Spaces:
Sleeping
Sleeping
Upload 31 files
Browse files- adapter/__pycache__/attention_processor.cpython-39.pyc +0 -0
- adapter/__pycache__/resampler.cpython-39.pyc +0 -0
- adapter/attention_processor.py +828 -0
- adapter/resampler.py +302 -0
- dressing_sd/pipelines/__pycache__/pipeline_sd.cpython-39.pyc +0 -0
- dressing_sd/pipelines/pipeline_sd.py +748 -0
- requirements.txt +2 -1
adapter/__pycache__/attention_processor.cpython-39.pyc
ADDED
Binary file (14.4 kB). View file
|
|
adapter/__pycache__/resampler.cpython-39.pyc
ADDED
Binary file (7.37 kB). View file
|
|
adapter/attention_processor.py
ADDED
@@ -0,0 +1,828 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn
|
6 |
+
from diffusers.utils import USE_PEFT_BACKEND
|
7 |
+
from diffusers.models.lora import LoRALinearLayer
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
class CacheAttnProcessor2_0:
|
14 |
+
r"""
|
15 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self):
|
19 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
20 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
21 |
+
|
22 |
+
self.cache = {} # cache hidden states
|
23 |
+
|
24 |
+
def __call__(
|
25 |
+
self,
|
26 |
+
attn,
|
27 |
+
hidden_states: torch.FloatTensor,
|
28 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
29 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
30 |
+
temb: Optional[torch.FloatTensor] = None,
|
31 |
+
scale: float = 1.0,
|
32 |
+
) -> torch.FloatTensor:
|
33 |
+
|
34 |
+
self.cache["hidden_states"] = hidden_states # cache hidden states
|
35 |
+
|
36 |
+
residual = hidden_states
|
37 |
+
if attn.spatial_norm is not None:
|
38 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
39 |
+
|
40 |
+
input_ndim = hidden_states.ndim
|
41 |
+
|
42 |
+
if input_ndim == 4:
|
43 |
+
batch_size, channel, height, width = hidden_states.shape
|
44 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
45 |
+
|
46 |
+
batch_size, sequence_length, _ = (
|
47 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
48 |
+
)
|
49 |
+
|
50 |
+
if attention_mask is not None:
|
51 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
52 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
53 |
+
# (batch, heads, source_length, target_length)
|
54 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
55 |
+
|
56 |
+
if attn.group_norm is not None:
|
57 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
58 |
+
|
59 |
+
args = () if USE_PEFT_BACKEND else (scale,)
|
60 |
+
query = attn.to_q(hidden_states, *args)
|
61 |
+
|
62 |
+
if encoder_hidden_states is None:
|
63 |
+
encoder_hidden_states = hidden_states
|
64 |
+
elif attn.norm_cross:
|
65 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
66 |
+
|
67 |
+
key = attn.to_k(encoder_hidden_states, *args)
|
68 |
+
value = attn.to_v(encoder_hidden_states, *args)
|
69 |
+
|
70 |
+
inner_dim = key.shape[-1]
|
71 |
+
head_dim = inner_dim // attn.heads
|
72 |
+
|
73 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
74 |
+
|
75 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
76 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
77 |
+
|
78 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
79 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
80 |
+
hidden_states = F.scaled_dot_product_attention(
|
81 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
82 |
+
)
|
83 |
+
|
84 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
85 |
+
hidden_states = hidden_states.to(query.dtype)
|
86 |
+
|
87 |
+
# linear proj
|
88 |
+
hidden_states = attn.to_out[0](hidden_states, *args)
|
89 |
+
# dropout
|
90 |
+
hidden_states = attn.to_out[1](hidden_states)
|
91 |
+
|
92 |
+
if input_ndim == 4:
|
93 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
94 |
+
|
95 |
+
if attn.residual_connection:
|
96 |
+
hidden_states = hidden_states + residual
|
97 |
+
|
98 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
99 |
+
|
100 |
+
return hidden_states
|
101 |
+
|
102 |
+
|
103 |
+
class SAttnProcessor2_0(torch.nn.Module):
|
104 |
+
r"""
|
105 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
106 |
+
"""
|
107 |
+
|
108 |
+
def __init__(self, name, hidden_size, cross_attention_dim=None):
|
109 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
110 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
111 |
+
|
112 |
+
super().__init__()
|
113 |
+
|
114 |
+
self.name = name
|
115 |
+
self.hidden_size = hidden_size
|
116 |
+
self.cross_attention_dim = cross_attention_dim
|
117 |
+
|
118 |
+
def __call__(
|
119 |
+
self,
|
120 |
+
attn,
|
121 |
+
hidden_states: torch.FloatTensor,
|
122 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
123 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
124 |
+
temb: Optional[torch.FloatTensor] = None,
|
125 |
+
scale: float = 1.0,
|
126 |
+
cond_hidden_states=None,
|
127 |
+
sa_hidden_states=None,
|
128 |
+
) -> torch.FloatTensor:
|
129 |
+
residual = hidden_states
|
130 |
+
if attn.spatial_norm is not None:
|
131 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
132 |
+
|
133 |
+
input_ndim = hidden_states.ndim
|
134 |
+
|
135 |
+
if input_ndim == 4:
|
136 |
+
batch_size, channel, height, width = hidden_states.shape
|
137 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
138 |
+
|
139 |
+
batch_size, sequence_length, _ = (
|
140 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
141 |
+
)
|
142 |
+
|
143 |
+
if attention_mask is not None:
|
144 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
145 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
146 |
+
# (batch, heads, source_length, target_length)
|
147 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
148 |
+
|
149 |
+
if attn.group_norm is not None:
|
150 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
151 |
+
|
152 |
+
args = () if USE_PEFT_BACKEND else (scale,)
|
153 |
+
query = attn.to_q(hidden_states, *args)
|
154 |
+
|
155 |
+
if encoder_hidden_states is None:
|
156 |
+
# for reference adapter
|
157 |
+
if sa_hidden_states is not None:
|
158 |
+
ref_hidden_states = sa_hidden_states[self.name]
|
159 |
+
encoder_hidden_states = torch.cat([hidden_states, ref_hidden_states], dim=1)
|
160 |
+
else:
|
161 |
+
encoder_hidden_states = hidden_states
|
162 |
+
|
163 |
+
elif attn.norm_cross:
|
164 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
165 |
+
|
166 |
+
key = attn.to_k(encoder_hidden_states, *args)
|
167 |
+
value = attn.to_v(encoder_hidden_states, *args)
|
168 |
+
|
169 |
+
inner_dim = key.shape[-1]
|
170 |
+
head_dim = inner_dim // attn.heads
|
171 |
+
|
172 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
173 |
+
|
174 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
175 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
176 |
+
|
177 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
178 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
179 |
+
hidden_states = F.scaled_dot_product_attention(
|
180 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
181 |
+
)
|
182 |
+
|
183 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
184 |
+
hidden_states = hidden_states.to(query.dtype)
|
185 |
+
|
186 |
+
# linear proj
|
187 |
+
hidden_states = attn.to_out[0](hidden_states, *args)
|
188 |
+
# dropout
|
189 |
+
hidden_states = attn.to_out[1](hidden_states)
|
190 |
+
|
191 |
+
if input_ndim == 4:
|
192 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
193 |
+
|
194 |
+
if attn.residual_connection:
|
195 |
+
hidden_states = hidden_states + residual
|
196 |
+
|
197 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
198 |
+
|
199 |
+
return hidden_states
|
200 |
+
|
201 |
+
|
202 |
+
class CAttnProcessor2_0(torch.nn.Module):
|
203 |
+
r"""
|
204 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
205 |
+
"""
|
206 |
+
|
207 |
+
def __init__(self, name, hidden_size, cross_attention_dim=None):
|
208 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
209 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
210 |
+
|
211 |
+
super().__init__()
|
212 |
+
|
213 |
+
self.name = name
|
214 |
+
self.hidden_size = hidden_size
|
215 |
+
self.cross_attention_dim = cross_attention_dim
|
216 |
+
|
217 |
+
# self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
218 |
+
# self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
219 |
+
|
220 |
+
def __call__(
|
221 |
+
self,
|
222 |
+
attn,
|
223 |
+
hidden_states: torch.FloatTensor,
|
224 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
225 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
226 |
+
temb: Optional[torch.FloatTensor] = None,
|
227 |
+
scale: float = 1.0,
|
228 |
+
cond_hidden_states=None,
|
229 |
+
sa_hidden_states=None,
|
230 |
+
) -> torch.FloatTensor:
|
231 |
+
residual = hidden_states
|
232 |
+
if attn.spatial_norm is not None:
|
233 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
234 |
+
|
235 |
+
input_ndim = hidden_states.ndim
|
236 |
+
|
237 |
+
if input_ndim == 4:
|
238 |
+
batch_size, channel, height, width = hidden_states.shape
|
239 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
240 |
+
|
241 |
+
batch_size, sequence_length, _ = (
|
242 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
243 |
+
)
|
244 |
+
|
245 |
+
if attention_mask is not None:
|
