Spaces:
Runtime error
Runtime error
from huggingface_hub import InferenceClient | |
import gradio as gr | |
client = InferenceClient("""K00B404/BagOMistral_14X_Coders-ties-7B""")) | |
def format_prompt(message, history, model): | |
prompt = f"[INST] {message} [/INST]" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/" | |
prompt += f" {bot_response} [/" | |
prompt = f"[MODEL] {model} [/" + prompt | |
return prompt | |
def generate(prompt, history, temperature=0.2, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, model="BagOMistral_14X_Coders-ties-7B"): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(prompt, history, model) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
mychatbot = gr.Chatbot(avatar_images=["./user.png", "./botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True) | |
model_options = ["BagOMistral_14X_Coders-ties-7B", "Model2", "Model3", "Model4", "Model5", "Model6", "Model7"] | |
demo = gr.ChatInterface(fn=generate, | |
chatbot=mychatbot, | |
title="K00B404's Merged Models Test Chat", | |
retry_btn=None, | |
undo_btn=None, | |
inputs=["text", "history", "temperature", "max_new_tokens", "top_p", "repetition_penalty", "model"], | |
inputs_types={"model": "dropdown", "text": "text", "history": "text", "temperature": "number", "max_new_tokens": "number", "top_p": "number", "repetition_penalty": "number"}, | |
input_labels={"model": "Select Model", "text": "Enter Prompt", "history": "Chat History", "temperature": "Temperature", "max_new_tokens": "Max New Tokens", "top_p": "Top P", "repetition_penalty": "Repetition Penalty"}, | |
input_options={"model": model_options}) | |
demo.queue().launch(show_api=False) |