Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import UNet2DConditionModel, AutoencoderKL, DDIMScheduler, AutoencoderTiny
|
2 |
+
from transformers import AutoTokenizer, CLIPTextModel, CLIPTextModelWithProjection
|
3 |
+
from accelerate import Accelerator
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
import spaces
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import time
|
10 |
+
import PIL
|
11 |
+
|
12 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
13 |
+
repo_id = "tianweiy/DMD2"
|
14 |
+
subfolder = "model/sdxl/sdxl_cond999_8node_lr5e-7_denoising4step_diffusion1000_gan5e-3_guidance8_noinit_noode_backsim_scratch_checkpoint_model_019000"
|
15 |
+
filename = "pytorch_model.bin"
|
16 |
+
|
17 |
+
|
18 |
+
class ModelWrapper:
|
19 |
+
def __init__(self, model_id, checkpoint_path, precision, image_resolution, latent_resolution, num_train_timesteps, conditioning_timestep, num_step, revision, accelerator):
|
20 |
+
super().__init__()
|
21 |
+
torch.set_grad_enabled(False)
|
22 |
+
|
23 |
+
self.DTYPE = getattr(torch, precision)
|
24 |
+
self.device = accelerator.device
|
25 |
+
|
26 |
+
self.tokenizer_one = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, use_fast=False)
|
27 |
+
self.tokenizer_two = AutoTokenizer.from_pretrained(model_id, subfolder="tokenizer", revision=revision, use_fast=False)
|
28 |
+
|
29 |
+
self.text_encoder = SDXLTextEncoder(model_id, revision, accelerator, dtype=self.DTYPE)
|
30 |
+
|
31 |
+
self.vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae").float().to(self.device)
|
32 |
+
self.vae_dtype = torch.float32
|
33 |
+
|
34 |
+
self.tiny_vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=self.DTYPE).to(self.device)
|
35 |
+
self.tiny_vae_dtype = self.DTYPE
|
36 |
+
|
37 |
+
self.model = self.create_generator(model_id, checkpoint_path).to(dtype=self.DTYPE).to(self.device)
|
38 |
+
|
39 |
+
self.accelerator = accelerator
|
40 |
+
self.image_resolution = image_resolution
|
41 |
+
self.latent_resolution = latent_resolution
|
42 |
+
self.num_train_timesteps = num_train_timesteps
|
43 |
+
self.vae_downsample_ratio = image_resolution // latent_resolution
|
44 |
+
self.conditioning_timestep = conditioning_timestep
|
45 |
+
|
46 |
+
self.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
47 |
+
self.alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
|
48 |
+
self.num_step = num_step
|
49 |
+
|
50 |
+
def create_generator(self, model_id, checkpoint_path):
|
51 |
+
generator = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet").to(self.DTYPE)
|
52 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
53 |
+
generator.load_state_dict(state_dict, strict=True)
|
54 |
+
generator.requires_grad_(False)
|
55 |
+
return generator
|
56 |
+
|
57 |
+
def build_condition_input(self, height, width):
|
58 |
+
original_size = (height, width)
|
59 |
+
target_size = (height, width)
|
60 |
+
crop_top_left = (0, 0)
|
61 |
+
|
62 |
+
add_time_ids = list(original_size + crop_top_left + target_size)
|
63 |
+
add_time_ids = torch.tensor([add_time_ids], device=self.device, dtype=self.DTYPE)
|
64 |
+
return add_time_ids
|
65 |
+
|
66 |
+
def _encode_prompt(self, prompt):
|
67 |
+
text_input_ids_one = self.tokenizer_one([prompt], padding="max_length", max_length=self.tokenizer_one.model_max_length, truncation=True, return_tensors="pt").input_ids
|
68 |
+
text_input_ids_two = self.tokenizer_two([prompt], padding="max_length", max_length=self.tokenizer_two.model_max_length, truncation=True, return_tensors="pt").input_ids
|
69 |
+
|
70 |
+
prompt_dict = {
|
71 |
+
'text_input_ids_one': text_input_ids_one.unsqueeze(0).to(self.device),
|
72 |
+
'text_input_ids_two': text_input_ids_two.unsqueeze(0).to(self.device)
|
73 |
+
}
|
74 |
+
return prompt_dict
|
75 |
