salomonsky
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -10,32 +10,65 @@ import asyncio
|
|
10 |
from PIL import Image
|
11 |
from gradio_client import Client, handle_file
|
12 |
|
|
|
13 |
translator = Translator()
|
14 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
15 |
basemodel = "black-forest-labs/FLUX.1-schnell"
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
|
|
|
18 |
CSS = "footer {visibility: hidden;}"
|
19 |
JS = "function () {gradioURL = window.location.href;if (!gradioURL.endsWith('?__theme=dark')) {window.location.replace(gradioURL + '?__theme=dark');}}"
|
20 |
|
|
|
21 |
def enable_lora(lora_add):
|
22 |
-
if not lora_add:
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
26 |
client = Client("finegrain/finegrain-image-enhancer")
|
27 |
-
result = client.predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
return result[1]
|
29 |
|
|
|
30 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
31 |
-
if seed == -1:
|
|
|
32 |
seed = int(seed)
|
33 |
text = str(translator.translate(prompt, 'English')) + "," + lora_word
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
return image, seed
|
38 |
|
|
|
39 |
async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor):
|
40 |
model = enable_lora(lora_add)
|
41 |
image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
|
@@ -45,14 +78,19 @@ async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, u
|
|
45 |
combined_image.paste(image, (0, 0))
|
46 |
combined_image.paste(upscaled_image, (image.width, 0))
|
47 |
return combined_image, seed
|
48 |
-
else:
|
|
|
|
|
49 |
|
50 |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
51 |
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
|
52 |
with gr.Row():
|
53 |
with gr.Column(scale=4):
|
54 |
-
with gr.Row():
|
55 |
-
|
|
|
|
|
|
|
56 |
with gr.Accordion("Advanced Options", open=True):
|
57 |
with gr.Column(scale=1):
|
58 |
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=768)
|
@@ -63,4 +101,19 @@ with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
|
63 |
lora_add = gr.Textbox(label="Add Flux LoRA", info="Copy the HF LoRA model name here", lines=1, placeholder="Please use Warm status model")
|
64 |
lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="")
|
65 |
upscale_factor = gr.Radio(label="UpScale Factor", choices=[0, 2, 3, 4], value=0, scale=2)
|
66 |
-
gr.on(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from PIL import Image
|
11 |
from gradio_client import Client, handle_file
|
12 |
|
13 |
+
|
14 |
translator = Translator()
|
15 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
16 |
basemodel = "black-forest-labs/FLUX.1-schnell"
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
|
19 |
+
|
20 |
CSS = "footer {visibility: hidden;}"
|
21 |
JS = "function () {gradioURL = window.location.href;if (!gradioURL.endsWith('?__theme=dark')) {window.location.replace(gradioURL + '?__theme=dark');}}"
|
22 |
|
23 |
+
|
24 |
def enable_lora(lora_add):
|
25 |
+
if not lora_add:
|
26 |
+
return basemodel
|
27 |
+
else:
|
28 |
+
return lora_add
|
29 |
+
|
30 |
|
31 |
def get_upscale_finegrain(prompt, img_path, upscale_factor):
|
32 |
client = Client("finegrain/finegrain-image-enhancer")
|
33 |
+
result = client.predict(
|
34 |
+
input_image=handle_file(img_path),
|
35 |
+
prompt=prompt,
|
36 |
+
negative_prompt="",
|
37 |
+
seed=42,
|
38 |
+
upscale_factor=upscale_factor,
|
39 |
+
controlnet_scale=0.6,
|
40 |
+
controlnet_decay=1,
|
41 |
+
condition_scale=6,
|
42 |
+
tile_width=112,
|
43 |
+
tile_height=144,
|
44 |
+
denoise_strength=0.35,
|
45 |
+
num_inference_steps=18,
|
46 |
+
solver="DDIM",
|
47 |
+
api_name="/process"
|
48 |
+
)
|
49 |
return result[1]
|
50 |
|
51 |
+
|
52 |
async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed):
|
53 |
+
if seed == -1:
|
54 |
+
seed = random.randint(0, MAX_SEED)
|
55 |
seed = int(seed)
|
56 |
text = str(translator.translate(prompt, 'English')) + "," + lora_word
|
57 |
+
async with AsyncInferenceClient() as client:
|
58 |
+
try:
|
59 |
+
image = await client.text_to_image(
|
60 |
+
prompt=text,
|
61 |
+
height=height,
|
62 |
+
width=width,
|
63 |
+
guidance_scale=scales,
|
64 |
+
num_inference_steps=steps,
|
65 |
+
model=model,
|
66 |
+
)
|
67 |
+
except Exception as e:
|
68 |
+
raise gr.Error(f"Error in {e}")
|
69 |
return image, seed
|
70 |
|
71 |
+
|
72 |
async def gen(prompt, lora_add, lora_word, width, height, scales, steps, seed, upscale_factor):
|
73 |
model = enable_lora(lora_add)
|
74 |
image, seed = await generate_image(prompt, model, lora_word, width, height, scales, steps, seed)
|
|
|
78 |
combined_image.paste(image, (0, 0))
|
79 |
combined_image.paste(upscaled_image, (image.width, 0))
|
80 |
return combined_image, seed
|
81 |
+
else:
|
82 |
+
return image, seed
|
83 |
+
|
84 |
|
85 |
with gr.Blocks(css=CSS, js=JS, theme="Nymbo/Nymbo_Theme") as demo:
|
86 |
gr.HTML("<h1><center>Flux Lab Light</center></h1>")
|
87 |
with gr.Row():
|
88 |
with gr.Column(scale=4):
|
89 |
+
with gr.Row():
|
90 |
+
img = gr.Image(type="filepath", label='Comparison Image', height=600)
|
91 |
+
with gr.Row():
|
92 |
+
prompt = gr.Textbox(label='Enter Your Prompt (Multi-Languages)', placeholder="Enter prompt...", scale=6)
|
93 |
+
sendBtn = gr.Button(scale=1, variant='primary')
|
94 |
with gr.Accordion("Advanced Options", open=True):
|
95 |
with gr.Column(scale=1):
|
96 |
width = gr.Slider(label="Width", minimum=512, maximum=1280, step=8, value=768)
|
|
|
101 |
lora_add = gr.Textbox(label="Add Flux LoRA", info="Copy the HF LoRA model name here", lines=1, placeholder="Please use Warm status model")
|
102 |
lora_word = gr.Textbox(label="Add Flux LoRA Trigger Word", info="Add the Trigger Word", lines=1, value="")
|
103 |
upscale_factor = gr.Radio(label="UpScale Factor", choices=[0, 2, 3, 4], value=0, scale=2)
|
104 |
+
gr.on(
|
105 |
+
triggers=[prompt.submit, sendBtn.click],
|
106 |
+
fn=gen,
|
107 |
+
inputs=[
|
108 |
+
prompt,
|
109 |
+
lora_add,
|
110 |
+
lora_word,
|
111 |
+
width,
|
112 |
+
height,
|
113 |
+
scales,
|
114 |
+
steps,
|
115 |
+
seed,
|
116 |
+
upscale_factor
|
117 |
+
],
|
118 |
+
outputs=[img, seed]
|
119 |
+
)
|