensitive": "rating_safe",
"nsfw": "rating_explicit",
"explicit, nsfw": "rating_explicit",
"explicit": "rating_explicit",
"rating:safe": "rating_safe",
"rating:general": "rating_safe",
"rating:sensitive": "rating_safe",
"rating:questionable, nsfw": "rating_explicit",
"rating:explicit, nsfw": "rating_explicit",
}
# https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
kaomojis = [
"0_0",
"(o)_(o)",
"+_+",
"+_-",
"._.",
"<o>_<o>",
"<|>_<|>",
"=_=",
">_<",
"3_3",
"6_9",
">_o",
"@_@",
"^_^",
"o_o",
"u_u",
"x_x",
"|_|",
"||_||",
]
def replace_underline(x: str):
return x.strip().replace("_", " ") if x not in kaomojis else x.strip()
def to_list(s):
return [x.strip() for x in s.split(",") if not s == ""]
def list_sub(a, b):
return [e for e in a if e not in b]
def list_uniq(l):
return sorted(set(l), key=l.index)
def load_dict_from_csv(filename):
dict = {}
if not Path(filename).exists():
if Path('./tagger/', filename).exists(): filename = str(Path('./tagger/', filename))
else: return dict
try:
with open(filename, 'r', encoding="utf-8") as f:
lines = f.readlines()
except Exception:
print(f"Failed to open dictionary file: {filename}")
return dict
for line in lines:
parts = line.strip().split(',')
dict[parts[0]] = parts[1]
return dict
anime_series_dict = load_dict_from_csv('character_series_dict.csv')
def character_list_to_series_list(character_list):
output_series_tag = []
series_tag = ""
series_dict = anime_series_dict
for tag in character_list:
series_tag = series_dict.get(tag, "")
if tag.endswith(")"):
tags = tag.split("(")
character_tag = "(".join(tags[:-1])
if character_tag.endswith(" "):
character_tag = character_tag[:-1]
series_tag = tags[-1].replace(")", "")
if series_tag:
output_series_tag.append(series_tag)
return output_series_tag
def select_random_character(series: str, character: str):
from random import seed, randrange
seed()
character_list = list(anime_series_dict.keys())
character = character_list[randrange(len(character_list) - 1)]
series = anime_series_dict.get(character.split(",")[0].strip(), "")
return series, character
def danbooru_to_e621(dtag, e621_dict):
def d_to_e(match, e621_dict):
dtag = match.group(0)
etag = e621_dict.get(replace_underline(dtag), "")
if etag:
return etag
else:
return dtag
import re
tag = re.sub(r'[\w ]+', lambda wrapper: d_to_e(wrapper, e621_dict), dtag, 2)
return tag
danbooru_to_e621_dict = load_dict_from_csv('danbooru_e621.csv')
def convert_danbooru_to_e621_prompt(input_prompt: str = "", prompt_type: str = "danbooru"):
if prompt_type == "danbooru": return input_prompt
tags = input_prompt.split(",") if input_prompt else []
people_tags: list[str] = []
other_tags: list[str] = []
rating_tags: list[str] = []
e621_dict = danbooru_to_e621_dict
for tag in tags:
tag = replace_underline(tag)
tag = danbooru_to_e621(tag, e621_dict)
if tag in PEOPLE_TAGS:
people_tags.append(tag)
elif tag in DANBOORU_TO_E621_RATING_MAP.keys():
rating_tags.append(DANBOORU_TO_E621_RATING_MAP.get(tag.replace(" ",""), ""))
else:
other_tags.append(tag)
rating_tags = sorted(set(rating_tags), key=rating_tags.index)
rating_tags = [rating_tags[0]] if rating_tags else []
rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags
output_prompt = ", ".join(people_tags + other_tags + rating_tags)
return output_prompt
def translate_prompt(prompt: str = ""):
def translate_to_english(prompt):
import httpcore
setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
from googletrans import Translator
translator = Translator()
try:
translated_prompt = translator.translate(prompt, src='auto', dest='en').text
return translated_prompt
except Exception as e:
print(e)
return prompt
def is_japanese(s):
import unicodedata
for ch in s:
name = unicodedata.name(ch, "")
if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
return True
return False
def to_list(s):
return [x.strip() for x in s.split(",")]
prompts = to_list(prompt)
outputs = []
for p in prompts:
p = translate_to_english(p) if is_japanese(p) else p
outputs.append(p)
return ", ".join(outputs)
def translate_prompt_to_ja(prompt: str = ""):
def translate_to_japanese(prompt):
import httpcore
setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
from googletrans import Translator
translator = Translator()
try:
translated_prompt = translator.translate(prompt, src='en', dest='ja').text
return translated_prompt
except Exception as e:
print(e)
return prompt
def is_japanese(s):
import unicodedata
for ch in s:
name = unicodedata.name(ch, "")
if "CJK UNIFIED" in name or "HIRAGANA" in name or "KATAKANA" in name:
return True
return False
def to_list(s):
return [x.strip() for x in s.split(",")]
prompts = to_list(prompt)