+
|
76 |
+
@staticmethod
|
77 |
+
def _get_time():
|
78 |
+
torch.cuda.synchronize()
|
79 |
+
return time.time()
|
80 |
+
|
81 |
+
def sample(self, noise, unet_added_conditions, prompt_embed, fast_vae_decode):
|
82 |
+
alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
|
83 |
+
|
84 |
+
if self.num_step == 1:
|
85 |
+
all_timesteps = [self.conditioning_timestep]
|
86 |
+
step_interval = 0
|
87 |
+
elif self.num_step == 4:
|
88 |
+
all_timesteps = [999, 749, 499, 249]
|
89 |
+
step_interval = 250
|
90 |
+
else:
|
91 |
+
raise NotImplementedError()
|
92 |
+
|
93 |
+
DTYPE = prompt_embed.dtype
|
94 |
+
|
95 |
+
for constant in all_timesteps:
|
96 |
+
current_timesteps = torch.ones(len(prompt_embed), device=self.device, dtype=torch.long) * constant
|
97 |
+
eval_images = self.model(noise, current_timesteps, prompt_embed, added_cond_kwargs=unet_added_conditions).sample
|
98 |
+
|
99 |
+
eval_images = get_x0_from_noise(noise, eval_images, alphas_cumprod, current_timesteps).to(self.DTYPE)
|
100 |
+
|
101 |
+
next_timestep = current_timesteps - step_interval
|
102 |
+
noise = self.scheduler.add_noise(eval_images, torch.randn_like(eval_images), next_timestep).to(DTYPE)
|
103 |
+
|
104 |
+
if fast_vae_decode:
|
105 |
+
eval_images = self.tiny_vae.decode(eval_images.to(self.tiny_vae_dtype) / self.tiny_vae.config.scaling_factor, return_dict=False)[0]
|
106 |
+
else:
|
107 |
+
eval_images = self.vae.decode(eval_images.to(self.vae_dtype) / self.vae.config.scaling_factor, return_dict=False)[0]
|
108 |
+
eval_images = ((eval_images + 1.0) * 127.5).clamp(0, 255).to(torch.uint8).permute(0, 2, 3, 1)
|
109 |
+
return eval_images
|
110 |
+
|
111 |
+
@spaces.GPU(enable_queue=True)
|
112 |
+
@torch.no_grad()
|
113 |
+
def inference(self, prompt, seed, height, width, num_images, fast_vae_decode):
|
114 |
+
print("Running model inference...")
|
115 |
+
|
116 |
+
if seed == -1:
|
117 |
+
seed = np.random.randint(0, 1000000)
|
118 |
+
|
119 |
+
generator = torch.manual_seed(seed)
|
120 |
+
|
121 |
+
add_time_ids = self.build_condition_input(height, width).repeat(num_images, 1)
|
122 |
+
|
123 |
+
noise = torch.randn(num_images, 4, height // self.vae_downsample_ratio, width // self.vae_downsample_ratio, generator=generator).to(device=self.device, dtype=self.DTYPE)
|
124 |
+
|
125 |
+
prompt_inputs = self._encode_prompt(prompt)
|
126 |
+
|
127 |
+
start_time = self._get_time()
|
128 |
+
|
129 |
+
prompt_embeds, pooled_prompt_embeds = self.text_encoder(prompt_inputs)
|
130 |
+
|
131 |
+
batch_prompt_embeds, batch_pooled_prompt_embeds = (
|
132 |
+
prompt_embeds.repeat(num_images, 1, 1),
|
133 |
+
pooled_prompt_embeds.repeat(num_images, 1, 1)
|
134 |
+
)
|
135 |
+
|
136 |
+
unet_added_conditions = {
|
137 |
+
"time_ids": add_time_ids,
|
138 |
+
"text_embeds": batch_pooled_prompt_embeds.squeeze(1)
|
139 |
+
}
|
140 |
+
|
141 |
+
eval_images = self.sample(noise=noise, unet_added_conditions=unet_added_conditions, prompt_embed=batch_prompt_embeds, fast_vae_decode=fast_vae_decode)
|
142 |
+
|
143 |
+
end_time = self._get_time()
|
144 |
+
|
145 |
+
output_image_list = []
|
146 |
+
for image in eval_images:
|
147 |
+
output_image_list.append(PIL.Image.fromarray(image.cpu().numpy()))
|
148 |
+
|
149 |
+
return output_image_list, f"Run successfully in {(end_time-start_time):.2f} seconds"
|
150 |
+
|
151 |
+
def get_x0_from_noise(sample, model_output, alphas_cumprod, timestep):
|
152 |
+
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1)
|
153 |
+
beta_prod_t = 1 - alpha_prod_t
|
154 |
+
|
155 |
+
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
156 |
+
return pred_original_sample
|
157 |
+
|
158 |
+
class SDXLTextEncoder(torch.nn.Module):
|
159 |
+
def __init__(self, model_id, revision, accelerator, dtype=torch.float32):
