K00B404's picture
Update app.py
0d9d5f8 verified
raw
history blame
2.15 kB
#from huggingface_hub import InferenceClient
import gradio as gr
#client = InferenceClient("""K00B404/BagOMistral_14X_Coders-ties-7B""")
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
#model_id = 'EleutherAI/pythia-1b'
model_id = 'EleutherAI/GPT-Neo-2.7B'
#gr.load(f"models/{model_id}").launch()
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
#text = "TinyPixel/Llama-2-7B-bf16-sharded"
#inputs = tokenizer(text, return_tensors="pt")
#outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
"""
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(prompt, history, temperature=0.2, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
mychatbot = gr.Chatbot(avatar_images=["./user.png", "./botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True)
demo = gr.ChatInterface(fn=generate,
chatbot=mychatbot,
title="K00B404's Merged Models Test Chat",
retry_btn=None,
undo_btn=None
)
demo.queue().launch(show_api=False)
"""