246 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
247 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
248 |
+
# (batch, heads, source_length, target_length)
|
249 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
250 |
+
|
251 |
+
if attn.group_norm is not None:
|
252 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
253 |
+
|
254 |
+
args = () if USE_PEFT_BACKEND else (scale,)
|
255 |
+
query = attn.to_q(hidden_states, *args)
|
256 |
+
|
257 |
+
if encoder_hidden_states is None:
|
258 |
+
encoder_hidden_states = hidden_states
|
259 |
+
elif attn.norm_cross:
|
260 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
261 |
+
|
262 |
+
key = attn.to_k(encoder_hidden_states, *args)
|
263 |
+
value = attn.to_v(encoder_hidden_states, *args)
|
264 |
+
|
265 |
+
inner_dim = key.shape[-1]
|
266 |
+
head_dim = inner_dim // attn.heads
|
267 |
+
|
268 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
269 |
+
|
270 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
271 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
272 |
+
|
273 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
274 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
275 |
+
hidden_states = F.scaled_dot_product_attention(
|
276 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
277 |
+
)
|
278 |
+
|
279 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
280 |
+
hidden_states = hidden_states.to(query.dtype)
|
281 |
+
|
282 |
+
# for ip
|
283 |
+
# if cond_hidden_states:
|
284 |
+
# ip_hidden_states = cond_hidden_states
|
285 |
+
# ip_key = self.to_k_ip(ip_hidden_states)
|
286 |
+
# ip_value = self.to_v_ip(ip_hidden_states)
|
287 |
+
# ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
288 |
+
# ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
289 |
+
#
|
290 |
+
# # the output of sdp = (batch, num_heads, seq_len, head_dim)
|
291 |
+
# # TODO: add support for attn.scale when we move to Torch 2.1
|
292 |
+
# ip_hidden_states = F.scaled_dot_product_attention(
|
293 |
+
# query, ip_key, ip_value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
294 |
+
# )
|
295 |
+
# ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
296 |
+
# ip_hidden_states = ip_hidden_states.to(query.dtype)
|
297 |
+
# hidden_states = hidden_states + ip_hidden_states
|
298 |
+
|
299 |
+
# linear proj
|
300 |
+
hidden_states = attn.to_out[0](hidden_states, *args)
|
301 |
+
# dropout
|
302 |
+
hidden_states = attn.to_out[1](hidden_states)
|
303 |
+
|
304 |
+
if input_ndim == 4:
|
305 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
306 |
+
|
307 |
+
if attn.residual_connection:
|
308 |
+
hidden_states = hidden_states + residual
|
309 |
+
|
310 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
311 |
+
|
312 |
+
return hidden_states
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
class RefLoraSAttnProcessor2_0(torch.nn.Module):
|
319 |
+
r"""
|
320 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
321 |
+
"""
|
322 |
+
|
323 |
+
def __init__(self, name, hidden_size, cross_attention_dim=None, scale=1.0, rank=128, network_alpha=None, lora_scale=1.0,):
|
324 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
325 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
326 |
+
|
327 |
+
super().__init__()
|
328 |
+
|
329 |
+
self.name = name
|
330 |
+
self.hidden_size = hidden_size
|
331 |
+
self.cross_attention_dim = cross_attention_dim
|
332 |
+
self.to_k_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
333 |
+
self.to_v_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
334 |
+
self.scale = scale
|
335 |
+
|
336 |
+
self.rank = rank
|
337 |
+
self.lora_scale = lora_scale
|
338 |
+
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
339 |
+
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
340 |
+
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
341 |
+
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
342 |
+
|
343 |
+
def __call__(
|
344 |
+
self,
|
345 |
+
attn,
|
346 |
+
hidden_states: torch.FloatTensor,
|
347 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
348 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
349 |
+
temb: Optional[torch.FloatTensor] = None,
|
350 |
+
scale: float = 1.0,
|
351 |
+
num_images_per_prompt=1,
|
352 |
+
cond_hidden_states=None,
|
353 |
+
sa_hidden_states=None,
|
354 |
+
|
355 |
+
) -> torch.FloatTensor:
|
356 |
+
residual = hidden_states
|
357 |
+
if attn.spatial_norm is not None:
|
358 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
359 |
+
|
360 |
+
input_ndim = hidden_states.ndim
|
361 |
+
|
362 |
+
if input_ndim == 4:
|
363 |
+
batch_size, channel, height, width = hidden_states.shape
|
364 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
365 |
+
|
366 |
+
batch_size, sequence_length, _ = (
|
367 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
368 |
+
)
|
369 |
+
|
370 |
+
if attention_mask is not None:
|
371 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
372 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
373 |
+
# (batch, heads, source_length, target_length)
|
374 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
375 |
+
|
376 |
+
if attn.group_norm is not None:
|
377 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
378 |
+
|
379 |
+
args = () if USE_PEFT_BACKEND else (scale,)
|
380 |
+
query = attn.to_q(hidden_states, *args) + self.lora_scale * self.to_q_lora(hidden_states)
|
381 |
+
|
382 |
+
if encoder_hidden_states is None:
|
383 |
+
encoder_hidden_states = hidden_states
|
384 |
+
|
385 |
+
elif attn.norm_cross:
|
386 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
387 |
+
|
388 |
+
key = attn.to_k(encoder_hidden_states, *args) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
|
389 |
+
value = attn.to_v(encoder_hidden_states, *args) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
|
390 |
+
|
391 |
+
inner_dim = key.shape[-1]
|
392 |
+
head_dim = inner_dim // attn.heads
|
393 |
+
|
394 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
395 |
+
|
396 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
397 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
398 |
+
|
399 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
400 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
401 |
+
hidden_states = F.scaled_dot_product_attention(
|
402 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
403 |
+
)
|
404 |
+
|
405 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
406 |
+
hidden_states = hidden_states.to(query.dtype)
|
407 |
+
|
408 |
+
# for ref adapter
|
409 |
+
if sa_hidden_states is not None:
|
410 |
+
ref_hidden_states = sa_hidden_states[self.name]
|
411 |
+
# for ref
|
412 |
+
ref_key = self.to_k_ref(ref_hidden_states)
|
413 |
+
ref_value = self.to_v_ref(ref_hidden_states)
|
414 |
+
ref_key = ref_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
415 |
+
ref_value = ref_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
416 |
+
|
417 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
418 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
419 |
+
ref_hidden_states = F.scaled_dot_product_attention(
|
420 |
+
query, ref_key, ref_value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
421 |
+
)
|
422 |
+
ref_hidden_states = ref_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
423 |
+
ref_hidden_states = ref_hidden_states.to(query.dtype)
|
424 |
+
hidden_states = hidden_states + ref_hidden_states * self.scale
|
425 |
+
|
426 |
+
# linear proj
|
427 |
+
hidden_states = attn.to_out[0](hidden_states, *args) + self.lora_scale * self.to_out_lora(hidden_states)
|
428 |
+
# dropout
|
429 |
+
hidden_states = attn.to_out[1](hidden_states)
|
430 |
+
|
431 |
+
if input_ndim == 4:
|
432 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
433 |
+
|
434 |
+
if attn.residual_connection:
|
435 |
+
hidden_states = hidden_states + residual
|
436 |
+
|
437 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
438 |
+
|
439 |
+
return hidden_states
|
440 |
+
|
441 |
+
class RefSAttnProcessor2_0(torch.nn.Module):
|
442 |
+
r"""
|
443 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
444 |
+
"""
|
445 |
+
|
446 |
+
def __init__(self, name, hidden_size, cross_attention_dim=None, scale=1.0):
|
447 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
448 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
449 |
+
|
450 |
+
super().__init__()
|
451 |
+
|
452 |
+
self.name = name
|
453 |
+
self.hidden_size = hidden_size
|
454 |
+
self.cross_attention_dim = cross_attention_dim
|
455 |
+
self.to_k_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
456 |
+
self.to_v_ref = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
457 |
+
self.scale = scale
|
458 |
+
|
459 |
+
def __call__(
|
460 |
+
self,
|
461 |
+
attn,
|
462 |
+
hidden_states: torch.FloatTensor,
|
463 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
464 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
465 |
+
temb: Optional[torch.FloatTensor] = None,
|
466 |
+
scale: float = 1.0,
|
467 |
+
num_images_per_prompt=1,
|
468 |
+
cond_hidden_states=None,
|
469 |
+
sa_hidden_states=None,
|
470 |
+
|
471 |
+
) -> torch.FloatTensor:
|
472 |
+
residual = hidden_states
|
473 |
+
if attn.spatial_norm is not None:
|
