Spaces:
Runtime error
Runtime error
import gradio as gr | |
from random import randint, sample | |
from all_models import models | |
import csv | |
import os | |
# Assuming you have a function to calculate ELO ratings | |
def init_model_scores(file_path='model_scores.csv'): | |
# Check if the CSV file exists, if not, create it with headers | |
if not os.path.isfile(csv_file_path): | |
with open(csv_file_path, 'w', newline='') as file: | |
writer = csv.writer(file) | |
writer.writerow(["Model Name", "Score"]) | |
for model in models: | |
# make a entry for each model | |
writer.writerow([model, 0]) | |
def update_elo_ratings(user_vote, csv_file_path='model_scores.csv'): | |
# Logic to update ELO ratings based on user vote | |
# Read the current scores from the CSV file | |
scores = {} | |
with open(csv_file_path, 'r') as file: | |
reader = csv.reader(file) | |
next(reader) # Skip the header row | |
for row in reader: | |
scores[row[0]] = int(row[1]) | |
# Update the score for the selected model | |
if user_vote in scores: | |
scores[user_vote] += 1 # Increment the score | |
else: | |
scores[user_vote] = 1 # Add the model with a score of 1 | |
# Write the updated scores back to the CSV file | |
with open(csv_file_path, 'w', newline='') as file: | |
writer = csv.writer(file) | |
writer.writerow(["Model Name", "Score"]) # Write the header row | |
for model, score in scores.items(): | |
writer.writerow([model, score]) | |
# Function to compare two models | |
def compare_models(prompt): | |
model1, model2 = sample(models, 2) | |
image1, model_name1 = gen_fn(model1, prompt) | |
image2, model_name2 = gen_fn(model2, prompt) | |
return image1, model_name1, image2, model_name2 | |
# User voting logic | |
def handle_vote(user_vote): | |
init_model_scores() | |
# Assuming user_vote is a string indicating the preferred model | |
# Update ELO ratings based on user vote | |
update_elo_ratings(user_vote) | |
# Leaderboard display logic | |
def display_leaderboard(): | |
# Logic to display leaderboard based on ELO ratings | |
pass | |
# Your existing Gradio setup code here... | |
def load_fn(models): | |
global models_load | |
models_load = {} | |
for model in models: | |
if model not in models_load.keys(): | |
try: | |
m = gr.load(f'models/{model}') | |
except Exception as error: | |
m = gr.Interface(lambda txt: None, ['text'], ['image']) | |
models_load.update({model: m}) | |
load_fn(models) | |
num_models = 6 | |
default_models = models[:num_models] | |
def extend_choices(choices): | |
return choices + (num_models - len(choices)) * ['NA'] | |
def update_imgbox(choices): | |
choices_plus = extend_choices(choices) | |
return [gr.Image(None, label = m, visible = (m != 'NA')) for m in choices_plus] | |
def gen_fn(model_str, prompt): | |
if model_str == 'NA': | |
return None | |
noise = str(randint(0, 99999999999)) | |
return models_load[model_str](f'{prompt} {noise}') | |
# Modified gen_fn function to return model name | |
def gen_fn(model_str, prompt): | |
if model_str == 'NA': | |
return None, None | |
noise = str(randint(0, 99999999999)) | |
image = models_load[model_str](f'{prompt} {noise}') | |
return image, model_str | |
with gr.Blocks() as ImageGenarationArena: | |
with gr.Column('model A', variant='panel', width=2, height=150) as col: | |
#with gr.Tab('model B'): | |
model_choice2 = gr.Dropdown(models, label = 'Choose model', value = models[0], filterable = False) | |
txt_input2 = gr.Textbox(label = 'Prompt text') | |
max_images = 6 | |
num_images = gr.Slider(1, max_images, value = max_images, step = 1, label = 'Number of images') | |
gen_button2 = gr.Button('Generate') | |
stop_button2 = gr.Button('Stop', variant = 'secondary', interactive = False) | |
gen_button2.click(lambda s: gr.update(interactive = True), None, stop_button2) | |
with gr.Row(): | |
output2 = [gr.Image(label = '') for _ in range(max_images)] | |
for i, o in enumerate(output2): | |
img_i = gr.Number(i, visible = False) | |
num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o) | |
gen_event2 = gen_button2.click(lambda i, n, m, t: gen_fn(m, t) if (i < n) else None, [img_i, num_images, model_choice2, txt_input2], o) | |
stop_button2.click(lambda s: gr.update(interactive = False), None, stop_button2, cancels = [gen_event2]) | |
with gr.Column('model B', variant='panel', width=2, height=150) as col: | |
#with gr.Tab('model A'): | |
model_choice2 = gr.Dropdown(models, label = 'Choose model', value = models[0], filterable = False) | |
txt_input2 = gr.Textbox(label = 'Prompt text') | |
max_images = 6 | |
num_images = gr.Slider(1, max_images, value = max_images, step = 1, label = 'Number of images') | |
gen_button2 = gr.Button('Generate') | |
stop_button2 = gr.Button('Stop', variant = 'secondary', interactive = False) | |
gen_button2.click(lambda s: gr.update(interactive = True), None, stop_button2) | |
with gr.Row(): | |
output2 = [gr.Image(label = '') for _ in range(max_images)] | |
for i, o in enumerate(output2): | |
img_i = gr.Number(i, visible = False) | |
num_images.change(lambda i, n: gr.update(visible = (i < n)), [img_i, num_images], o) | |
gen_event2 = gen_button2.click(lambda i, n, m, t: gen_fn(m, t) if (i < n) else None, [img_i, num_images, model_choice2, txt_input2], o) | |
stop_button2.click(lambda s: gr.update(interactive = False), None, stop_button2, cancels = [gen_event2]) | |
ImageGenarationArena.queue(concurrency_count = 36) | |
ImageGenarationArena.launch() |