Spaces:
Sleeping
Sleeping
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import warnings | |
from typing import Union | |
import cv2 | |
import numpy as np | |
import torch | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
from ..util import HWC3, resize_image | |
from .automatic_mask_generator import SamAutomaticMaskGenerator | |
from .build_sam import sam_model_registry | |
class SamDetector: | |
def __init__(self, mask_generator: SamAutomaticMaskGenerator): | |
self.mask_generator = mask_generator | |
def from_pretrained(cls, pretrained_model_or_path, model_type="vit_h", filename="sam_vit_h_4b8939.pth", subfolder=None, cache_dir=None): | |
""" | |
Possible model_type : vit_h, vit_l, vit_b, vit_t | |
download weights from https://github.com/facebookresearch/segment-anything | |
""" | |
if os.path.isdir(pretrained_model_or_path): | |
model_path = os.path.join(pretrained_model_or_path, filename) | |
else: | |
model_path = hf_hub_download(pretrained_model_or_path, filename, subfolder=subfolder, cache_dir=cache_dir) | |
sam = sam_model_registry[model_type](checkpoint=model_path) | |
if torch.cuda.is_available(): | |
sam.to("cuda") | |
mask_generator = SamAutomaticMaskGenerator(sam) | |
return cls(mask_generator) | |
def show_anns(self, anns): | |
if len(anns) == 0: | |
return | |
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True) | |
h, w = anns[0]['segmentation'].shape | |
final_img = Image.fromarray(np.zeros((h, w, 3), dtype=np.uint8), mode="RGB") | |
for ann in sorted_anns: | |
m = ann['segmentation'] | |
img = np.empty((m.shape[0], m.shape[1], 3), dtype=np.uint8) | |
for i in range(3): | |
img[:,:,i] = np.random.randint(255, dtype=np.uint8) | |
final_img.paste(Image.fromarray(img, mode="RGB"), (0, 0), Image.fromarray(np.uint8(m*255))) | |
return np.array(final_img, dtype=np.uint8) | |
def __call__(self, input_image: Union[np.ndarray, Image.Image]=None, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs) -> Image.Image: | |
if "image" in kwargs: | |
warnings.warn("image is deprecated, please use `input_image=...` instead.", DeprecationWarning) | |
input_image = kwargs.pop("image") | |
if input_image is None: | |
raise ValueError("input_image must be defined.") | |
if not isinstance(input_image, np.ndarray): | |
input_image = np.array(input_image, dtype=np.uint8) | |
input_image = HWC3(input_image) | |
input_image = resize_image(input_image, detect_resolution) | |
# Generate Masks | |
masks = self.mask_generator.generate(input_image) | |
# Create map | |
map = self.show_anns(masks) | |
detected_map = map | |
detected_map = HWC3(detected_map) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
if output_type == "pil": | |
detected_map = Image.fromarray(detected_map) | |
return detected_map | |