Spaces:
Runtime error
Runtime error
#from huggingface_hub import InferenceClient | |
import gradio as gr | |
#client = InferenceClient("""K00B404/BagOMistral_14X_Coders-ties-7B""") | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
#model_id = 'EleutherAI/pythia-1b' | |
model_id = 'EleutherAI/GPT-Neo-2.7B' | |
#gr.load(f"models/{model_id}").launch() | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
#text = "TinyPixel/Llama-2-7B-bf16-sharded" | |
#inputs = tokenizer(text, return_tensors="pt") | |
#outputs = model.generate(**inputs, max_new_tokens=20) | |
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | |
""" | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate(prompt, history, temperature=0.2, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
mychatbot = gr.Chatbot(avatar_images=["./user.png", "./botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True) | |
demo = gr.ChatInterface(fn=generate, | |
chatbot=mychatbot, | |
title="K00B404's Merged Models Test Chat", | |
retry_btn=None, | |
undo_btn=None | |
) | |
demo.queue().launch(show_api=False) | |
""" |