474 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
475 |
+
|
476 |
+
input_ndim = hidden_states.ndim
|
477 |
+
|
478 |
+
if input_ndim == 4:
|
479 |
+
batch_size, channel, height, width = hidden_states.shape
|
480 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
481 |
+
|
482 |
+
batch_size, sequence_length, _ = (
|
483 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
484 |
+
)
|
485 |
+
|
486 |
+
if attention_mask is not None:
|
487 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
488 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
489 |
+
# (batch, heads, source_length, target_length)
|
490 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
491 |
+
|
492 |
+
if attn.group_norm is not None:
|
493 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
494 |
+
|
495 |
+
args = () if USE_PEFT_BACKEND else (scale,)
|
496 |
+
query = attn.to_q(hidden_states, *args)
|
497 |
+
|
498 |
+
if encoder_hidden_states is None:
|
499 |
+
encoder_hidden_states = hidden_states
|
500 |
+
|
501 |
+
elif attn.norm_cross:
|
502 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
503 |
+
|
504 |
+
key = attn.to_k(encoder_hidden_states, *args)
|
505 |
+
value = attn.to_v(encoder_hidden_states, *args)
|
506 |
+
|
507 |
+
inner_dim = key.shape[-1]
|
508 |
+
head_dim = inner_dim // attn.heads
|
509 |
+
|
510 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
511 |
+
|
512 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
513 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
514 |
+
|
515 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
516 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
517 |
+
hidden_states = F.scaled_dot_product_attention(
|
518 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
519 |
+
)
|
520 |
+
|
521 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
522 |
+
hidden_states = hidden_states.to(query.dtype)
|
523 |
+
|
524 |
+
# for ref adapter
|
525 |
+
if sa_hidden_states is not None:
|
526 |
+
ref_hidden_states = sa_hidden_states[self.name]
|
527 |
+
# for ref
|
528 |
+
ref_key = self.to_k_ref(ref_hidden_states)
|
529 |
+
ref_value = self.to_v_ref(ref_hidden_states)
|
530 |
+
ref_key = ref_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
531 |
+
ref_value = ref_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
532 |
+
|
533 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
534 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
535 |
+
ref_hidden_states = F.scaled_dot_product_attention(
|
536 |
+
query, ref_key, ref_value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
537 |
+
)
|
538 |
+
ref_hidden_states = ref_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
539 |
+
ref_hidden_states = ref_hidden_states.to(query.dtype)
|
540 |
+
hidden_states = hidden_states + ref_hidden_states * self.scale
|
541 |
+
|
542 |
+
# linear proj
|
543 |
+
hidden_states = attn.to_out[0](hidden_states, *args)
|
544 |
+
# dropout
|
545 |
+
hidden_states = attn.to_out[1](hidden_states)
|
546 |
+
|
547 |
+
if input_ndim == 4:
|
548 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
549 |
+
|
550 |
+
if attn.residual_connection:
|
551 |
+
hidden_states = hidden_states + residual
|
552 |
+
|
553 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
554 |
+
|
555 |
+
return hidden_states
|
556 |
+
|
557 |
+
|
558 |
+
|
559 |
+
class IPAttnProcessor2_0(torch.nn.Module):
|
560 |
+
r"""
|
561 |
+
Attention processor for IP-Adapater for PyTorch 2.0.
|
562 |
+
Args:
|
563 |
+
hidden_size (`int`):
|
564 |
+
The hidden size of the attention layer.
|
565 |
+
cross_attention_dim (`int`):
|
566 |
+
The number of channels in the `encoder_hidden_states`.
|
567 |
+
scale (`float`, defaults to 1.0):
|
568 |
+
the weight scale of image prompt.
|
569 |
+
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
570 |
+
The context length of the image features.
|
571 |
+
"""
|
572 |
+
|
573 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
574 |
+
super().__init__()
|
575 |
+
|
576 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
577 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
578 |
+
|
579 |
+
self.hidden_size = hidden_size
|
580 |
+
self.cross_attention_dim = cross_attention_dim
|
581 |
+
self.scale = scale
|
582 |
+
self.num_tokens = num_tokens
|
583 |
+
|
584 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
585 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
586 |
+
|
587 |
+
def __call__(
|
588 |
+
self,
|
589 |
+
attn,
|
590 |
+
hidden_states,
|
591 |
+
encoder_hidden_states=None,
|
592 |
+
attention_mask=None,
|
593 |
+
temb=None,
|
594 |
+
sa_hidden_states=None,
|
595 |
+
scale: float = 1.0,
|
596 |
+
):
|
597 |
+
# attn原始的attn模块
|
598 |
+
residual = hidden_states
|
599 |
+
|
600 |
+
if attn.spatial_norm is not None:
|
601 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
602 |
+
|
603 |
+
input_ndim = hidden_states.ndim
|
604 |
+
|
605 |
+
if input_ndim == 4:
|
606 |
+
batch_size, channel, height, width = hidden_states.shape
|
607 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
608 |
+
|
609 |
+
batch_size, sequence_length, _ = (
|
610 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
611 |
+
)
|
612 |
+
|
613 |
+
if attention_mask is not None:
|
614 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
615 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
616 |
+
# (batch, heads, source_length, target_length)
|
617 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
618 |
+
|
619 |
+
if attn.group_norm is not None:
|
620 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
621 |
+
|
622 |
+
query = attn.to_q(hidden_states)
|
623 |
+
|
624 |
+
if encoder_hidden_states is None:
|
625 |
+
if sa_hidden_states is not None:
|
626 |
+
ref_hidden_states = sa_hidden_states[self.name]
|
627 |
+
# print(ref_hidden_states.shape, hidden_states.shape)
|
628 |
+
encoder_hidden_states = torch.cat([hidden_states, ref_hidden_states], dim=1)
|
629 |
+
else:
|
630 |
+
encoder_hidden_states = hidden_states
|
631 |
+
else:
|
632 |
+
# get encoder_hidden_states, ip_hidden_states
|
633 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
634 |
+
if end_pos != 89:
|
635 |
+
encoder_hidden_states = encoder_hidden_states
|
636 |
+
ip_hidden_states = None
|
637 |
+
else:
|
638 |
+
encoder_hidden_states, ip_hidden_states = (
|
639 |
+
encoder_hidden_states[:, :end_pos, :],
|
640 |
+
encoder_hidden_states[:, end_pos:, :],
|
641 |
+
)
|
642 |
+
if attn.norm_cross:
|
643 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
644 |
+
|
645 |
+
key = attn.to_k(encoder_hidden_states)
|
646 |
+
value = attn.to_v(encoder_hidden_states)
|
647 |
+
|
648 |
+
inner_dim = key.shape[-1]
|
649 |
+
head_dim = inner_dim // attn.heads
|
650 |
+
|
651 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
652 |
+
|
653 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
654 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
655 |
+
|
656 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
657 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
658 |
+
hidden_states = F.scaled_dot_product_attention(
|
659 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
660 |
+
)
|
661 |
+
|
662 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
663 |
+
hidden_states = hidden_states.to(query.dtype)
|
664 |
+
|
665 |
+
# make sure the ipa is in the inference stage
|
666 |
+
if ip_hidden_states is not None:
|
667 |
+
# for ip-adapter
|
668 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
669 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
670 |
+
|
671 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
672 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
673 |
+
|
674 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
675 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
676 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
677 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
678 |
+
)
|
679 |
+
with torch.no_grad():
|
680 |
+
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
|
681 |
+
# print(self.attn_map.shape)
|
682 |
+
|
683 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
684 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
685 |
+
|
686 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
687 |
+
|
688 |
+
# linear proj
|
689 |
+
hidden_states = attn.to_out[0](hidden_states)
|
690 |
+
# dropout
|
691 |
+
hidden_states = attn.to_out[1](hidden_states)
|
692 |
+
|
693 |
+
if input_ndim == 4:
|
694 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
695 |
+
|
696 |
+
if attn.residual_connection:
|
697 |
+
hidden_states = hidden_states + residual
|
698 |
+
|
699 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
700 |
+
|
701 |
+
return hidden_states
|
702 |
+
|
703 |
+
class LoRAIPAttnProcessor2_0(nn.Module):
|
704 |
+
r"""
|
705 |
+
Processor for implementing the LoRA attention mechanism.
|
706 |
+
|
707 |
+
Args:
|
708 |
+
hidden_size (`int`, *optional*):
|
709 |
+
The hidden size of the attention layer.
|
710 |
+
cross_attention_dim (`int`, *optional*):
|
711 |
+
The number of channels in the `encoder_hidden_states`.
|
712 |
+
rank (`int`, defaults to 4):
|
713 |
+
The dimension of the LoRA update matrices.