outputs = []
for p in prompts:
p = translate_to_japanese(p) if not is_japanese(p) else p
outputs.append(p)
return ", ".join(outputs)
def tags_to_ja(itag, dict):
def t_to_j(match, dict):
tag = match.group(0)
ja = dict.get(replace_underline(tag), "")
if ja:
return ja
else:
return tag
import re
tag = re.sub(r'[\w ]+', lambda wrapper: t_to_j(wrapper, dict), itag, 2)
return tag
def convert_tags_to_ja(input_prompt: str = ""):
tags = input_prompt.split(",") if input_prompt else []
out_tags = []
tags_to_ja_dict = load_dict_from_csv('all_tags_ja_ext.csv')
dict = tags_to_ja_dict
for tag in tags:
tag = replace_underline(tag)
tag = tags_to_ja(tag, dict)
out_tags.append(tag)
return ", ".join(out_tags)
enable_auto_recom_prompt = True
animagine_ps = to_list("masterpiece, best quality, very aesthetic, absurdres")
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
pony_ps = to_list("score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
pony_nps = to_list("source_pony, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
other_ps = to_list("anime artwork, anime style, studio anime, highly detailed, cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed")
other_nps = to_list("photo, deformed, black and white, realism, disfigured, low contrast, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly")
default_ps = to_list("highly detailed, masterpiece, best quality, very aesthetic, absurdres")
default_nps = to_list("score_6, score_5, score_4, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
def insert_recom_prompt(prompt: str = "", neg_prompt: str = "", type: str = "None"):
global enable_auto_recom_prompt
prompts = to_list(prompt)
neg_prompts = to_list(neg_prompt)
prompts = list_sub(prompts, animagine_ps + pony_ps)
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps)
last_empty_p = [""] if not prompts and type != "None" else []
last_empty_np = [""] if not neg_prompts and type != "None" else []
if type == "Auto":
enable_auto_recom_prompt = True
else:
enable_auto_recom_prompt = False
if type == "Animagine":
prompts = prompts + animagine_ps
neg_prompts = neg_prompts + animagine_nps
elif type == "Pony":
prompts = prompts + pony_ps
neg_prompts = neg_prompts + pony_nps
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
return prompt, neg_prompt
def load_model_prompt_dict():
import json
dict = {}
path = 'model_dict.json' if Path('model_dict.json').exists() else './tagger/model_dict.json'
try:
with open('model_dict.json', encoding='utf-8') as f:
dict = json.load(f)
except Exception:
pass
return dict
model_prompt_dict = load_model_prompt_dict()
def insert_model_recom_prompt(prompt: str = "", neg_prompt: str = "", model_name: str = "None"):
if not model_name or not enable_auto_recom_prompt: return prompt, neg_prompt
prompts = to_list(prompt)
neg_prompts = to_list(neg_prompt)
prompts = list_sub(prompts, animagine_ps + pony_ps + other_ps)
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + other_nps)
last_empty_p = [""] if not prompts and type != "None" else []
last_empty_np = [""] if not neg_prompts and type != "None" else []
ps = []
nps = []
if model_name in model_prompt_dict.keys():
ps = to_list(model_prompt_dict[model_name]["prompt"])
nps = to_list(model_prompt_dict[model_name]["negative_prompt"])
else:
ps = default_ps
nps = default_nps
prompts = prompts + ps
neg_prompts = neg_prompts + nps
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
return prompt, neg_prompt
tag_group_dict = load_dict_from_csv('tag_group.csv')
def remove_specific_prompt(input_prompt: str = "", keep_tags: str = "all"):
def is_dressed(tag):
import re
p = re.compile(r'dress|cloth|uniform|costume|vest|sweater|coat|shirt|jacket|blazer|apron|leotard|hood|sleeve|skirt|shorts|pant|loafer|ribbon|necktie|bow|collar|glove|sock|shoe|boots|wear|emblem')
return p.search(tag)
def is_background(tag):
import re
p = re.compile(r'background|outline|light|sky|build|day|screen|tree|city')
return p.search(tag)
un_tags = ['solo']
group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
keep_group_dict = {
"body": ['groups', 'body_parts'],
"dress": ['groups', 'body_parts', 'attire'],
"all": group_list,
}
def is_necessary(tag, keep_tags, group_dict):
if keep_tags == "all":
return True
elif tag in un_tags or group_dict.get(tag, "") in explicit_group:
return False
elif keep_tags == "body" and is_dressed(tag):
return False
elif is_background(tag):
return False
else:
return True
if keep_tags == "all": return input_prompt
keep_group = keep_group_dict.get(keep_tags, keep_group_dict["body"])
explicit_group = list(set(group_list) ^ set(keep_group))
tags = input_prompt.split(",") if input_prompt else []
