salomonsky commited on
Commit
1a52ee5
·
verified ·
1 Parent(s): 908e25f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -11
app.py CHANGED
@@ -10,32 +10,65 @@ import asyncio
10
  from PIL import Image
11
  from gradio_client import Client, handle_file
12
 
 
13
  translator = Translator()
14
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
15
  basemodel = "black-forest-labs/FLUX.1-schnell"
16
  MAX_SEED = np.iinfo(np.int32).max
17
 
 
18
  CSS = "footer {visibility: hidden;}"
19
  JS = "function () {gradioURL = window.location.href;if (!gradioURL.endsWith('?__theme=dark')) {window.location.replace(gradioURL + '?__theme=dark');}}"
20
 
 
21
  def enable_lora(lora_add):
22
- if not lora_add: return basemodel
23
- else: return lora_add
 
 
 
24
 
25
  def get_upscale_finegrain(prompt, img_path, upscale_factor):
26
  client = Client("finegrain/finegrain-image-enhancer")
27
- result = client.predict(input_image=handle_file(img_path), prompt=prompt, negative_prompt="", seed=42, upscale_factor=upscale_factor, controlnet_scale=0.6, controlnet_decay=1, condition_scale=6, tile_width=112, tile_height=144, denoise_strength=0.35, num_inference_steps=18, solver="DDIM", api_name="/process")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  return result[1]
29
 
 
30
  async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
31
- if seed == -1: seed = random.randint(0, MAX_SEED)
 
32
  seed = int(seed)
33
  text = str(translator.translate(prompt, 'English')) + "," + lora_word
34
- client = AsyncInferenceClient()
35
- try: image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model)
36
- except Exception as e: raise gr.Error(f"Error in {e}")
 
 
 
 
 
 
 
 
 
37
  return image, seed
38
 
 
39
  async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor):
40
  model = enable_lora(lora_add)
41
  image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
@@ -45,14 +78,19 @@ async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, u
45
  combined_image.paste(image, (0, 0))
46
  combined_image.paste(upscaled_image, (image.width, 0))
47
  return combined_image, seed
48
- else: return image, seed
 
 
49
 
50
  with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
51
  gr.HTML("<h1><center>Flux Lab Light</center></h1>")
52
  with gr.Row():
53
  with gr.Column(scale=4):
54
- with gr.Row(): img = gr.Image(type="filepath", label='Comparison Image', height=600)
55
- with gr.Row(): prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6); sendBtn = gr.Button(scale=1, variant='primary')
 
 
 
56
  with gr.Accordion("Advanced Options", open=True):
57
  with gr.Column(scale=1):
58
  width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=768)
@@ -63,4 +101,19 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
63
  lora_add = gr.Textbox(label="Add Flux LoRA", info="Copy the HF LoRA model name here", lines=1, placeholder="Please use Warm status model")
64
  lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="")
65
  upscale_factor = gr.Radio(label="UpScale Factor", choices=[0, 2, 3, 4], value=0, scale=2)
66
- gr.on(triggers=[prompt.submit, sendBtn.click], fn=gen, inputs=[prompt, lora_add, lora_word, width
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  from PIL import Image
11
  from gradio_client import Client, handle_file
12
 
13
+
14
  translator = Translator()
15
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
16
  basemodel = "black-forest-labs/FLUX.1-schnell"
17
  MAX_SEED = np.iinfo(np.int32).max
18
 
19
+
20
  CSS = "footer {visibility: hidden;}"
21
  JS = "function () {gradioURL = window.location.href;if (!gradioURL.endsWith('?__theme=dark')) {window.location.replace(gradioURL + '?__theme=dark');}}"
22
 
23
+
24
  def enable_lora(lora_add):
25
+ if not lora_add:
26
+ return basemodel
27
+ else:
28
+ return lora_add
29
+
30
 
31
  def get_upscale_finegrain(prompt, img_path, upscale_factor):
32
  client = Client("finegrain/finegrain-image-enhancer")
33
+ result = client.predict(
34
+ input_image=handle_file(img_path),
35
+ prompt=prompt,
36
+ negative_prompt="",
37
+ seed=42,
38
+ upscale_factor=upscale_factor,
39
+ controlnet_scale=0.6,
40
+ controlnet_decay=1,
41
+ condition_scale=6,
42
+ tile_width=112,
43
+ tile_height=144,
44
+ denoise_strength=0.35,
45
+ num_inference_steps=18,
46
+ solver="DDIM",
47
+ api_name="/process"
48
+ )
49
  return result[1]
50
 
51
+
52
  async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
53
+ if seed == -1:
54
+ seed = random.randint(0, MAX_SEED)
55
  seed = int(seed)
56
  text = str(translator.translate(prompt, 'English')) + "," + lora_word
57
+ async with AsyncInferenceClient() as client:
58
+ try:
59
+ image = await client.text_to_image(
60
+ prompt=text,
61
+ height=height,
62
+ width=width,
63
+ guidance_scale=scales,
64
+ num_inference_steps=steps,
65
+ model=model,
66
+ )
67
+ except Exception as e:
68
+ raise gr.Error(f"Error in {e}")
69
  return image, seed
70
 
71
+
72
  async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor):
73
  model = enable_lora(lora_add)
74
  image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
 
78
  combined_image.paste(image, (0, 0))
79
  combined_image.paste(upscaled_image, (image.width, 0))
80
  return combined_image, seed
81
+ else:
82
+ return image, seed
83
+
84
 
85
  with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
86
  gr.HTML("<h1><center>Flux Lab Light</center></h1>")
87
  with gr.Row():
88
  with gr.Column(scale=4):
89
+ with gr.Row():
90
+ img = gr.Image(type="filepath", label='Comparison Image', height=600)
91
+ with gr.Row():
92
+ prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
93
+ sendBtn = gr.Button(scale=1, variant='primary')
94
  with gr.Accordion("Advanced Options", open=True):
95
  with gr.Column(scale=1):
96
  width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=768)
 
101
  lora_add = gr.Textbox(label="Add Flux LoRA", info="Copy the HF LoRA model name here", lines=1, placeholder="Please use Warm status model")
102
  lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="")
103
  upscale_factor = gr.Radio(label="UpScale Factor", choices=[0, 2, 3, 4], value=0, scale=2)
104
+ gr.on(
105
+ triggers=[prompt.submit, sendBtn.click],
106
+ fn=gen,
107
+ inputs=[
108
+ prompt,
109
+ lora_add,
110
+ lora_word,
111
+ width,
112
+ height,
113
+ scales,
114
+ steps,
115
+ seed,
116
+ upscale_factor
117
+ ],
118
+ outputs=[img, seed]
119
+ )