|
714 |
+
network_alpha (`int`, *optional*):
|
715 |
+
Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
|
716 |
+
"""
|
717 |
+
|
718 |
+
def __init__(self, hidden_size, cross_attention_dim=None, rank=128, network_alpha=None, lora_scale=1.0, scale=1.0,
|
719 |
+
num_tokens=4):
|
720 |
+
super().__init__()
|
721 |
+
|
722 |
+
self.rank = rank
|
723 |
+
self.lora_scale = lora_scale
|
724 |
+
self.num_tokens = num_tokens
|
725 |
+
|
726 |
+
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
727 |
+
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
728 |
+
self.to_v_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
729 |
+
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
730 |
+
|
731 |
+
self.hidden_size = hidden_size
|
732 |
+
self.cross_attention_dim = cross_attention_dim
|
733 |
+
self.scale = scale
|
734 |
+
|
735 |
+
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
736 |
+
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
737 |
+
|
738 |
+
def __call__(
|
739 |
+
self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0, temb=None, *args,
|
740 |
+
**kwargs,
|
741 |
+
):
|
742 |
+
residual = hidden_states
|
743 |
+
|
744 |
+
if attn.spatial_norm is not None:
|
745 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
746 |
+
|
747 |
+
input_ndim = hidden_states.ndim
|
748 |
+
|
749 |
+
if input_ndim == 4:
|
750 |
+
batch_size, channel, height, width = hidden_states.shape
|
751 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
752 |
+
|
753 |
+
batch_size, sequence_length, _ = (
|
754 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
755 |
+
)
|
756 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
757 |
+
|
758 |
+
if attn.group_norm is not None:
|
759 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
760 |
+
|
761 |
+
query = attn.to_q(hidden_states) + self.lora_scale * self.to_q_lora(hidden_states)
|
762 |
+
# query = attn.head_to_batch_dim(query)
|
763 |
+
|
764 |
+
if encoder_hidden_states is None:
|
765 |
+
encoder_hidden_states = hidden_states
|
766 |
+
else:
|
767 |
+
# get encoder_hidden_states, ip_hidden_states
|
768 |
+
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
769 |
+
encoder_hidden_states, ip_hidden_states = (
|
770 |
+
encoder_hidden_states[:, :end_pos, :],
|
771 |
+
encoder_hidden_states[:, end_pos:, :],
|
772 |
+
)
|
773 |
+
if attn.norm_cross:
|
774 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
775 |
+
|
776 |
+
# for text
|
777 |
+
key = attn.to_k(encoder_hidden_states) + self.lora_scale * self.to_k_lora(encoder_hidden_states)
|
778 |
+
value = attn.to_v(encoder_hidden_states) + self.lora_scale * self.to_v_lora(encoder_hidden_states)
|
779 |
+
|
780 |
+
inner_dim = key.shape[-1]
|
781 |
+
head_dim = inner_dim // attn.heads
|
782 |
+
|
783 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
784 |
+
|
785 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
786 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
787 |
+
|
788 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
789 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
790 |
+
hidden_states = F.scaled_dot_product_attention(
|
791 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
792 |
+
)
|
793 |
+
|
794 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
795 |
+
hidden_states = hidden_states.to(query.dtype)
|
796 |
+
|
797 |
+
# for ip
|
798 |
+
ip_key = self.to_k_ip(ip_hidden_states)
|
799 |
+
ip_value = self.to_v_ip(ip_hidden_states)
|
800 |
+
|
801 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
802 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
803 |
+
|
804 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
805 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
806 |
+
ip_hidden_states = F.scaled_dot_product_attention(
|
807 |
+
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
808 |
+
)
|
809 |
+
|
810 |
+
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
811 |
+
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
812 |
+
|
813 |
+
hidden_states = hidden_states + self.scale * ip_hidden_states
|
814 |
+
|
815 |
+
# linear proj
|
816 |
+
hidden_states = attn.to_out[0](hidden_states) + self.lora_scale * self.to_out_lora(hidden_states)
|
817 |
+
# dropout
|
818 |
+
hidden_states = attn.to_out[1](hidden_states)
|
819 |
+
|
820 |
+
if input_ndim == 4:
|
821 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
822 |
+
|
823 |
+
if attn.residual_connection:
|
824 |
+
hidden_states = hidden_states + residual
|
825 |
+
|
826 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
827 |
+
|
828 |
+
return hidden_states
|
adapter/resampler.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2024/5/13
|
3 |
+
# @Author : White Jiang
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from einops import rearrange
|
9 |
+
from einops.layers.torch import Rearrange
|
10 |
+
|
11 |
+
|
12 |
+
# FFN
|
13 |
+
def FeedForward(dim, mult=4):
|
14 |
+
inner_dim = int(dim * mult)
|
15 |
+
return nn.Sequential(
|
16 |
+
nn.LayerNorm(dim),
|
17 |
+
nn.Linear(dim, inner_dim, bias=False),
|
18 |
+
nn.GELU(),
|
19 |
+
nn.Linear(inner_dim, dim, bias=False),
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
def reshape_tensor(x, heads):
|
24 |
+
bs, length, width = x.shape
|
25 |
+
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
26 |
+
x = x.view(bs, length, heads, -1)
|
27 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
28 |
+
x = x.transpose(1, 2)
|
29 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
30 |
+
x = x.reshape(bs, heads, length, -1)
|
31 |
+
return x
|
32 |
+
|
33 |
+
|
34 |
+
class PerceiverAttention(nn.Module):
|
35 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
36 |
+
super().__init__()
|
37 |
+
self.scale = dim_head ** -0.5
|
38 |
+
self.dim_head = dim_head
|
39 |
+
self.heads = heads
|
40 |
+
inner_dim = dim_head * heads
|
41 |
+
|
42 |
+
self.norm1 = nn.LayerNorm(dim)
|
43 |
+
self.norm2 = nn.LayerNorm(dim)
|
44 |
+
|
45 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
46 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
47 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
48 |
+
|
49 |
+
def forward(self, x, latents):
|
50 |
+
"""
|
51 |
+
Args:
|
52 |
+
x (torch.Tensor): image features
|
53 |
+
shape (b, n1, D)
|
54 |
+
latent (torch.Tensor): latent features
|
55 |
+
shape (b, n2, D)
|
56 |
+
"""
|
57 |
+
x = self.norm1(x)
|
58 |
+
latents = self.norm2(latents)
|
59 |
+
|
60 |
+
b, l, _ = latents.shape
|
61 |
+
|
62 |
+
q = self.to_q(latents)
|
63 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
64 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
65 |
+
|
66 |
+
q = reshape_tensor(q, self.heads) # [b, h, n, c]
|
67 |
+
k = reshape_tensor(k, self.heads)
|
68 |
+
v = reshape_tensor(v, self.heads)
|
69 |
+
|
70 |
+
# attention
|
71 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
72 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
73 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
74 |
+
out = weight @ v # [b, h, n, n] @ [b, h, n, c] = [b, h, n, c]
|
75 |
+
|
76 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
77 |
+
|
78 |
+
return self.to_out(out)
|
79 |
+
|
80 |
+
|
81 |
+
class PerceiverResampler(nn.Module):
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
*,
|
85 |
+
dim=1024,
|
86 |
+
depth=8,
|
87 |
+
dim_head=64,
|
88 |
+
heads=16,
|
89 |
+
num_latents=8,
|
90 |
+
embedding_dim=768,
|
91 |
+
output_dim=1024,
|
92 |
+
ff_mult=4,
|
93 |
+
):
|
94 |
+
super().__init__()
|
95 |
+
|
96 |
+
self.latents = nn.Parameter(torch.randn(1, num_latents, dim) / dim ** 0.5)
|
97 |
+
|
98 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
99 |
+
|
100 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
101 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
102 |
+
|
103 |
+
self.layers = nn.ModuleList([])
|
104 |
+
for _ in range(depth):
|
105 |
+
self.layers.append(
|
106 |
+
nn.ModuleList(
|
107 |
+
[
|
108 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
109 |
+
FeedForward(dim=dim, mult=ff_mult),
|
110 |
+
]
|
111 |
+
)
|
112 |
+
)
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
|