people_tags: list[str] = []
other_tags: list[str] = []
group_dict = tag_group_dict
for tag in tags:
tag = replace_underline(tag)
if tag in PEOPLE_TAGS:
people_tags.append(tag)
elif is_necessary(tag, keep_tags, group_dict):
other_tags.append(tag)
output_prompt = ", ".join(people_tags + other_tags)
return output_prompt
def sort_taglist(tags: list[str]):
if not tags: return []
character_tags: list[str] = []
series_tags: list[str] = []
people_tags: list[str] = []
group_list = ['groups', 'body_parts', 'attire', 'posture', 'objects', 'creatures', 'locations', 'disambiguation_pages', 'commonly_misused_tags', 'phrases', 'verbs_and_gerunds', 'subjective', 'nudity', 'sex_objects', 'sex', 'sex_acts', 'image_composition', 'artistic_license', 'text', 'year_tags', 'metatags']
group_tags = {}
other_tags: list[str] = []
rating_tags: list[str] = []
group_dict = tag_group_dict
group_set = set(group_dict.keys())
character_set = set(anime_series_dict.keys())
series_set = set(anime_series_dict.values())
rating_set = set(DANBOORU_TO_E621_RATING_MAP.keys()) | set(DANBOORU_TO_E621_RATING_MAP.values())
for tag in tags:
tag = replace_underline(tag)
if tag in PEOPLE_TAGS:
people_tags.append(tag)
elif tag in rating_set:
rating_tags.append(tag)
elif tag in group_set:
elem = group_dict[tag]
group_tags[elem] = group_tags[elem] + [tag] if elem in group_tags else [tag]
elif tag in character_set:
character_tags.append(tag)
elif tag in series_set:
series_tags.append(tag)
else:
other_tags.append(tag)
output_group_tags: list[str] = []
for k in group_list:
output_group_tags.extend(group_tags.get(k, []))
rating_tags = [rating_tags[0]] if rating_tags else []
rating_tags = ["explicit, nsfw"] if rating_tags and rating_tags[0] == "explicit" else rating_tags
output_tags = character_tags + series_tags + people_tags + output_group_tags + other_tags + rating_tags
return output_tags
def sort_tags(tags: str):
if not tags: return ""
taglist: list[str] = []
for tag in tags.split(","):
taglist.append(tag.strip())
taglist = list(filter(lambda x: x != "", taglist))
return ", ".join(sort_taglist(taglist))
def postprocess_results(results: dict[str, float], general_threshold: float, character_threshold: float):
results = {
k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True)
}
rating = {}
character = {}
general = {}
for k, v in results.items():
if k.startswith("rating:"):
rating[k.replace("rating:", "")] = v
continue
elif k.startswith("character:"):
character[k.replace("character:", "")] = v
continue
general[k] = v
character = {k: v for k, v in character.items() if v >= character_threshold}
general = {k: v for k, v in general.items() if v >= general_threshold}
return rating, character, general
def gen_prompt(rating: list[str], character: list[str], general: list[str]):
people_tags: list[str] = []
other_tags: list[str] = []
rating_tag = RATING_MAP[rating[0]]
for tag in general:
if tag in PEOPLE_TAGS:
people_tags.append(tag)
else:
other_tags.append(tag)
all_tags = people_tags + other_tags
return ", ".join(all_tags)
@spaces.GPU()
def predict_tags(image: Image.Image, general_threshold: float = 0.3, character_threshold: float = 0.8):
inputs = wd_processor.preprocess(image, return_tensors="pt")
outputs = wd_model(**inputs.to(wd_model.device, wd_model.dtype))
logits = torch.sigmoid(outputs.logits[0]) # take the first logits
# get probabilities
results = {
wd_model.config.id2label[i]: float(logit.float()) for i, logit in enumerate(logits)
}
# rating, character, general
rating, character, general = postprocess_results(
results, general_threshold, character_threshold
)
prompt = gen_prompt(
list(rating.keys()), list(character.keys()), list(general.keys())
)
output_series_tag = ""
output_series_list = character_list_to_series_list(character.keys())
if output_series_list:
output_series_tag = output_series_list[0]
else:
output_series_tag = ""
return output_series_tag, ", ".join(character.keys()), prompt, gr.update(interactive=True)
def predict_tags_wd(image: Image.Image, input_tags: str, algo: list[str], general_threshold: float = 0.3,
character_threshold: float = 0.8, input_series: str = "", input_character: str = ""):
if not "Use WD Tagger" in algo and len(algo) != 0:
return input_series, input_character, input_tags, gr.update(interactive=True)
return predict_tags(image, general_threshold, character_threshold)
def compose_prompt_to_copy(character: str, series: str, general: str):
characters = character.split(",") if character else []
serieses = series.split(",") if series else []
generals = general.split(",") if general else []
tags = characters + serieses + generals
cprompt = ",".join(tags) if tags else ""
return cprompt