Spaces:
Runtime error
Runtime error
Create BabiStreamlit.py
Browse files- BabiStreamlit.py +335 -0
BabiStreamlit.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import logging
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from collections import deque
|
6 |
+
from typing import Dict, List, Optional
|
7 |
+
import langchain
|
8 |
+
from langchain.chains import LLMChain
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from langchain_community.vectorstores import FAISS
|
11 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceHubEmbeddings, HuggingFaceInferenceAPIEmbeddings
|
12 |
+
|
13 |
+
from langchain.llms import BaseLLM
|
14 |
+
|
15 |
+
from langchain.vectorstores.base import VectorStore
|
16 |
+
from pydantic import BaseModel, Field
|
17 |
+
import gradio as gr
|
18 |
+
|
19 |
+
from credits import HUGGINGFACE_TOKEN
|
20 |
+
|
21 |
+
# Set Variables
|
22 |
+
load_dotenv()
|
23 |
+
|
24 |
+
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN", HUGGINGFACE_TOKEN)
|
25 |
+
|
26 |
+
if HF_TOKEN != "your-huggingface-token":
|
27 |
+
os.environ["HUGGINGFACE_TOKEN"] = HF_TOKEN
|
28 |
+
else:
|
29 |
+
raise ValueError(
|
30 |
+
"HuggingFace Token EMPTY. Edit the .env file and put your HuggingFace token"
|
31 |
+
)
|
32 |
+
|
33 |
+
class TaskCreationChain(LLMChain):
|
34 |
+
"""Chain to create tasks."""
|
35 |
+
#def __init__(self):
|
36 |
+
# self.logger = logging.getLogger("TaskCreationChain")
|
37 |
+
|
38 |
+
@classmethod
|
39 |
+
def from_llm(cls, llm: BaseLLM, objective: str, verbose: bool = True) -> LLMChain:
|
40 |
+
"""Get the response parser."""
|
41 |
+
task_creation_template = (
|
42 |
+
"You are an task creation AI that uses the result of an execution agent"
|
43 |
+
" to create new tasks with the following objective: {objective},"
|
44 |
+
" The last completed task has the result: {result}."
|
45 |
+
" This result was based on this task description: {task_description}."
|
46 |
+
" These are incomplete tasks: {incomplete_tasks}."
|
47 |
+
" Based on the result, create new tasks to be completed"
|
48 |
+
" by the AI system that do not overlap with incomplete tasks."
|
49 |
+
" Return the tasks as an array."
|
50 |
+
)
|
51 |
+
prompt = PromptTemplate(
|
52 |
+
template=task_creation_template,
|
53 |
+
partial_variables={"objective": objective},
|
54 |
+
input_variables=["result", "task_description", "incomplete_tasks"],
|
55 |
+
)
|
56 |
+
return cls(prompt=prompt, llm=llm, verbose=verbose)
|
57 |
+
|
58 |
+
|
59 |
+
def get_next_task(self, result: Dict, task_description: str, task_list: List[str]) -> List[Dict]:
|
60 |
+
"""Get the next task."""
|
61 |
+
incomplete_tasks = ", ".join(task_list)
|
62 |
+
response = self.run(result=result, task_description=task_description, incomplete_tasks=incomplete_tasks)
|
63 |
+
new_tasks = response.split('\n')
|
64 |
+
return [{"task_name": task_name} for task_name in new_tasks if task_name.strip()]
|
65 |
+
|
66 |
+
|
67 |
+
class TaskPrioritizationChain(LLMChain):
|
68 |
+
"""Chain to prioritize tasks."""
|
69 |
+
#def __init__(self):
|
70 |
+
# self.logger = logging.getLogger("TaskPrioritizationChain")
|
71 |
+
|
72 |
+
@classmethod
|
73 |
+
def from_llm(cls, llm: BaseLLM, objective: str, verbose: bool = True) -> LLMChain:
|
74 |
+
"""Get the response parser."""
|
75 |
+
task_prioritization_template = (
|
76 |
+
"You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing"
|
77 |
+
" the following tasks: {task_names}."
|
78 |
+
" Consider the ultimate objective of your team: {objective}."
|
79 |
+
" Do not remove any tasks. Return the result as a numbered list, like:"
|
80 |
+
" #. First task"
|
81 |
+
" #. Second task"
|
82 |
+
" Start the task list with number {next_task_id}."
