Manjushri commited on
Commit
fa37ad2
1 Parent(s): 74af386

Update app.py

Browse files

Testing two models

Files changed (1) hide show
  1. app.py +20 -8
app.py CHANGED
@@ -10,22 +10,34 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
10
  pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1")
11
  pipe = pipe.to(device)
12
  pipe.enable_xformers_memory_efficient_attention()
 
 
 
13
  refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
14
  refiner.enable_xformers_memory_efficient_attention()
15
  refiner = refiner.to(device)
16
 
17
- def genie (Prompt, negative_prompt, height, width, scale, steps, seed, upscale, high_noise_frac):
18
  generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
19
- if upscale == "Yes":
20
- #n_steps = 30
21
- int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
22
- image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
23
- return image
 
 
24
  else:
25
- image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
 
 
 
 
 
 
26
  return image
27
 
28
- gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
 
29
  gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
30
  gr.Slider(512, 1024, 768, step=128, label='Height'),
31
  gr.Slider(512, 1024, 768, step=128, label='Width'),
 
10
  pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1")
11
  pipe = pipe.to(device)
12
  pipe.enable_xformers_memory_efficient_attention()
13
+ anime = DiffusionPipeline.from_pretrained("circulus/canvers-anime-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-anime-v3.8.1")
14
+ anime = anime.to(device)
15
+ anime.enable_xformers_memory_efficient_attention()
16
  refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
17
  refiner.enable_xformers_memory_efficient_attention()
18
  refiner = refiner.to(device)
19
 
20
+ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, upscale, high_noise_frac):
21
  generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
22
+ if Model == "Real":
23
+ if upscale == "Yes":
24
+ int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
25
+ image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
26
+ return image
27
+ else:
28
+ image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
29
  else:
30
+ if upscale == "Yes":
31
+ int_image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
32
+ image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
33
+ return image
34
+ else:
35
+ image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
36
+
37
  return image
38
 
39
+ gr.Interface(fn=genie, inputs=[gr.Radio(['Real', 'Anime'], label='Choose Canvers Model'),
40
+ gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
41
  gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
42
  gr.Slider(512, 1024, 768, step=128, label='Height'),
43
  gr.Slider(512, 1024, 768, step=128, label='Width'),