116 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
117 |
+
|
118 |
+
x = self.proj_in(x)
|
119 |
+
|
120 |
+
for attn, ff in self.layers:
|
121 |
+
latents = attn(x, latents) + latents
|
122 |
+
latents = ff(latents) + latents
|
123 |
+
|
124 |
+
latents = self.proj_out(latents)
|
125 |
+
return self.norm_out(latents)
|
126 |
+
|
127 |
+
|
128 |
+
class FacePerceiverResampler(nn.Module):
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
*,
|
132 |
+
dim=768,
|
133 |
+
depth=4,
|
134 |
+
dim_head=64,
|
135 |
+
heads=16,
|
136 |
+
embedding_dim=1280,
|
137 |
+
output_dim=768,
|
138 |
+
ff_mult=4,
|
139 |
+
):
|
140 |
+
super().__init__()
|
141 |
+
|
142 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
143 |
+
|
144 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
145 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
146 |
+
|
147 |
+
self.layers = nn.ModuleList([])
|
148 |
+
for _ in range(depth):
|
149 |
+
self.layers.append(
|
150 |
+
nn.ModuleList(
|
151 |
+
[
|
152 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
153 |
+
FeedForward(dim=dim, mult=ff_mult),
|
154 |
+
]
|
155 |
+
)
|
156 |
+
)
|
157 |
+
|
158 |
+
def forward(self, latents, x):
|
159 |
+
|
160 |
+
x = self.proj_in(x)
|
161 |
+
|
162 |
+
for attn, ff in self.layers:
|
163 |
+
latents = attn(x, latents) + latents
|
164 |
+
latents = ff(latents) + latents
|
165 |
+
|
166 |
+
latents = self.proj_out(latents)
|
167 |
+
return self.norm_out(latents)
|
168 |
+
|
169 |
+
|
170 |
+
class Resampler(nn.Module):
|
171 |
+
def __init__(
|
172 |
+
self,
|
173 |
+
dim=1024,
|
174 |
+
depth=8,
|
175 |
+
dim_head=64,
|
176 |
+
heads=16,
|
177 |
+
num_queries=8,
|
178 |
+
embedding_dim=768,
|
179 |
+
output_dim=1024,
|
180 |
+
ff_mult=4,
|
181 |
+
max_seq_len: int = 257, # CLIP tokens + CLS token
|
182 |
+
apply_pos_emb: bool = False,
|
183 |
+
num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
|
184 |
+
):
|
185 |
+
super().__init__()
|
186 |
+
self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
|
187 |
+
|
188 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
189 |
+
|
190 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
191 |
+
|
192 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
193 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
194 |
+
|
195 |
+
self.to_latents_from_mean_pooled_seq = (
|
196 |
+
nn.Sequential(
|
197 |
+
nn.LayerNorm(dim),
|
198 |
+
nn.Linear(dim, dim * num_latents_mean_pooled),
|
199 |
+
Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
|
200 |
+
)
|
201 |
+
if num_latents_mean_pooled > 0
|
202 |
+
else None
|
203 |
+
)
|
204 |
+
|
205 |
+
self.layers = nn.ModuleList([])
|
206 |
+
for _ in range(depth):
|
207 |
+
self.layers.append(
|
208 |
+
nn.ModuleList(
|
209 |
+
[
|
210 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
211 |
+
FeedForward(dim=dim, mult=ff_mult),
|
212 |
+
]
|
213 |
+
)
|
214 |
+
)
|
215 |
+
|
216 |
+
def forward(self, x):
|
217 |
+
if self.pos_emb is not None:
|
218 |
+
n, device = x.shape[1], x.device
|
219 |
+
pos_emb = self.pos_emb(torch.arange(n, device=device))
|
220 |
+
x = x + pos_emb
|
221 |
+
|
222 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
223 |
+
|
224 |
+
x = self.proj_in(x)
|
225 |
+
|
226 |
+
if self.to_latents_from_mean_pooled_seq:
|
227 |
+
meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
|
228 |
+
meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
|
229 |
+
latents = torch.cat((meanpooled_latents, latents), dim=-2)
|
230 |
+
|
231 |
+
for attn, ff in self.layers:
|
232 |
+
latents = attn(x, latents) + latents
|
233 |
+
latents = ff(latents) + latents
|
234 |
+
|
235 |
+
latents = self.proj_out(latents)
|
236 |
+
return self.norm_out(latents)
|
237 |
+
|
238 |
+
|
239 |
+
def masked_mean(t, *, dim, mask=None):
|
240 |
+
if mask is None:
|
241 |
+
return t.mean(dim=dim)
|
242 |
+
|
243 |
+
denom = mask.sum(dim=dim, keepdim=True)
|
244 |
+
mask = rearrange(mask, "b n -> b n 1")
|
245 |
+
masked_t = t.masked_fill(~mask, 0.0)
|
246 |
+
|
247 |
+
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
|
248 |
+
|
249 |
+
|
250 |
+
class ProjPlusModel(torch.nn.Module):
|
251 |
+
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4):
|
252 |
+
super().__init__()
|
253 |
+
|
254 |
+
self.cross_attention_dim = cross_attention_dim
|
255 |
+
self.num_tokens = num_tokens
|
256 |
+
|
257 |
+
self.proj = torch.nn.Sequential(
|
258 |
+
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim * 2),
|
259 |
+
torch.nn.GELU(),
|
260 |
+
torch.nn.Linear(id_embeddings_dim * 2, cross_attention_dim * num_tokens),
|
261 |
+
)
|
262 |
+
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
263 |
+
|
264 |
+
self.perceiver_resampler = FacePerceiverResampler(
|
265 |
+
dim=cross_attention_dim,
|
266 |
+
depth=4,
|
267 |
+
dim_head=64,
|
268 |
+
heads=cross_attention_dim // 64,
|
269 |
+
embedding_dim=clip_embeddings_dim,
|
270 |
+
output_dim=cross_attention_dim,
|
271 |
+
ff_mult=4,
|
272 |
+
)
|
273 |
+
|
274 |
+
def forward(self, id_embeds, clip_embeds, shortcut=False, scale=1.0):
|
275 |
+
x = self.proj(id_embeds)
|
276 |
+
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
|
277 |
+
x = self.norm(x)
|
278 |
+
out = self.perceiver_resampler(x, clip_embeds)
|
279 |
+
if shortcut:
|
280 |
+
out = x + scale * out
|
281 |
+
return out
|
282 |
+
|
283 |
+
|
284 |
+
if __name__ == "__main__":
|
285 |
+
model = PerceiverResampler(
|
286 |
+
dim=1024,
|
287 |
+
depth=8,
|
288 |
+
dim_head=64,
|
289 |
+
heads=16,
|
290 |
+
num_latents=8,
|
291 |
+
embedding_dim=4096,
|
292 |
+
output_dim=1024,
|
293 |
+
ff_mult=4,
|
294 |
+
)
|
295 |
+
|
296 |
+
x = torch.rand(2, 77, 4096)
|
297 |
+
|
298 |
+
with torch.no_grad():
|
299 |
+
out = model(x)
|
300 |
+
print(out.shape)
|
301 |
+
|
302 |
+
print(sum([p.numel() for p in model.parameters()]) / 1e6)
|
dressing_sd/pipelines/__pycache__/pipeline_sd.cpython-39.pyc
ADDED
Binary file (15.4 kB). View file
|
|
dressing_sd/pipelines/pipeline_sd.py
ADDED
@@ -0,0 +1,748 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2024/5/31
|
3 |
+
# @Author : White Jiang
|
4 |
+
from diffusers.schedulers import (
|
5 |
+
DDIMScheduler,
|
6 |
+
DPMSolverMultistepScheduler,
|
7 |
+
EulerAncestralDiscreteScheduler,
|
8 |
+
EulerDiscreteScheduler,
|
9 |
+
LMSDiscreteScheduler,
|
10 |
+
PNDMScheduler,
|
11 |
+
)
|
12 |
+
from diffusers.utils import is_accelerate_available
|
13 |
+
from diffusers.pipelines.controlnet.pipeline_controlnet import *
|
14 |
+
|
15 |
+
import os
|
16 |
+
import sys
|
17 |
+
from safetensors import safe_open
|
18 |
+
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
19 |
+
sys.path.append(BASE_DIR)
|
20 |
+
|
21 |
+
from adapter.resampler import ProjPlusModel
|
22 |
+
from adapter.attention_processor import RefSAttnProcessor2_0, RefLoraSAttnProcessor2_0, IPAttnProcessor2_0, LoRAIPAttnProcessor2_0
|
23 |
+
|
24 |
+
|
25 |
+
class PipIpaControlNet(StableDiffusionControlNetPipeline):
|
26 |
+
_optional_components = []
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
vae,
|
31 |
+
reference_unet,
|
32 |
+
unet,
|
33 |
+
tokenizer,
|
34 |
+
text_encoder,
|
35 |
+
controlnet,
|
36 |
+
image_encoder,
|
37 |
+
ImgProj,
|
38 |
+
ip_ckpt,
|
39 |
+
scheduler: Union[
|
40 |
+
DDIMScheduler,
|
41 |
+
PNDMScheduler,
|
42 |
+
LMSDiscreteScheduler,
|
43 |
+
EulerDiscreteScheduler,
|
44 |
+
EulerAncestralDiscreteScheduler,
|
45 |
+
DPMSolverMultistepScheduler,
|
46 |
+
],
|
47 |
+
safety_checker: StableDiffusionSafetyChecker,
|
48 |
+
feature_extractor: CLIPImageProcessor,
|
49 |
+
):
|
50 |
+
super().__init__(vae, text_encoder, tokenizer, unet, controlnet, scheduler, safety_checker, feature_extractor)
|
51 |
+
|
52 |
+
self.register_modules(
|
53 |
+
vae=vae,
|
54 |
+
reference_unet=reference_unet,
|
55 |
+
unet=unet,
|
56 |
+
controlnet=controlnet,
|
57 |
+
scheduler=scheduler,
|
58 |
+
tokenizer=tokenizer,
|
59 |
+
text_encoder=text_encoder,
|
60 |
+
image_encoder=image_encoder,
|
61 |
+
ImgProj=ImgProj,
|
62 |
+
safety_checker=safety_checker,
|
63 |
+
feature_extractor=feature_extractor
|
64 |
+
)
|
65 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
