Update app.py
Browse files
app.py
CHANGED
@@ -11,11 +11,11 @@ from build_vocab import Vocabulary
|
|
11 |
|
12 |
|
13 |
# Caption generation functions
|
14 |
-
def generate_caption_clipgpt(image):
|
15 |
caption = clipGPT.generate_caption_clipgpt(image)
|
16 |
return caption
|
17 |
|
18 |
-
def generate_caption_vitgpt(image):
|
19 |
caption = vitGPT.generate_caption(image)
|
20 |
return caption
|
21 |
|
@@ -26,11 +26,17 @@ def generate_caption_vitCoAtt(image):
|
|
26 |
|
27 |
with gr.Blocks() as demo:
|
28 |
|
29 |
-
|
30 |
gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports π₯π€</h1>")
|
31 |
gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>")
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
with gr.Row():
|
35 |
sample_images = [
|
36 |
'https://imgur.com/W1pIr9b',
|
@@ -56,18 +62,18 @@ with gr.Blocks() as demo:
|
|
56 |
|
57 |
def predict(img, model_name):
|
58 |
if model_name == "CLIP-GPT2":
|
59 |
-
return generate_caption_clipgpt(img)
|
60 |
elif model_name == "ViT-GPT2":
|
61 |
-
return generate_caption_vitgpt(img)
|
62 |
elif model_name == "ViT-CoAttention":
|
63 |
return generate_caption_vitCoAtt(img)
|
64 |
else:
|
65 |
return "Caption generation for this model is not yet implemented."
|
66 |
|
67 |
|
68 |
-
# Event handlers
|
69 |
-
generate_button.click(predict, [image, model_choice], caption)
|
70 |
-
sample_images_gallery.change(predict, [sample_images_gallery, model_choice], caption)
|
71 |
|
72 |
|
73 |
demo.launch()
|
|
|
11 |
|
12 |
|
13 |
# Caption generation functions
|
14 |
+
def generate_caption_clipgpt(image, max_tokens, temperature):
|
15 |
caption = clipGPT.generate_caption_clipgpt(image)
|
16 |
return caption
|
17 |
|
18 |
+
def generate_caption_vitgpt(image, max_tokens, temperature):
|
19 |
caption = vitGPT.generate_caption(image)
|
20 |
return caption
|
21 |
|
|
|
26 |
|
27 |
with gr.Blocks() as demo:
|
28 |
|
|
|
29 |
gr.HTML("<h1 style='text-align: center;'>MedViT: A Vision Transformer-Driven Method for Generating Medical Reports π₯π€</h1>")
|
30 |
gr.HTML("<p style='text-align: center;'>You can generate captions by uploading an X-Ray and selecting a model of your choice below</p>")
|
31 |
|
32 |
+
with gr.Row():
|
33 |
+
# ... (your existing image upload components)
|
34 |
+
|
35 |
+
with gr.Column(): # Column for dropdowns and model choice
|
36 |
+
max_tokens = gr.Dropdown(list(range(50, 101)), label="Max Tokens", value=75)
|
37 |
+
temperature = gr.Slider(0.5, 0.9, step=0.1, label="Temperature", value=0.7)
|
38 |
+
model_choice = gr.Radio(["CLIP-GPT2", "ViT-GPT2", "ViT-CoAttention"], label="Select Model")
|
39 |
+
|
40 |
with gr.Row():
|
41 |
sample_images = [
|
42 |
'https://imgur.com/W1pIr9b',
|
|
|
62 |
|
63 |
def predict(img, model_name):
|
64 |
if model_name == "CLIP-GPT2":
|
65 |
+
return generate_caption_clipgpt(img, max_tokens, temperature)
|
66 |
elif model_name == "ViT-GPT2":
|
67 |
+
return generate_caption_vitgpt(img, max_tokens, temperature)
|
68 |
elif model_name == "ViT-CoAttention":
|
69 |
return generate_caption_vitCoAtt(img)
|
70 |
else:
|
71 |
return "Caption generation for this model is not yet implemented."
|
72 |
|
73 |
|
74 |
+
# Event handlers
|
75 |
+
generate_button.click(predict, [image, model_choice, max_tokens, temperature], caption)
|
76 |
+
sample_images_gallery.change(predict, [sample_images_gallery, model_choice, max_tokens, temperature], caption)
|
77 |
|
78 |
|
79 |
demo.launch()
|