|
160 |
+
super().__init__()
|
161 |
+
|
162 |
+
self.text_encoder_one = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder", revision=revision).to(accelerator.device).to(dtype=dtype)
|
163 |
+
self.text_encoder_two = CLIPTextModelWithProjection.from_pretrained(model_id, subfolder="text_encoder_2", revision=revision).to(accelerator.device).to(dtype=dtype)
|
164 |
+
|
165 |
+
self.accelerator = accelerator
|
166 |
+
|
167 |
+
def forward(self, batch):
|
168 |
+
text_input_ids_one = batch['text_input_ids_one'].to(self.accelerator.device).squeeze(1)
|
169 |
+
text_input_ids_two = batch['text_input_ids_two'].to(self.accelerator.device).squeeze(1)
|
170 |
+
prompt_embeds_list = []
|
171 |
+
|
172 |
+
for text_input_ids, text_encoder in zip([text_input_ids_one, text_input_ids_two], [self.text_encoder_one, self.text_encoder_two]):
|
173 |
+
prompt_embeds = text_encoder(text_input_ids.to(text_encoder.device), output_hidden_states=True)
|
174 |
+
|
175 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
176 |
+
|
177 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
178 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
179 |
+
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
180 |
+
prompt_embeds_list.append(prompt_embeds)
|
181 |
+
|
182 |
+
prompt_embeds = torch.cat(prompt_embeds_list, dim=-1)
|
183 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(len(text_input_ids_one), -1)
|
184 |
+
|
185 |
+
return prompt_embeds, pooled_prompt_embeds
|
186 |
+
|
187 |
+
def create_demo():
|
188 |
+
TITLE = "# DMD2-SDXL Demo"
|
189 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
190 |
+
checkpoint_path = hf_hub_download(repo_id=repo_id, subfolder=subfolder,filename=filename)
|
191 |
+
precision = "float16"
|
192 |
+
image_resolution = 1024
|
193 |
+
latent_resolution = 128
|
194 |
+
num_train_timesteps = 1000
|
195 |
+
conditioning_timestep = 999
|
196 |
+
num_step = 4
|
197 |
+
revision = None
|
198 |
+
|
199 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
200 |
+
torch.backends.cudnn.allow_tf32 = True
|
201 |
+
|
202 |
+
accelerator = Accelerator()
|
203 |
+
|
204 |
+
model = ModelWrapper(model_id, checkpoint_path, precision, image_resolution, latent_resolution, num_train_timesteps, conditioning_timestep, num_step, revision, accelerator)
|
205 |
+
|
206 |
+
with gr.Blocks() as demo:
|
207 |
+
gr.Markdown(TITLE)
|
208 |
+
with gr.Row():
|
209 |
+
with gr.Column():
|
210 |
+
prompt = gr.Text(value="An oil painting of two rabbits in the style of American Gothic, wearing the same clothes as in the original.", label="Prompt")
|
211 |
+
run_button = gr.Button("Run")
|
212 |
+
with gr.Accordion(label="Advanced options", open=True):
|
213 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=1000000, step=1, value=0)
|
214 |
+
num_images = gr.Slider(label="Number of generated images", minimum=1, maximum=16, step=1, value=16)
|
215 |
+
fast_vae_decode = gr.Checkbox(label="Use Tiny VAE for faster decoding", value=True)
|
216 |
+
height = gr.Slider(label="Image Height", minimum=512, maximum=1536, step=64, value=1024)
|
217 |
+
width = gr.Slider(label="Image Width", minimum=512, maximum=1536, step=64, value=1024)
|
218 |
+
with gr.Column():
|
219 |
+
result = gr.Gallery(label="Generated Images", show_label=False, elem_id="gallery", height=1024)
|
220 |
+
error_message = gr.Text(label="Job Status")
|
221 |
+
|
222 |
+
inputs = [prompt, seed, height, width, num_images, fast_vae_decode]
|
223 |
+
run_button.click(fn=model.inference, inputs=inputs, outputs=[result, error_message], concurrency_limit=1)
|
224 |
+
return demo
|
225 |
+
|
226 |
+
if __name__ == "__main__":
|
227 |
+
demo = create_demo()
|
228 |
+
demo.queue(api_open=False)
|
229 |
+
demo.launch(show_error=True, share=True)
|