66 |
+
self.clip_image_processor = CLIPImageProcessor()
|
67 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
68 |
+
self.ref_image_processor = VaeImageProcessor(
|
69 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False,
|
70 |
+
)
|
71 |
+
self.cond_image_processor = VaeImageProcessor(
|
72 |
+
vae_scale_factor=self.vae_scale_factor,
|
73 |
+
do_convert_rgb=True,
|
74 |
+
do_normalize=False,
|
75 |
+
)
|
76 |
+
self.ip_ckpt = ip_ckpt
|
77 |
+
self.num_tokens = 4
|
78 |
+
# image proj model
|
79 |
+
self.image_proj_model = self.init_proj()
|
80 |
+
self.load_ip_adapter()
|
81 |
+
|
82 |
+
def init_proj(self):
|
83 |
+
image_proj_model = ProjPlusModel(
|
84 |
+
cross_attention_dim=self.unet.config.cross_attention_dim,
|
85 |
+
id_embeddings_dim=512,
|
86 |
+
clip_embeddings_dim=self.image_encoder.config.hidden_size,
|
87 |
+
num_tokens=self.num_tokens,
|
88 |
+
).to(self.unet.device, dtype=torch.float16)
|
89 |
+
return image_proj_model
|
90 |
+
|
91 |
+
def load_ip_adapter(self):
|
92 |
+
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
|
93 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
94 |
+
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
|
95 |
+
for key in f.keys():
|
96 |
+
if key.startswith("image_proj."):
|
97 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
98 |
+
elif key.startswith("ip_adapter."):
|
99 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
100 |
+
else:
|
101 |
+
state_dict = torch.load(self.ip_ckpt, map_location="cpu")
|
102 |
+
self.image_proj_model.load_state_dict(state_dict["image_proj"])
|
103 |
+
ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
|
104 |
+
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
|
105 |
+
|
106 |
+
@property
|
107 |
+
def cross_attention_kwargs(self):
|
108 |
+
return self._cross_attention_kwargs
|
109 |
+
|
110 |
+
def enable_vae_slicing(self):
|
111 |
+
self.vae.enable_slicing()
|
112 |
+
|
113 |
+
def disable_vae_slicing(self):
|
114 |
+
self.vae.disable_slicing()
|
115 |
+
|
116 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
117 |
+
if is_accelerate_available():
|
118 |
+
from accelerate import cpu_offload
|
119 |
+
else:
|
120 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
121 |
+
|
122 |
+
device = torch.device(f"cuda:{gpu_id}")
|
123 |
+
|
124 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
125 |
+
if cpu_offloaded_model is not None:
|
126 |
+
cpu_offload(cpu_offloaded_model, device)
|
127 |
+
|
128 |
+
@property
|
129 |
+
def _execution_device(self):
|
130 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
131 |
+
return self.device
|
132 |
+
for module in self.unet.modules():
|
133 |
+
if (
|
134 |
+
hasattr(module, "_hf_hook")
|
135 |
+
and hasattr(module._hf_hook, "execution_device")
|
136 |
+
and module._hf_hook.execution_device is not None
|
137 |
+
):
|
138 |
+
return torch.device(module._hf_hook.execution_device)
|
139 |
+
return self.device
|
140 |
+
|
141 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
142 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
143 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
144 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
145 |
+
# and should be between [0, 1]
|
146 |
+
|
147 |
+
accepts_eta = "eta" in set(
|
148 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
149 |
+
)
|
150 |
+
extra_step_kwargs = {}
|
151 |
+
if accepts_eta:
|
152 |
+
extra_step_kwargs["eta"] = eta
|
153 |
+
|
154 |
+
# check if the scheduler accepts generator
|
155 |
+
accepts_generator = "generator" in set(
|
156 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
157 |
+
)
|
158 |
+
if accepts_generator:
|
159 |
+
extra_step_kwargs["generator"] = generator
|
160 |
+
return extra_step_kwargs
|
161 |
+
|
162 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
163 |
+
|
164 |
+
def encode_prompt(
|
165 |
+
self,
|
166 |
+
prompt,
|
167 |
+
device,
|
168 |
+
num_images_per_prompt,
|
169 |
+
do_classifier_free_guidance,
|
170 |
+
negative_prompt=None,
|
171 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
172 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
173 |
+
lora_scale: Optional[float] = None,
|
174 |
+
clip_skip: Optional[int] = None,
|
175 |
+
):
|
176 |
+
|
177 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
178 |
+
self._lora_scale = lora_scale
|
179 |
+
|
180 |
+
# dynamically adjust the LoRA scale
|
181 |
+
if not USE_PEFT_BACKEND:
|
182 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
183 |
+
else:
|
184 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
185 |
+
|
186 |
+
if prompt is not None and isinstance(prompt, str):
|
187 |
+
batch_size = 1
|
188 |
+
elif prompt is not None and isinstance(prompt, list):
|
189 |
+
batch_size = len(prompt)
|
190 |
+
else:
|
191 |
+
batch_size = prompt_embeds.shape[0]
|
192 |
+
|
193 |
+
if prompt_embeds is None:
|
194 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
195 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
196 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
197 |
+
|
198 |
+
text_inputs = self.tokenizer(
|
199 |
+
prompt,
|
200 |
+
padding="max_length",
|
201 |
+
max_length=self.tokenizer.model_max_length,
|
202 |
+
truncation=True,
|
203 |
+
return_tensors="pt",
|
204 |
+
)
|
205 |
+
text_input_ids = text_inputs.input_ids
|
206 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
207 |
+
|
208 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
209 |
+
text_input_ids, untruncated_ids
|
210 |
+
):
|
211 |
+
removed_text = self.tokenizer.batch_decode(
|
212 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
|
213 |
+
)
|
214 |
+
logger.warning(
|
215 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
216 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
217 |
+
)
|
218 |
+
|
219 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
220 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
221 |
+
else:
|
222 |
+
attention_mask = None
|
223 |
+
|
224 |
+
if clip_skip is None:
|
225 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
226 |
+
prompt_embeds = prompt_embeds[0]
|
227 |
+
else:
|
228 |
+
prompt_embeds = self.text_encoder(
|
229 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
230 |
+
)
|
231 |
+
# Access the `hidden_states` first, that contains a tuple of
|
232 |
+
# all the hidden states from the encoder layers. Then index into
|
233 |
+
# the tuple to access the hidden states from the desired layer.
|
234 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
235 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
236 |
+
# representations. The `last_hidden_states` that we typically use for
|
237 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
238 |
+
# layer.
|
239 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
240 |
+
|
241 |
+
if self.text_encoder is not None:
|
242 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
243 |
+
elif self.unet is not None:
|
244 |
+
prompt_embeds_dtype = self.unet.dtype
|
245 |
+
else:
|
246 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
247 |
+
|
248 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
249 |
+
|
250 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
251 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
252 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
253 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
254 |
+
|
255 |
+
# get unconditional embeddings for classifier free guidance
|
256 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
257 |
+
uncond_tokens: List[str]
|
258 |
+
if negative_prompt is None:
|
259 |
+
uncond_tokens = [""] * batch_size
|
260 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
261 |
+
raise TypeError(
|
262 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
263 |
+
f" {type(prompt)}."
|
264 |
+
)
|
265 |
+
elif isinstance(negative_prompt, str):
|
266 |
+
uncond_tokens = [negative_prompt]
|
267 |
+
elif batch_size != len(negative_prompt):
|
268 |
+
raise ValueError(
|
269 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
270 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
271 |
+
" the batch size of `prompt`."