|
83 |
+
)
|
84 |
+
prompt = PromptTemplate(
|
85 |
+
template=task_prioritization_template,
|
86 |
+
partial_variables={"objective": objective},
|
87 |
+
input_variables=["task_names", "next_task_id"],
|
88 |
+
)
|
89 |
+
return cls(prompt=prompt, llm=llm, verbose=verbose)
|
90 |
+
|
91 |
+
def prioritize_tasks(self, this_task_id: int, task_list: List[Dict]) -> List[Dict]:
|
92 |
+
"""Prioritize tasks."""
|
93 |
+
task_names = [t["task_name"] for t in task_list]
|
94 |
+
next_task_id = int(this_task_id) + 1
|
95 |
+
response = self.run(task_names=task_names, next_task_id=next_task_id)
|
96 |
+
new_tasks = response.split('\n')
|
97 |
+
prioritized_task_list = []
|
98 |
+
for task_string in new_tasks:
|
99 |
+
if not task_string.strip():
|
100 |
+
continue
|
101 |
+
task_parts = task_string.strip().split(".", 1)
|
102 |
+
if len(task_parts) == 2:
|
103 |
+
task_id = task_parts[0].strip()
|
104 |
+
task_name = task_parts[1].strip()
|
105 |
+
prioritized_task_list.append({"task_id": task_id, "task_name": task_name})
|
106 |
+
return prioritized_task_list
|
107 |
+
|
108 |
+
|
109 |
+
class ExecutionChain(LLMChain):
|
110 |
+
"""Chain to execute tasks."""
|
111 |
+
vectorstore: VectorStore = Field(init=False)
|
112 |
+
|
113 |
+
#def __init__(self):
|
114 |
+
# self.logger = logging.getLogger("ExecutionChain")
|
115 |
+
|
116 |
+
@classmethod
|
117 |
+
def from_llm(cls, llm: BaseLLM, vectorstore: VectorStore, verbose: bool = True) -> LLMChain:
|
118 |
+
"""Get the response parser."""
|
119 |
+
execution_template = (
|
120 |
+
"You are an AI who performs one task based on the following objective: {objective}."
|
121 |
+
" Take into account these previously completed tasks: {context}."
|
122 |
+
" Your task: {task}."
|
123 |
+
" Response:"
|
124 |
+
)
|
125 |
+
prompt = PromptTemplate(
|
126 |
+
template=execution_template,
|
127 |
+
input_variables=["objective", "context", "task"],
|
128 |
+
)
|
129 |
+
return cls(prompt=prompt, llm=llm, verbose=verbose, vectorstore=vectorstore)
|
130 |
+
|
131 |
+
def _get_top_tasks(self, query: str, k: int) -> List[str]:
|
132 |
+
"""Get the top k tasks based on the query."""
|
133 |
+
results = self.vectorstore.similarity_search_with_score(query, k=k)
|
134 |
+
if not results:
|
135 |
+
return []
|
136 |
+
sorted_results, _ = zip(*sorted(results, key=lambda x: x[1], reverse=True))
|
137 |
+
return [str(item.metadata['task']) for item in sorted_results]
|
138 |
+
|
139 |
+
def execute_task(self, objective: str, task: str, k: int = 5) -> str:
|
140 |
+
"""Execute a task."""
|
141 |
+
context = self._get_top_tasks(query=objective, k=k)
|
142 |
+
return self.run(objective=objective, context=context, task=task)
|
143 |
+
|
144 |
+
|
145 |
+
class Message:
|
146 |
+
exp: st.expander
|
147 |
+
ai_icon = "./img/robot.png"
|
148 |
+
|
149 |
+
def __init__(self, label: str):
|
150 |
+
message_area, icon_area = st.columns([10, 1])
|
151 |
+
icon_area.image(self.ai_icon, caption="BabyAGI")
|
152 |
+
|
153 |
+
# Expander
|
154 |
+
self.exp = message_area.expander(label=label, expanded=True)
|
155 |
+
|
156 |
+
def __enter__(self):
|
157 |
+
return self
|
158 |
+
|
159 |
+
def __exit__(self, ex_type, ex_value, trace):
|
160 |
+
pass
|
161 |
+
|
162 |
+
def write(self, content):
|
163 |
+
self.exp.markdown(content)
|
164 |
+
|
165 |
+
|
166 |
+
class BabyAGI(BaseModel):
|
167 |
+
"""Controller model for the BabyAGI agent."""
