Spaces:
Sleeping
Sleeping
import gradio as gr | |
from PIL import Image | |
from transparent_background import Remover | |
import numpy as np | |
# Initialize the model globally | |
remover = Remover() | |
def process_image(input_image, torchscript_jit, output_type): | |
global remover | |
if torchscript_jit == "on" and not isinstance(remover, Remover(jit=True).__class__): | |
remover = Remover(jit=True) | |
elif torchscript_jit == "default" and not isinstance(remover, Remover().__class__): | |
remover = Remover() | |
if output_type == "Mask only": | |
# Process the image and get only the mask | |
output = remover.process(input_image, type='map') | |
if isinstance(output, Image.Image): | |
# If output is already a PIL Image, convert to grayscale | |
mask = output.convert('L') | |
else: | |
# If output is a numpy array, convert to PIL Image | |
mask = Image.fromarray((output * 255).astype(np.uint8), mode='L') | |
return mask | |
else: | |
# Process the image and return the RGBA result | |
output = remover.process(input_image, type='rgba') | |
return output | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=[ | |
gr.Image(type="pil", label="Input Image"), | |
gr.Radio(["default", "on"], label="TorchScript JIT", value="default"), | |
gr.Radio(["Default", "Mask only"], label="Output Type", value="Default") | |
], | |
outputs=gr.Image(type="pil", label="Output Image"), | |
title="Inspyrenet Background Remover", | |
description="Remove the background from an image using Inspyrenet. Choose 'Mask only' for a black and white mask, or 'Default' for the image with transparent background.", | |
theme='bethecloud/storj_theme', | |
) | |
if __name__ == "__main__": | |
iface.launch() |