Versatile-Diffusion-game-assets-gen / cusomized_gradio_blocks.py
Xingqian Xu
New app first commit
2fbcf51
raw
history blame
10.5 kB
from __future__ import annotations
import ast
import csv
import inspect
import os
import subprocess
import tempfile
import threading
import warnings
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Tuple
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import PIL
import PIL.Image
import gradio
from gradio import components, processing_utils, routes, utils
from gradio.context import Context
from gradio.documentation import document, set_documentation_group
from gradio.flagging import CSVLogger
if TYPE_CHECKING: # Only import for type checking (to avoid circular imports).
from gradio.components import IOComponent
CACHED_FOLDER = "gradio_cached_examples"
LOG_FILE = "log.csv"
def create_myexamples(
examples: List[Any] | List[List[Any]] | str,
inputs: IOComponent | List[IOComponent],
outputs: IOComponent | List[IOComponent] | None = None,
fn: Callable | None = None,
cache_examples: bool = False,
examples_per_page: int = 10,
_api_mode: bool = False,
label: str | None = None,
elem_id: str | None = None,
run_on_click: bool = False,
preprocess: bool = True,
postprocess: bool = True,
batch: bool = False,):
"""Top-level synchronous function that creates Examples. Provided for backwards compatibility, i.e. so that gr.Examples(...) can be used to create the Examples component."""
examples_obj = MyExamples(
examples=examples,
inputs=inputs,
outputs=outputs,
fn=fn,
cache_examples=cache_examples,
examples_per_page=examples_per_page,
_api_mode=_api_mode,
label=label,
elem_id=elem_id,
run_on_click=run_on_click,
preprocess=preprocess,
postprocess=postprocess,
batch=batch,
_initiated_directly=False,
)
utils.synchronize_async(examples_obj.create)
return examples_obj
class MyExamples(gradio.helpers.Examples):
def __init__(
self,
examples: List[Any] | List[List[Any]] | str,
inputs: IOComponent | List[IOComponent],
outputs: IOComponent | List[IOComponent] | None = None,
fn: Callable | None = None,
cache_examples: bool = False,
examples_per_page: int = 10,
_api_mode: bool = False,
label: str | None = "Examples",
elem_id: str | None = None,
run_on_click: bool = False,
preprocess: bool = True,
postprocess: bool = True,
batch: bool = False,
_initiated_directly: bool = True,):
if _initiated_directly:
warnings.warn(
"Please use gr.Examples(...) instead of gr.examples.Examples(...) to create the Examples.",
)
if cache_examples and (fn is None or outputs is None):
raise ValueError("If caching examples, `fn` and `outputs` must be provided")
if not isinstance(inputs, list):
inputs = [inputs]
if outputs and not isinstance(outputs, list):
outputs = [outputs]
working_directory = Path().absolute()
if examples is None:
raise ValueError("The parameter `examples` cannot be None")
elif isinstance(examples, list) and (
len(examples) == 0 or isinstance(examples[0], list)
):
pass
elif (
isinstance(examples, list) and len(inputs) == 1
): # If there is only one input component, examples can be provided as a regular list instead of a list of lists
examples = [[e] for e in examples]
elif isinstance(examples, str):
if not Path(examples).exists():
raise FileNotFoundError(
"Could not find examples directory: " + examples
)
working_directory = examples
if not (Path(examples) / LOG_FILE).exists():
if len(inputs) == 1:
examples = [[e] for e in os.listdir(examples)]
else:
raise FileNotFoundError(
"Could not find log file (required for multiple inputs): "
+ LOG_FILE
)
else:
with open(Path(examples) / LOG_FILE) as logs:
examples = list(csv.reader(logs))
examples = [
examples[i][: len(inputs)] for i in range(1, len(examples))
] # remove header and unnecessary columns
else:
raise ValueError(
"The parameter `examples` must either be a string directory or a list"
"(if there is only 1 input component) or (more generally), a nested "
"list, where each sublist represents a set of inputs."