|
168 |
+
|
169 |
+
objective: str = Field(alias="objective")
|
170 |
+
task_list: deque = Field(default_factory=deque)
|
171 |
+
task_creation_chain: TaskCreationChain = Field(...)
|
172 |
+
task_prioritization_chain: TaskPrioritizationChain = Field(...)
|
173 |
+
execution_chain: ExecutionChain = Field(...)
|
174 |
+
task_id_counter: int = Field(1)
|
175 |
+
|
176 |
+
#def __init__(self):
|
177 |
+
# Configure loggers for each chain
|
178 |
+
#self.task_creation_logger = logging.getLogger("TaskCreationChain")
|
179 |
+
#self.task_prioritization_logger = logging.getLogger("TaskPrioritizationChain")
|
180 |
+
#self.execution_logger = logging.getLogger("ExecutionChain")
|
181 |
+
|
182 |
+
def add_task(self, task: Dict):
|
183 |
+
self.task_list.append(task)
|
184 |
+
|
185 |
+
def print_task_list(self):
|
186 |
+
with Message(label="Task List") as m:
|
187 |
+
m.write("### Task List")
|
188 |
+
for t in self.task_list:
|
189 |
+
m.write("- " + str(t["task_id"]) + ": " + t["task_name"])
|
190 |
+
m.write("")
|
191 |
+
|
192 |
+
def print_next_task(self, task: Dict):
|
193 |
+
with Message(label="Next Task") as m:
|
194 |
+
m.write("### Next Task")
|
195 |
+
m.write("- " + str(task["task_id"]) + ": " + task["task_name"])
|
196 |
+
m.write("")
|
197 |
+
|
198 |
+
def print_task_result(self, result: str):
|
199 |
+
with Message(label="Task Result") as m:
|
200 |
+
m.write("### Task Result")
|
201 |
+
m.write(result)
|
202 |
+
m.write("")
|
203 |
+
|
204 |
+
def print_task_ending(self):
|
205 |
+
with Message(label="Task Ending") as m:
|
206 |
+
m.write("### Task Ending")
|
207 |
+
m.write("")
|
208 |
+
|
209 |
+
def print_iteration_number(self, iteration_number: int):
|
210 |
+
with Message(label="Iteration Number") as m:
|
211 |
+
m.write(f"### Iteration Number: {iteration_number}")
|
212 |
+
|
213 |
+
|
214 |
+
def run(self, max_iterations: Optional[int] = None):
|
215 |
+
"""Run the agent."""
|
216 |
+
num_iters = 0
|
217 |
+
while True:
|
218 |
+
self.print_iteration_number(num_iters + 1) # Add this line
|
219 |
+
if self.task_list:
|
220 |
+
self.print_task_list()
|
221 |
+
|
222 |
+
# Step 1: Pull the first task
|
223 |
+
task = self.task_list.popleft()
|
224 |
+
self.print_next_task(task)
|
225 |
+
|
226 |
+
# Step 2: Execute the task
|
227 |
+
result = self.execution_chain.execute_task(
|
228 |
+
self.objective, task["task_name"]
|
229 |
+
)
|
230 |
+
this_task_id = int(task["task_id"])
|
231 |
+
self.print_task_result(result)
|
232 |
+
|
233 |
+
# Step 3: Store the result in Pinecone
|
234 |
+
result_id = f"result_{num_iters}_{task['task_id']}"
|
235 |
+
self.execution_chain.vectorstore.add_texts(
|
236 |
+
texts=[result],
|
237 |
+
metadatas=[{"task": task["task_name"]}],
|
238 |
+
ids=[result_id],
|
239 |
+
)
|
240 |
+
#self.execution_logger.info(f"Task: {task['task_name']}, Result: {result}") # Log execution information
|
241 |
+
|
242 |
+
# Step 4: Create new tasks and reprioritize task list
|
243 |
+
new_tasks = self.task_creation_chain.get_next_task(
|
244 |
+
result, task["task_name"], [t["task_name"] for t in self.task_list]
|
245 |
+
)
|
246 |
+
for new_task in new_tasks:
|
247 |
+
self.task_id_counter += 1
|
248 |
+
new_task.update({"task_id": self.task_id_counter})
|
249 |
+
self.add_task(new_task)
|
250 |
+
self.task_list = deque(
|
251 |
+
self.task_prioritization_chain.prioritize_tasks(
|
252 |
+
this_task_id, list(self.task_list)
|
253 |
+
)
|
254 |
+
)
|
255 |
+
# Log task creation information
|
256 |
+
#self.task_creation_logger.info(f"Result: {result}, Task Description: {task['task_name']}, Incomplete Tasks: {', '.join([t['task_name'] for t in self.task_list])}")
|
257 |
+
|
258 |
+
#self.task_prioritization_logger.info(f"This Task ID: {this_task_id}, Task List: {', '.join([t['task_name'] for t in self.task_list])}")
|
259 |
+
|
260 |
+
num_iters += 1
|
261 |
+
if max_iterations is not None and num_iters == max_iterations:
|
262 |
+
self.print_task_ending()
|
263 |
+
break
|
264 |
+
|
265 |
+
@classmethod
|
266 |
+
def from_llm_and_objectives(
|
267 |
+
cls,
|
268 |
+
llm: BaseLLM,
|
269 |
+
vectorstore: VectorStore,
|
270 |
+
objective: str,
|
271 |
+
first_task: str,
|
272 |
+
verbose: bool = False,
|
273 |
+
) -> "BabyAGI":
|
274 |
+
"""Initialize the BabyAGI Controller."""
