K00B404's picture
Update app.py
af0a269 verified
import os,json
import gradio as gr
from huggingface_hub import InferenceClient
# Retrieve the API token from the environment variable
API_TOKEN = os.getenv("HF_READ_TOKEN")
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Initialize the Hugging Face Inference Client
client = InferenceClient(
"mistralai/Mistral-Nemo-Instruct-2407",
token=API_TOKEN
)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
try:
response_stream = client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
)
for message in response_stream:
token = message.choices[0].delta.content
response += token
yield response
except (json.JSONDecodeError, ValueError) as e:
print(f"Error decoding response: {e}")
yield "An error occurred while processing the request."
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch(show_api=True, share=False,show_error=True)