|
272 |
+
)
|
273 |
+
else:
|
274 |
+
uncond_tokens = negative_prompt
|
275 |
+
|
276 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
277 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
278 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
279 |
+
|
280 |
+
max_length = prompt_embeds.shape[1]
|
281 |
+
uncond_input = self.tokenizer(
|
282 |
+
uncond_tokens,
|
283 |
+
padding="max_length",
|
284 |
+
max_length=max_length,
|
285 |
+
truncation=True,
|
286 |
+
return_tensors="pt",
|
287 |
+
)
|
288 |
+
|
289 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
290 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
291 |
+
else:
|
292 |
+
attention_mask = None
|
293 |
+
|
294 |
+
negative_prompt_embeds = self.text_encoder(
|
295 |
+
uncond_input.input_ids.to(device),
|
296 |
+
attention_mask=attention_mask,
|
297 |
+
)
|
298 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
299 |
+
|
300 |
+
if do_classifier_free_guidance:
|
301 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
302 |
+
seq_len = negative_prompt_embeds.shape[1]
|
303 |
+
|
304 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
305 |
+
|
306 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
307 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
308 |
+
|
309 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
310 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
311 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
312 |
+
|
313 |
+
return prompt_embeds, negative_prompt_embeds
|
314 |
+
|
315 |
+
def prepare_latents(
|
316 |
+
self,
|
317 |
+
batch_size,
|
318 |
+
num_channels_latents,
|
319 |
+
width,
|
320 |
+
height,
|
321 |
+
dtype,
|
322 |
+
device,
|
323 |
+
generator,
|
324 |
+
latents=None,
|
325 |
+
):
|
326 |
+
shape = (
|
327 |
+
batch_size,
|
328 |
+
num_channels_latents,
|
329 |
+
height // self.vae_scale_factor,
|
330 |
+
width // self.vae_scale_factor,
|
331 |
+
)
|
332 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
333 |
+
raise ValueError(
|
334 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
335 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
336 |
+
)
|
337 |
+
|
338 |
+
if latents is None:
|
339 |
+
latents = randn_tensor(
|
340 |
+
shape, generator=generator, device=device, dtype=dtype
|
341 |
+
)
|
342 |
+
else:
|
343 |
+
latents = latents.to(device)
|
344 |
+
|
345 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
346 |
+
latents = latents * self.scheduler.init_noise_sigma
|
347 |
+
return latents
|
348 |
+
|
349 |
+
def prepare_condition(
|
350 |
+
self,
|
351 |
+
cond_image,
|
352 |
+
width,
|
353 |
+
height,
|
354 |
+
device,
|
355 |
+
dtype,
|
356 |
+
do_classififer_free_guidance=False,
|
357 |
+
):
|
358 |
+
image = self.cond_image_processor.preprocess(
|
359 |
+
cond_image, height=height, width=width
|
360 |
+
).to(dtype=torch.float32)
|
361 |
+
|
362 |
+
image = image.to(device=device, dtype=dtype)
|
363 |
+
|
364 |
+
if do_classififer_free_guidance:
|
365 |
+
image = torch.cat([image] * 2)
|
366 |
+
|
367 |
+
return image
|
368 |
+
|
369 |
+
def get_image_embeds(self, clip_image=None, faceid_embeds=None):
|
370 |
+
with torch.no_grad():
|
371 |
+
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16),
|
372 |
+
output_hidden_states=True).hidden_states[-2]
|
373 |
+
uncond_clip_image_embeds = self.image_encoder(
|
374 |
+
torch.zeros_like(clip_image).to(self.device, dtype=torch.float16), output_hidden_states=True
|
375 |
+
).hidden_states[-2]
|
376 |
+
|
377 |
+
faceid_embeds = faceid_embeds.to(self.device, dtype=torch.float16)
|
378 |
+
image_prompt_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds)
|
379 |
+
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds),uncond_clip_image_embeds)
|
380 |
+
return image_prompt_embeds, uncond_image_prompt_embeds
|
381 |
+
|
382 |
+
def set_scale(self, scale, lora_scale):
|
383 |
+
for attn_processor in self.unet.attn_processors.values():
|
384 |
+
if isinstance(attn_processor, RefLoraSAttnProcessor2_0):
|
385 |
+
attn_processor.scale = scale
|
386 |
+
attn_processor.lora_scale = lora_scale
|
387 |
+
# elif isinstance(attn_processor, RefCAttnProcessor2_0):
|
388 |
+
# attn_processor.scale = scale
|
389 |
+
|
390 |
+
def set_ipa_scale(self, ipa_scale, lora_scale):
|
391 |
+
for attn_processor in self.unet.attn_processors.values():
|
392 |
+
if isinstance(attn_processor, LoRAIPAttnProcessor2_0):
|
393 |
+
attn_processor.scale = ipa_scale
|
394 |
+
attn_processor.lora_scale = lora_scale
|
395 |
+
elif isinstance(attn_processor, IPAttnProcessor2_0):
|
396 |
+
attn_processor.scale = ipa_scale
|
397 |
+
attn_processor.lora_scale = lora_scale
|
398 |
+
|
399 |
+
@torch.no_grad()
|
400 |
+
def __call__(
|
401 |
+
self,
|
402 |
+
prompt,
|
403 |
+
null_prompt,
|
404 |
+
negative_prompt,
|
405 |
+
ref_image,
|
406 |
+
width,
|
407 |
+
height,
|
408 |
+
num_inference_steps,
|
409 |
+
guidance_scale,
|
410 |
+
pose_image=None,
|
411 |
+
ref_clip_image=None,
|
412 |
+
face_clip_image=None,
|
413 |
+
faceid_embeds=None,
|
414 |
+
num_images_per_prompt=1,
|
415 |
+
image_scale=1.0,
|
416 |
+
ipa_scale=0.0,
|
417 |
+
s_lora_scale=0.0,
|
418 |
+
c_lora_scale=0.0,
|
419 |
+
num_samples=1,
|
420 |
+
eta: float = 0.0,
|
421 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
422 |
+
output_type: Optional[str] = "pil",
|
423 |
+
return_dict: bool = True,
|
424 |
+
clip_skip: Optional[int] = None,
|
425 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
426 |
+
callback_steps: Optional[int] = 1,
|
427 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
428 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
429 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
430 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
431 |
+
guess_mode: bool = False,
|
432 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
433 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
434 |
+
**kwargs,
|
435 |
+
):
|
436 |
+
|
437 |
+
if face_clip_image is None:
|
438 |
+
self.set_scale(image_scale, lora_scale=0.0)
|
439 |
+
self.set_ipa_scale(ipa_scale=0.0, lora_scale=0.0)
|
440 |
+
else:
|
441 |
+
self.set_scale(image_scale, lora_scale=s_lora_scale)
|
442 |
+
self.set_ipa_scale(ipa_scale, lora_scale=c_lora_scale)
|
443 |
+
|
444 |
+
# controlnet
|
445 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
446 |
+
# align format for control guidance
|
447 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
448 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
449 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
450 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
451 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
452 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
453 |
+
control_guidance_start, control_guidance_end = (
|
454 |
+
mult * [control_guidance_start],
|
455 |
+
mult * [control_guidance_end],
|
456 |
+
)
|
457 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
458 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
459 |
+
|
460 |
+
global_pool_conditions = (
|
461 |
+
controlnet.config.global_pool_conditions
|
462 |
+
if isinstance(controlnet, ControlNetModel)
|
463 |
+
else controlnet.nets[0].config.global_pool_conditions
|
464 |
+
)
|
465 |
+
guess_mode = guess_mode or global_pool_conditions
|
466 |
+
# Default height and width to unet
|
467 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
468 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
469 |
+
|
470 |
+
device = self._execution_device
|
471 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
472 |
+
self._clip_skip = clip_skip
|
473 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
474 |
+
|
475 |
+
# Prepare timesteps
|
476 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
477 |
+
timesteps = self.scheduler.timesteps
|
478 |
+
|
479 |
+
batch_size = 1
|
480 |
+
if pose_image is not None:
|
481 |
+
# Prepare control image
|
482 |
+
if isinstance(controlnet, ControlNetModel):
|
483 |
+
image = self.prepare_image(
|
484 |
+
image=pose_image,
|
485 |
+
width=width,
|
486 |
+
height=height,
|
487 |
+
batch_size=batch_size * num_images_per_prompt,
|
488 |
+
num_images_per_prompt=num_images_per_prompt,
|
489 |
+
device=device,
|
490 |
+
dtype=controlnet.dtype,
|
491 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
492 |
+
guess_mode=guess_mode,
|
493 |
+
)
|
494 |
+
if do_classifier_free_guidance and not guess_mode:
|
495 |
+
image = image.chunk(2)[0]
|
496 |
+
height, width = image.shape[-2:]
|
497 |
+
else:
|
498 |
+
assert False
|
499 |
+
# print(image.shape)
|
500 |
+
|
501 |
+
# 3. Encode input prompt
|
502 |
+
text_encoder_lora_scale = (
|
503 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
504 |
+
)
|
505 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
506 |
+
prompt,
|
507 |
+
device,
|
508 |
+
num_images_per_prompt,
|
509 |
+
do_classifier_free_guidance,
|
510 |
+
negative_prompt,
|
511 |
+
prompt_embeds=prompt_embeds,
|
512 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
513 |
+
lora_scale=text_encoder_lora_scale,
|
514 |
+
clip_skip=self.clip_skip,
|
515 |
+
)
|
516 |
+
|
517 |
+
if face_clip_image is not None:
|
518 |
+
# for face image condition
|
519 |
+
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(face_clip_image, faceid_embeds)
|
520 |
+
|
521 |
+
bs_embed, seq_len, _ = image_prompt_embeds.shape
|
522 |
+
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
|
523 |
+
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
524 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
|
525 |
+
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
|
526 |
+
|
527 |
+
if ref_clip_image is not None:
|
528 |
+
with torch.no_grad():
|
529 |
+
image_embeds = self.image_encoder(ref_clip_image.to(device, dtype=prompt_embeds.dtype),
|
530 |
+
output_hidden_states=True).hidden_states[-2]
|
531 |
+
image_null_embeds = \
|
532 |
+
self.image_encoder(torch.zeros_like(ref_clip_image).to(device, dtype=prompt_embeds.dtype),
|
533 |
+
output_hidden_states=True).hidden_states[-2]
|
534 |
+
cloth_proj_embed = self.ImgProj(image_embeds)
|
535 |
+
cloth_null_embeds = self.ImgProj(image_null_embeds)
|
536 |
+
# cloth_null_embeds = self.ImgProj(torch.zeros_like(image_embeds))
|
537 |
+
else:
|
538 |
+
null_prompt_embeds, _ = self.encode_prompt(
|
539 |
+
null_prompt,
|
540 |
+
device,
|
541 |
+
num_images_per_prompt,
|
542 |
+
do_classifier_free_guidance,
|
543 |
+
negative_prompt,
|
544 |
+
prompt_embeds=prompt_embeds,
|
545 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
546 |
+
lora_scale=text_encoder_lora_scale,
|
547 |
+
clip_skip=self.clip_skip,
|
548 |
+
)
