Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
import io | |
import random | |
import os | |
import time | |
from PIL import Image | |
import json | |
# Project by Nymbo | |
from diffusers import DiffusionPipeline | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt") | |
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" | |
image = pipe(prompt).images[0] | |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" | |
API_TOKEN = os.getenv("HF_READ_TOKEN") | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
timeout = 100 | |
# Function to query the API and return the generated image | |
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024): | |
if prompt == "" or prompt is None: | |
return None | |
key = random.randint(0, 999) | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
# Translate the prompt from Russian to English if necessary | |
prompt = GoogleTranslator(source='ru', target='en').translate(prompt) | |
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') | |
# Add some extra flair to the prompt | |
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." | |
print(f'\033[1mGeneration {key}:\033[0m {prompt}') | |
# Prepare the payload for the API call, including width and height | |
payload = { | |
"inputs": prompt, | |
"is_negative": is_negative, | |
"steps": steps, | |
"cfg_scale": cfg_scale, | |
"seed": seed if seed != -1 else random.randint(1, 1000000000), | |
"strength": strength, | |
"parameters": { | |
"width": width, # Pass the width to the API | |
"height": height # Pass the height to the API | |
} | |
} | |
# Send the request to the API and handle the response | |
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) | |
if response.status_code != 200: | |
print(f"Error: Failed to get image. Response status: {response.status_code}") | |
print(f"Response content: {response.text}") | |
if response.status_code == 503: | |
raise gr.Error(f"{response.status_code} : The model is being loaded") | |
raise gr.Error(f"{response.status_code}") | |
try: | |
# Convert the response content into an image | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') | |
return image | |
except Exception as e: | |
print(f"Error when trying to open the image: {e}") | |
return None | |
# ... (CSS and other code remains the same) | |
title="<title>FluxiFloXStrot</title>" | |
# Build the Gradio UI with Blocks | |
with gr.Blocks() as app: | |
gr.HTML(title) | |
with gr.Row(): | |
gr.HTML('<div id="neon-cursor" class="neon-cursor"></div>') | |
with gr.Column(elem_id="app-container"): | |
with gr.Row(): | |
with gr.Column(elem_id="prompt-container"): | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input") | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input") | |
with gr.Row(): | |
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32) | |
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32) | |
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1) | |
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1) | |
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001) | |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) | |
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) | |
with gr.Row(): | |
text_button = gr.Button("Run", variant='primary', elem_id="gen-button") | |
with gr.Row(): | |
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery") | |
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output) | |
app.launch(show_api=True, share=False) |