|
275 |
+
task_creation_chain = TaskCreationChain.from_llm(
|
276 |
+
llm, objective, verbose=verbose
|
277 |
+
)
|
278 |
+
task_prioritization_chain = TaskPrioritizationChain.from_llm(
|
279 |
+
llm, objective, verbose=verbose
|
280 |
+
)
|
281 |
+
execution_chain = ExecutionChain.from_llm(llm, vectorstore, verbose=verbose)
|
282 |
+
controller = cls(
|
283 |
+
objective=objective,
|
284 |
+
task_creation_chain=task_creation_chain,
|
285 |
+
task_prioritization_chain=task_prioritization_chain,
|
286 |
+
execution_chain=execution_chain,
|
287 |
+
)
|
288 |
+
#task_id = int(time.time())
|
289 |
+
#controller.add_task({"task_id": task_id, "task_name": first_task})
|
290 |
+
controller.add_task({"task_id": 1, "task_name": first_task})
|
291 |
+
return controller
|
292 |
+
|
293 |
+
|
294 |
+
|
295 |
+
def main():
|
296 |
+
with gr.Blocks() as demo:
|
297 |
+
gr.Markdown("# BabyAGI Gradio")
|
298 |
+
|
299 |
+
with gr.Row():
|
300 |
+
with gr.Column():
|
301 |
+
objective = gr.Dropdown(
|
302 |
+
choices=["Make a small shooter in python OOP scripting", "Make a streamlit cheatsheet", "Make a advanced langchain examples sheet", "End poverty"],
|
303 |
+
label="Select Ultimate goal",
|
304 |
+
)
|
305 |
+
first_task = gr.Textbox(label="Input Where to start", value="Develop a task list")
|
306 |
+
max_iterations = gr.Number(label="Max iterations", value=3, precision=0)
|
307 |
+
|
308 |
+
with gr.Column():
|
309 |
+
run_button = gr.Button("Run")
|
310 |
+
|
311 |
+
output = gr.Textbox(label="Output")
|
312 |
+
|
313 |
+
def run_baby_agi(objective, first_task, max_iterations):
|
314 |
+
embedding_model = HuggingFaceInferenceAPIEmbeddings(api_key=os.environ["HUGGINGFACE_TOKEN"])
|
315 |
+
vectorstore = FAISS.from_texts(["_"], embedding_model, metadatas=[{"task": first_task}])
|
316 |
+
|
317 |
+
try:
|
318 |
+
baby_agi = BabyAGI.from_llm_and_objectives(
|
319 |
+
llm=best_llm,
|
320 |
+
vectorstore=vectorstore,
|
321 |
+
objective=objective,
|
322 |
+
first_task=first_task,
|
323 |
+
verbose=False,
|
324 |
+
)
|
325 |
+
baby_agi.run(max_iterations=max_iterations)
|
326 |
+
return "BabyAGI completed successfully!"
|
327 |
+
except Exception as e:
|
328 |
+
return str(e)
|
329 |
+
|
330 |
+
run_button.click(run_baby_agi, inputs=[objective, first_task, max_iterations], outputs=output)
|
331 |
+
|
332 |
+
demo.launch()
|
333 |
+
|
334 |
+
if __name__ == "__main__":
|
335 |
+
main()
|