|
549 |
+
|
550 |
+
# For classifier free guidance, we need to do two forward passes.
|
551 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
552 |
+
# to avoid doing two forward passes
|
553 |
+
if do_classifier_free_guidance:
|
554 |
+
prompt_embeds_control = torch.cat([negative_prompt_embeds, prompt_embeds])
|
555 |
+
if ref_clip_image is not None:
|
556 |
+
null_prompt_embeds = torch.cat([cloth_null_embeds, cloth_proj_embed])
|
557 |
+
else:
|
558 |
+
null_prompt_embeds = torch.cat([negative_prompt_embeds, null_prompt_embeds])
|
559 |
+
if face_clip_image is not None:
|
560 |
+
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
|
561 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
|
562 |
+
else:
|
563 |
+
prompt_embeds = prompt_embeds
|
564 |
+
negative_prompt_embeds = negative_prompt_embeds
|
565 |
+
|
566 |
+
num_channels_latents = self.unet.in_channels
|
567 |
+
latents = self.prepare_latents(
|
568 |
+
batch_size * num_images_per_prompt,
|
569 |
+
num_channels_latents,
|
570 |
+
width,
|
571 |
+
height,
|
572 |
+
prompt_embeds.dtype,
|
573 |
+
device,
|
574 |
+
generator,
|
575 |
+
)
|
576 |
+
|
577 |
+
# Prepare extra step kwargs.
|
578 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
579 |
+
|
580 |
+
# Prepare ref image latents
|
581 |
+
ref_image_tensor = ref_image.to(
|
582 |
+
dtype=self.vae.dtype, device=self.vae.device
|
583 |
+
)
|
584 |
+
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
|
585 |
+
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)
|
586 |
+
if pose_image is not None:
|
587 |
+
# Create tensor stating which controlnets to keep
|
588 |
+
controlnet_keep = []
|
589 |
+
for i in range(len(timesteps)):
|
590 |
+
keeps = [
|
591 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
592 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
593 |
+
]
|
594 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
595 |
+
|
596 |
+
# denoising loop
|
597 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
598 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
599 |
+
for i, t in enumerate(timesteps):
|
600 |
+
# 1. Forward reference image
|
601 |
+
if i == 0:
|
602 |
+
_ = self.reference_unet(
|
603 |
+
ref_image_latents.repeat(
|
604 |
+
(2 if do_classifier_free_guidance else 1), 1, 1, 1
|
605 |
+
),
|
606 |
+
torch.zeros_like(t),
|
607 |
+
encoder_hidden_states=null_prompt_embeds,
|
608 |
+
return_dict=False,
|
609 |
+
)
|
610 |
+
|
611 |
+
# get cache tensors
|
612 |
+
sa_hidden_states = {}
|
613 |
+
for name in self.reference_unet.attn_processors.keys():
|
614 |
+
sa_hidden_states[name] = self.reference_unet.attn_processors[name].cache["hidden_states"][
|
615 |
+
1].unsqueeze(0)
|
616 |
+
# sa_hidden_states[name][0, :, :] = 0
|
617 |
+
|
618 |
+
# 3.1 expand the latents if we are doing classifier free guidance
|
619 |
+
latent_model_input = (
|
620 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
621 |
+
)
|
622 |
+
latent_model_input = self.scheduler.scale_model_input(
|
623 |
+
latent_model_input, t
|
624 |
+
)
|
625 |
+
|
626 |
+
# Optionally get Guidance Scale Embedding
|
627 |
+
timestep_cond = None
|
628 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
629 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
|
630 |
+
batch_size * num_images_per_prompt)
|
631 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
632 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
633 |
+
).to(device=device, dtype=latents.dtype)
|
634 |
+
|
635 |
+
# for control
|
636 |
+
if pose_image is not None:
|
637 |
+
# controlnet(s) inference
|
638 |
+
if guess_mode and self.do_classifier_free_guidance:
|
639 |
+
# Infer ControlNet only for the conditional batch.
|
640 |
+
control_model_input = latents
|
641 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
642 |
+
controlnet_prompt_embeds = prompt_embeds_control.chunk(2)[1]
|
643 |
+
# controlnet_prompt_embeds = prompt_embeds
|
644 |
+
else:
|
645 |
+
control_model_input = latent_model_input
|
646 |
+
controlnet_prompt_embeds = prompt_embeds_control
|
647 |
+
if isinstance(controlnet_keep[i], list):
|
648 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
649 |
+
else:
|
650 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
651 |
+
if isinstance(controlnet_cond_scale, list):
|
652 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
653 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
654 |
+
|
655 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
656 |
+
control_model_input,
|
657 |
+
t,
|
658 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
659 |
+
controlnet_cond=image,
|
660 |
+
conditioning_scale=cond_scale,
|
661 |
+
guess_mode=guess_mode,
|
662 |
+
return_dict=False,
|
663 |
+
)
|
664 |
+
|
665 |
+
# if do_classifier_free_guidance:
|
666 |
+
down_block_res_samples_con = []
|
667 |
+
down_block_res_samples_uncon = []
|
668 |
+
for down_block in down_block_res_samples:
|
669 |
+
down_block_res_samples_con.append(down_block[1])
|
670 |
+
down_block_res_samples_uncon.append(down_block[0])
|
671 |
+
# for prompt_embeds ref + text
|
672 |
+
noise_pred = self.unet(
|
673 |
+
latent_model_input[0].unsqueeze(0),
|
674 |
+
t,
|
675 |
+
encoder_hidden_states=prompt_embeds,
|
676 |
+
cross_attention_kwargs={
|
677 |
+
"sa_hidden_states": sa_hidden_states,
|
678 |
+
},
|
679 |
+
timestep_cond=timestep_cond,
|
680 |
+
down_block_additional_residuals=down_block_res_samples_con,
|
681 |
+
mid_block_additional_residual=mid_block_res_sample[1],
|
682 |
+
added_cond_kwargs=None,
|
683 |
+
return_dict=False,
|
684 |
+
)[0]
|
685 |
+
# for negative_prompt_embeds non text
|
686 |
+
unc_noise_pred = self.unet(
|
687 |
+
latent_model_input[1].unsqueeze(0),
|
688 |
+
t,
|
689 |
+
encoder_hidden_states=negative_prompt_embeds,
|
690 |
+
timestep_cond=timestep_cond,
|
691 |
+
down_block_additional_residuals=down_block_res_samples_uncon,
|
692 |
+
mid_block_additional_residual=mid_block_res_sample[0],
|
693 |
+
added_cond_kwargs=None,
|
694 |
+
return_dict=False,
|
695 |
+
)[0]
|
696 |
+
# for no control
|
697 |
+
else:
|
698 |
+
noise_pred = self.unet(
|
699 |
+
latent_model_input[1].unsqueeze(0),
|
700 |
+
t,
|
701 |
+
encoder_hidden_states=prompt_embeds,
|
702 |
+
cross_attention_kwargs={
|
703 |
+
"sa_hidden_states": sa_hidden_states,
|
704 |
+
},
|
705 |
+
timestep_cond=timestep_cond,
|
706 |
+
added_cond_kwargs=None,
|
707 |
+
return_dict=False,
|
708 |
+
)[0]
|
709 |
+
# for negative_prompt_embeds non text
|
710 |
+
unc_noise_pred = self.unet(
|
711 |
+
latent_model_input[0].unsqueeze(0),
|
712 |
+
t,
|
713 |
+
encoder_hidden_states=negative_prompt_embeds,
|
714 |
+
timestep_cond=timestep_cond,
|
715 |
+
added_cond_kwargs=None,
|
716 |
+
return_dict=False,
|
717 |
+
)[0]
|
718 |
+
|
719 |
+
# perform guidance
|
720 |
+
if do_classifier_free_guidance:
|
721 |
+
# noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
722 |
+
noise_pred_uncond, noise_pred_text = unc_noise_pred, noise_pred
|
723 |
+
|
724 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
725 |
+
noise_pred_text - noise_pred_uncond
|
726 |
+
)
|
727 |
+
|
728 |
+
# compute the previous noisy sample x_t -> x_t-1
|
729 |
+
latents = self.scheduler.step(
|
730 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
731 |
+
)[0]
|
732 |
+
|
733 |
+
# call the callback, if provided
|
734 |
+
if i == len(timesteps) - 1 or (
|
735 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
736 |
+
):
|
737 |
+
progress_bar.update()
|
738 |
+
if callback is not None and i % callback_steps == 0:
|
739 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
740 |
+
callback(step_idx, t, latents)
|
741 |
+
|
742 |
+
# Post-processing
|
743 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0]
|
744 |
+
do_denormalize = [True] * image.shape[0]
|
745 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
746 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
|
747 |
+
|
748 |
+
|
requirements.txt
CHANGED
@@ -4,4 +4,5 @@ invisible_watermark
|
|
4 |
torch
|
5 |
transformers
|
6 |
xformers
|
7 |
-
|
|
|
|
4 |
torch
|
5 |
transformers
|
6 |
xformers
|
7 |
+
addict
|
8 |
+
insightface
|