)
input_has_examples = [False] * len(inputs)
for example in examples:
for idx, example_for_input in enumerate(example):
# if not (example_for_input is None):
if True:
try:
input_has_examples[idx] = True
except IndexError:
pass # If there are more example components than inputs, ignore. This can sometimes be intentional (e.g. loading from a log file where outputs and timestamps are also logged)
inputs_with_examples = [
inp for (inp, keep) in zip(inputs, input_has_examples) if keep
]
non_none_examples = [
[ex for (ex, keep) in zip(example, input_has_examples) if keep]
for example in examples
]
self.examples = examples
self.non_none_examples = non_none_examples
self.inputs = inputs
self.inputs_with_examples = inputs_with_examples
self.outputs = outputs
self.fn = fn
self.cache_examples = cache_examples
self._api_mode = _api_mode
self.preprocess = preprocess
self.postprocess = postprocess
self.batch = batch
with utils.set_directory(working_directory):
self.processed_examples = [
[
component.postprocess(sample)
for component, sample in zip(inputs, example)
]
for example in examples
]
self.non_none_processed_examples = [
[ex for (ex, keep) in zip(example, input_has_examples) if keep]
for example in self.processed_examples
]
if cache_examples:
for example in self.examples:
if len([ex for ex in example if ex is not None]) != len(self.inputs):
warnings.warn(
"Examples are being cached but not all input components have "
"example values. This may result in an exception being thrown by "
"your function. If you do get an error while caching examples, make "
"sure all of your inputs have example values for all of your examples "
"or you provide default values for those particular parameters in your function."
)
break
with utils.set_directory(working_directory):
self.dataset = components.Dataset(
components=inputs_with_examples,
samples=non_none_examples,
type="index",
label=label,
samples_per_page=examples_per_page,
elem_id=elem_id,
)
self.cached_folder = Path(CACHED_FOLDER) / str(self.dataset._id)
self.cached_file = Path(self.cached_folder) / "log.csv"
self.cache_examples = cache_examples
self.run_on_click = run_on_click
from gradio import utils, processing_utils
from PIL import Image as _Image
from pathlib import Path
import numpy as np
def customized_postprocess(self, y):
if y is None:
return None
if isinstance(y, dict):
if self.tool == "sketch" and self.source in ["upload", "webcam"]:
y, mask = y["image"], y["mask"]
if y is None:
return None
elif isinstance(y, np.ndarray):
im = processing_utils.encode_array_to_base64(y)
elif isinstance(y, _Image.Image):
im = processing_utils.encode_pil_to_base64(y)
elif isinstance(y, (str, Path)):
im = processing_utils.encode_url_or_file_to_base64(y)
else:
raise ValueError("Cannot process this value as an Image")
im = self._format_image(im)
if mask is None:
return im
elif isinstance(y, np.ndarray):
mask_im = processing_utils.encode_array_to_base64(mask)
elif isinstance(y, _Image.Image):
mask_im = processing_utils.encode_pil_to_base64(mask)
elif isinstance(y, (str, Path)):
mask_im = processing_utils.encode_url_or_file_to_base64(mask)
else:
raise ValueError("Cannot process this value as an Image")
return {"image": im, "mask" : mask_im,}
elif isinstance(y, np.ndarray):
return processing_utils.encode_array_to_base64(y)
elif isinstance(y, _Image.Image):
return processing_utils.encode_pil_to_base64(y)
elif isinstance(y, (str, Path)):
return processing_utils.encode_url_or_file_to_base64(y)
else:
raise ValueError("Cannot process this value as an Image")
# def customized_as_example(self, input_data=None):
# if input_data is None:
# return str('assets/demo/misc/noimage.jpg')
# elif isinstance(input_data, dict):
# im = np.array(PIL.Image.open(input_data["image"])).astype(float)
# mask = np.array(PIL.Image.open(input_data["mask"])).astype(float)/255
# imm = (im * (1-mask)).astype(np.uint8)
# import time
# ctime = int(time.time()*100)
# impath = 'assets/demo/temp/temp_{}.png'.format(ctime)
# PIL.Image.fromarray(imm).save(impath)
# return str(utils.abspath(impath))
# else:
# return str(utils.abspath(input_data))
def customized_as_example(self, input_data=None):
if input_data is None:
return str('assets/demo/misc/noimage.jpg')
else:
return str(utils.abspath(input_data))